함수
-
함수의 그래프2013.09.18
중1 수학 목차
중학교 1학년 수학 목차입니다. 각 게시글 하단의 목차보다 여기 있는 목차를 이용해주세요.
각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.
- 자연수
- 정수와 유리수
- 문자와 식, 일차방정식의 풀이
- 그래프와 비례관계
- 도형의 기초
- 평면도형
- 입체도형
- 통계
2014년 고1 수학 목차 - 수1, 수2
고등학교 교육과정이 자주 바뀌어 학년별 목차보다 단원별 목차가 더 효율적이라 판단되어 목록을 일부 수정합니다.
각 게시글 하단의 목차를 이용하지 말고, 이 게시글의 목차에서 필요한 단원만 골라서 공부하세요.
각 게시글 하단의 목차 페이지는 이용하지 말아주세요.
수학Ⅰ
- 다항식
- 방정식과 부등식
- 허수와 허수단위, 복소수
- 켤레복소수와 켤레복소수의 성질
- 복소수의 사칙연산
- i의 거듭제곱, 음수의 제곱근의 성질
- 방정식 ax + b = 0의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차방정식의 풀이
- 이차방정식의 판별식, 실근, 허근
- 이차방정식 근과 계수와의 관계
- 두 수를 근으로하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
- 이차방정식의 켤레근
- 이차방정식의 인수분해
- 이차방정식의 실근의 부호
- 이차함수의 그래프와 이차방정식의 실근
- 이차함수의 그래프와 직선의 위치관계
- 이차방정식의 실근의 위치
- 이차함수 총정리
- 이차함수의 최댓값과 최솟값
- 이차함수의 최대, 최소와 활용
- 고차방정식의 인수분해, 고차방정식의 풀이
- 고차방정식의 풀이 - 치환, 복이차식
- 상반방정식
- 삼차방정식 근과 계수와의 관계
- 삼차방정식의 허근 ω의 성질
- 연립방정식 - 미지수가 3개인 연립일차방정식
- 연립이차방정식의 풀이 1
- 연립이차방정식의 풀이 2
- 부정방정식
- 부등식의 성질, 부등식끼리의 사칙연산
- 부등식 ax > b의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차부등식의 풀이
- 절댓값 기호를 포함한 부등식의 풀이 2
- 이차부등식, 이차부등식의 해
- 판별식과 이차부등식의 해
- 이차함수의 그래프와 이차부등식의 해
- 해가 주어졌을 때 이차부등식 구하기
- 이차부등식이 항상 성립할 조건
- 연립이차부등식
- 도형의 방정식
- 두 점 사이의 거리
- 선분의 내분점과 외분점
- 좌표평면 위의 내분점과 외분점
- 내분점과 외분점의 관계
- 삼각형 무게중심의 좌표
- 직선의 방정식, 직선의 방정식 구하기
- 직선의 방정식 일반형과 표준형
- 절댓값 기호를 포함한 식의 그래프
- 두 직선의 위치관계 - 평행, 일치, 수직
- 두 직선의 위치관계와 일차방정식의 해의 개수
- 교점을 지나는 직선의 방정식
- 점과 직선 사이의 거리
- 원의 방정식
- 원의 방정식 일반형과 표준형
- 아폴로니오스의 원
- 축에 접하는 원의 방정식
- 두 원의 교점을 지나는 원의 방정식
- 원과 직선의 위치관계
- 원의 접선의 방정식 1 - 접점을 알 때
- 원의 접선의 방정식 2 - 기울기를 알 때
- 원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
- 점과 도형의 평행이동
- 점과 도형의 대칭이동 - x축, y축, 원점
- 점과 도형의 대칭이동 - 직선에 대한 대칭이동
- 부등식의 영역 - f(x) > 0, f(x) < 0
- 부등식의 영역 - f(x, y) > 0, f(x, y) < 0
- 연립부등식의 영역
- 부등식의 영역과 최대, 최소
수학Ⅱ
- 집합과 명제
- 집합의 뜻
- 집합에서 원소란π
- 집합의 표현방법 - 조건제시법, 원소나열법, 벤다이어그램
- 집합의 분류 - 원소개수에 따른 분류(무한집합, 유한집합, 공집합)
- 집합의 원소의 개수
- 집합의 포함관계 - 부분집합
- 진부분집합과 부분집합의 성질
- 부분집합 구하기, 부분집합의 개수 구하기
- 특정한 원소를 포함하는 부분집합의 개수 구하기
- 부분집합, 부분집합의 개수 구하기
- 교집합과 합집합
- 전체집합과 여집합, 차집합
- 집합의 연산법칙 - 교환법칙, 결합법칙, 분배법칙
- 집합의 연산법칙 - 드모르간의 법칙
- 유한집합의 원소의 개수
- 명제와 조건, 진리집합, 조건의 부정
- 명제의 참, 거짓
- 명제의 역, 이, 대우, 삼단논법
- 필요조건, 충분조건, 필요충분조건
- 수학에서의 정의, 증명, 정리
- 절대부등식, 부등식의 증명에 사용되는 실수의 성질
- 절대부등식의 증명 - 산술, 기하, 조화평균
- 절대부등식의 증명 - 코시 슈바르cm 부등식
- 함수
- 수열
- 지수함수와 로그함수
무리함수, 무리함수의 그래프
유리함수에 이어 무리함수예요. 무리함수는 유리함수보다 조금 더 쉬워요. 유리함수에서 했던 것 중에서 식만 무리함수에 맞게 바꾸면 되거든요. 기본적인 내용은 모두 같아요.
무리함수에는 x의 범위와 y의 범위를 파악하는 게 중요합니다. 이건 실수영역에서 제곱근의 정의를 잘 생각해보면 금방 알 수 있는 내용이니까 어렵게 생각하지는 마세요.
무리함수는 무리식을 이용한 함수니까 무리식에 관해서 잘 이해하고 있어야 해요. 생각나지 않는다면 한 번 읽어보세요.
무리함수
함수 y = f(x)에서 f(x)가 x에 대한 유리식이면 유리함수라고 해요. 그럼 f(x)가 x에 대한 무리식이면 뭐라고 부를까요? 바로 무리함수예요.
보통은 라고 써요.
함수는 실수 범위에서만 구해요. 근호 안이 0 또는 양수여야 합니다. ax ≥ 0이어야 하는데, a = 0이면 y = 0이 되어 무리함수가 아니죠? 따라서 별다른 언급이 없으면 무리함수 에서는 a ≠ 0이어야 하고, 근호 안이 0 또는 양수인 x의 범위를 정의역으로 해요.
다만, 이 글에서는 설명을 위해서 a > 0인 경우만 다루기로 하죠.
(a > 0)의 역함수를 구해볼까요? ax ≥ 0이어야하는데 a > 0이니까 정의역은 x ≥ 0이네요. 치역도 y ≥ 0이죠?
어떤가요? x ≥ 0일 때, 무리함수 (a > 0)와 이차함수
(a > 0)은 서로 역함수라는 걸 알 수 있어요. 이차함수와 무리함수의 관계에 대해서 얼추 이해가 되죠?
이번에는 a > 0이라고 할 때 와 여러 무리함수의 그래프를 그려보죠. 근호 안은 0 또는 양수가 되어야 해요.
의 그래프는 a > 0, x ≥ 0, y ≥ 0이므로 제 1 사분면에 그려져요.
의 그래프 a > 0, x ≤ 0, y ≥ 0이므로 제 2 사분면에 그려지고요.
의 그래프와 모양은 같은데 x의 부호가 반대니까 y축에 대하여 대칭이죠.
의 그래프는 a > 0, x ≥ 0, y ≤ 0이므로 제 4 사분면에 그려지죠.
의 그래프와 모양은 같은데, y의 부호가 반대니까 x축 대칭이죠.
의 그래프는 a > 0, x ≤ 0, y ≤ 0이므로 제 3 사분면에 그려져요.
의 그래프와 모양은 같은데, x, y의 부호가 반대니까 원점에 대하여 대칭이고요.
(a > 0)에서 a가 커지면 커질수록 그래프는 x축에서 멀어져요. a < 0일 때는 a가 작으면 작을수록 x축에서 멀어지기 때문에 이 둘을 합쳐 |a|가 커질수록 x축에서 멀어진다고 해요.
함께 보면 좋은 글
무리함수 그래프의 평형이동
무리함수의 역함수, 무리함수 역함수의 성질
유리함수, 다항함수, 분수함수, 점근선
유리함수 2, 분수함수
분수함수의 역함수, 분수함수의 역함수 구하는 방법
역함수, 역함수 구하는 법
무리식, 무리식의 연산
분수함수의 역함수, 분수함수의 역함수 구하는 방법
분수함수의 역함수를 구하는 방법이에요. 분수함수에 대해서 공부했고요, 역함수에 대해서도 공부했어요. 분수함수의 역함수는 이 두 가지를 섞으면 돼요. 새로울 건 없어요.
분수식이기 때문에 계산이 조금 복잡할 수 있는데, 이를 해결하기 위한 공식도 있어요. 공식을 외우면 계산을 하지 않고 역함수를 구할 수 있죠. 어려운 공식은 아니니까 금방 외울 거예요.
분수함수의 역함수도 분수함수인 경우가 많으니까 이 역함수에서 분수함수의 특징인 점근선을 찾는 것, 정의역과 치역을 구하는 것도 해볼 거예요.
분수함수의 역함수
역함수를 구하는 방법은 일반적인 역함수 구하는 법과 같아요.
- 함수 y = f(x)가 일대일 대응인지 확인
- y = f(x)를 x에 대하여 푼다. → x = f-1(y)
- x와 y를 바꾼다. → y = f-1(x)
- 함수 f의 정의역과 치역을 서로 바꾼다.
다만 문제에서 알려주는 함수는 모두 일대일대응이기 때문에 따로 확인할 필요는 없으니 1단계는 그냥 건너뛰어도 되죠.
의 역함수를 한 번 구해볼까요?
2단계인 y = f(x)를 x = f-1(y)로 풀어보죠.
3단계는 x, y를 서로 바꾸는 거예요.
4단계는 정의역과 치역을 서로 바꾸는 거죠.
y = f(x)의 정의역은 {x|x ≠ 인 모든 실수}, 치역은 {y|y ≠
인 모든 실수}
→ y = f-1(x)의 정의역은 {x|x ≠ 인 모든 실수}, 치역은 {y|y ≠
인 모든 실수}
원래 함수와 역함수를 잘 비교해보세요.
잘 보면 분모의 상수항인 b와 분자의 일차항인 c가 자리를 바꿨고 부호도 반대로 바뀌었어요. 공식처럼 사용하면 되겠죠?
다음 분수함수의 역함수와 역함수의 점근선의 방정식을 구하여라.
(1) 번부터 해볼까요?
공식으로 한번 해보죠. 분모의 상수항과 분자의 일차항의 계수의 자리를 바꾸고 부호도 반대로 해볼게요.
결과가 같네요.
점근선은 x = (분모 = 0인 x값), y = (일차항의 계수비)니까 역함수의 점근선은 x = 3, y = -2가 되겠네요.
(2) 번은 바로 공식으로 역함수를 구해보죠.
점근선의 방정식은 x = 1, y = -1이네요.
함께 보면 좋은 글
유리함수, 다항함수, 분수함수, 점근선
유리함수 2, 분수함수
역함수, 역함수 구하는 법
역함수의 성질, 역함수의 그래프
역함수, 역함수 구하는 법
역함수는 새로운 함수는 아니고 원래부터 있던 함수를 변형시켜서 얻은 함수예요. 숫자의 역수랑 비슷한 거죠.
역함수는 그 설명이 조금 어려울 수 있어요. 글로 잘 이해가 되지 않으면 그림을 통해서 이해해보도록 하세요. 개념과 달리 역함수를 구하는 방법은 상당히 쉽습니다. 순서만 잘 따르면 금방 구할 수 있어요.
일대일 대응에 대해서 알고 있어야 역함수를 이해할 수 있고, 역함수를 알고 있어야 다음에 공부할 역함수의 성질과 그래프에 대해서 이해할 수 있어요.
역함수
두 집합 X = {1, 2, 3, 4, 5}, Y = {a, b, c, d, e}가 있어요. 아래 그림 같은 x에 대한 y의 함수 f가 있다고 치죠. 함수 f는 일대일 대응이에요. y = f(x)
이때, Y를 정의역으로 하고 X를 공역으로 하는 함수도 생각할 수 있겠죠? 이 함수를 g라고 해보죠. 역시 일대일 대응이 되겠네요. x = g(y)
함수 f: X → Y가 일대일대응일 때, Y의 임의의 원소 y에 대하여 y = f(x)인 X의 원소 x는 하나만 있어요. 이 경우 y에 대하여 x를 대응시키면 Y를 정의역, X를 공역으로 하는 새로운 함수를 만들 수 있는데, 이를 f의 역함수라 하고 f-1: Y → X로 나타내요.
위 예에서는 g가 f의 역함수, f-1가 되는 거죠.
y = f(x) ⇔ x = g(y) ⇔ x = f-1(y)
역함수는 영어로 하면 Inverse Function이라서 f-1(x)를 f 역함수 x 또는 f inverse x라고 읽어요.
f와 f-1는 일대일 대응에서 정의역과 공역을 바꾼 함수이기 때문에 서로가 서로에게 역함수예요. (f-1)-1 = f
역함수 구하는 법
역함수를 구하는 방법은 생각보다 간단합니다. 정의역과 치역만 맞바꾸면 되니까요.
단 중요한 조건이 있는데, 원래 함수가 꼭 일대일 대응이어야 한다는 거예요. Y가 정의역이 되었을 때 Y의 모든 원소가 X의 원소에 대응하려면 공역 = 치역이어야 해요. 또 Y의 임의의 원소 y에 대응하는 x가 하나만 있어야 하므로 일대일함수여야하고요. 이 두 가지를 만족하는 경우는 일대일 대응밖에 없어요. 일대일 대응이 아닌 그냥 함수나 일대일함수는 역함수를 구할 수 없어요.
- 함수 y = f(x)가 일대일 대응인지 확인
- y = f(x)를 x에 대하여 푼다. → x = f-1(y)
- x와 y를 바꾼다. → y = f-1(x)
- 함수 f의 정의역과 치역을 서로 바꾼다.
3번에서 x, y를 왜 바꾸는지에 대해서 이해하지 못하는 경우가 많은데 특별한 이유는 없어요. 그냥 보통 정의역의 원소를 x, 치역의 원소를 y라고 나타내니까 x, y를 서로 바꾸는 거예요. 원래 함수의 x, y와 역함수의 x, y는 서로 다른 x, y입니다.
다음 함수의 역함수를 구할 수 있는지 보고, 역함수를 구할 수 있으면 구하여라.
(1) y = x + 1
(2) y = x2 + 1
역함수를 구하려면 먼저 일대일 대응인지 확인하고, x에 관하여 푼 다음 x, y를 바꿔주면 돼요. 그다음 정의역과 치역을 바꿔줘야 하는데, 문제에서 나오는 함수는 정의역과 공역이 모두 실수 전체의 집합이므로 여기서는 크게 신경을 쓰지 않아도 돼요.
(1) 번은 일대일 대응이 맞네요. 역함수를 구해보죠.
y = x + 1
x = y - 1
y = x - 1
(2) 번 y = x2 + 1은 일대일 대응이 아니라서 역함수를 구할 수 없어요.
x = 1일 때, y = 2
x = -1일 때, y = 2
함께 보면 좋은 글
함수, 함수의 정의, 대응
정의역, 공역, 치역, 함숫값, 서로 같은 함수
일대일대응, 일대일함수, 항등함수, 상수함수
합성함수, 함성함수란
합성함수, 함성함수란
이제 함수에 대해서는 다 알았나요? 이제는 원래 있던 함수를 이용해서 새로운 함수를 만들 거예요. 합성함수는 이름에서 알 수 있듯이 어떤 무언가를 서로 합해서 만든 함수예요. 그러니까 두 개 이상의 함수를 합하는 거지요.
함수의 정의만 제대로 알고 있다면 합성함수에 대해서도 금방 이해할 수 있을 거예요.
합성함수는 그림으로 이해해도 좋고, 식으로 이해해도 좋아요. 별로 어렵지 않은 내용으로 순서만 잘 지키면 금방 해결할 수 있는 문제들이니까 쉽게 생각하세요.
합성함수
세 집합이 있어요.
X = {이순신, 퇴계 이황, 율곡 이이, 세종대왕, 신사임당}
Y = {100원, 1000원, 5000원, 10000원, 50000원}
Z = {동전, 지폐}
집합 X의 임의의 원소인 위인이 집합 Y의 원소인 화폐 모델인 경우를 대응시켜보면 함수예요. 이 함수를 f라고 해보죠
집합 Y의 임의의 원소인 화폐가 집합 Z의 동전인지 지폐인지에 대응하면 이것도 함수죠. 함수 g라고 할게요.
그럼 집합 X의 위인이 동전의 모델인지 지폐의 모델인지 집합 Z에 대응시킬 수 있겠죠? 이순신은 동전의 모델이고, 퇴계 이황, 율곡 이이, 세종대왕, 신사임당은 지폐의 모델이에요.
이처럼 두 개의 함수를 이용해서 새로운 하나의 함수를 얻을 수 있어요.
마치 명제의 삼단논법에서 p → q이고 q → r이면 p → r이 되는 것처럼 f: X → Y이고, g: Y → Z이면 X → Z라는 새로운 함수가 되는 거지요.
두 함수 f: X → Y, g: Y → Z가 주어졌을 때, X의 임의의 원소 x에 대하여 Z의 원소 g(f(x))를 대응시킴으로써 X를 정의역, Z를 공역으로 하는 새로운 함수를 정의할 수 있어요. 이 함수를 f와 g의 합성함수라고 하고 g ο f: X → Z로 나타냅니다.
(g ο f)(x) = g(f(x))
f와 g를 합성한 합성함수는 f ο g가 아니라 g ο f 예요. 순서에 주의하세요.
함수 f에서 공역은 집합 Y에요. 치역은 공역의 부분집합이죠.
{함수 f의 치역} ⊂ {함수 f의 공역}
함수 g의 정의역은 집합 Y로 함수 f의 공역과 같아요.
{함수 f의 공역} = {함수 g의 정의역}
이 둘의 의해 {함수 f의 치역} ⊂ {함수 g의 정의역}이 된다는 것도 알아두세요.
다음을 보고 물음에 답하여라.
(1) (g ο f)(3)
(2) (g ο f)(2)
(3) g ο f의 정의역, 공역, 치역
(1) (g ο f)(3) = g(f(3)) = g(ㄴ) = e
(2) (g ο f)(2) = g(f(2)) = g(f) = d
(3) 합성함수에서 정의역은 처음 함수의 정의역, 공역은 두 번 ° 함수의 공역이에요. 따라서 정의역은 집합 X = {1. 2, 3, 4}이고 공역은 Z = {a, b, c, d, e}에요.
치역은 함숫값들의 집합이니까 Z와 다를 수 있어요. 이 경우에는 {b, c, d, e}가 되겠네요.
f(x) = x2 + 1, g(x) = x + 3일 때 다음을 구하여라.
(1) (g ο f)(3)
(2) (f ο g)(2)
(3) (g ο f ο g)(1)
(1) (g ο f)(3) = g(f(3)) = g(10) = 13
(2) (f ο g)(2) = f(g(2)) = f(5) = 26
(3) 번은 세 개로 되어있는데, 방법은 같아요. 뒤에서부터 하나씩 해결하면 돼요.
(g ο f ο g)(1) = g(f(g(1))) = g(f(4)) = g(17) = 20
함께 보면 좋은 글
함수, 함수의 정의, 대응
정의역, 공역, 치역, 함숫값, 서로 같은 함수
함수의 그래프
일대일대응, 일대일함수, 항등함수, 상수함수
명제의 역, 이, 대우, 삼단논법
일대일대응, 일대일함수, 항등함수, 상수함수
이제는 함수의 정의에 이어 함수의 종류에 대해서 공부할 거예요. 함수의 종류에는 여러 가지가 있는데, 그중에서 일대일함수, 일대일 대응, 항등함수, 상수함수에 대해서만 알아보죠. 특히, 일대일함수와 일대일 대응은 헷갈리기 쉬우니까 그 차이를 분명히 알아두세요.
또, 항등함수와 상수함수는 그 의미만 간단히 이해하고 있으면 되는 비교적 쉬운 함수입니다.
일대일함수와 일대일 대응
함수는 집합 X의 원소 x 한 개에 집합 Y의 원소 y 한 개가 대응하는 관계를 말해요. 거꾸로 y 한 개가 x 여러 개에 대응해도 함수는 함수에요. 아래 그림처럼 연결돼도 함수라고 할 수 있는 거죠.
X의 이순신, 김시민, 권율이 Y의 조선에 대응해요. 거꾸로 보면 Y의 조선은 X의 이순신, 김시민, 권율 세 명과 대응하죠.
위 그림과 달리 함수 중에서 y 한 개가 여러 개의 x에 대응하지 않는 경우를 일대일함수라고 해요. x 한 개에 y 한 개가 대응하고, y 한 개가 x 한 개에 대응하는 관계요. 아래 함수에서 Y의 원소들은 X의 원소 한 개와만 대응해요.
이걸 식으로 표현하면 x1 ∈ X, x2 ∈ X이고, x1 ≠ x2일 때, f(x1) ≠ f(x2)라고 표현할 수 있어요. x가 다르면 그에 대응하는 y도 다르다는 얘기예요.
일대일함수 중에서 공역과 치역이 같은 함수를 일대일 대응이라고 해요. 일대일 대응은 일대일함수의 조건을 만족한 상태에서 추가로 공역과 치역이 같아야 하니까 일대일 대응은 일대일함수의 부분집합이라고 생각하면 쉬워요.
일대일함수:집합 X의 임의의 원소 x1, x2에 대하여 x1 ≠ x2일 때, f(x1) ≠ f(x2)인 함수
일대일 대응: 일대일함수 + (공역 = 치역)
다음 그림을 보고, 일대일함수와 일대일 대응을 구분하여라.
집합 X의 원소 x1에 대하여 f(x1) ∈ Y이면 함수에요.
여기에서 x1 ≠ x2일 때, f(x1) ≠ f(x2)이면 일대일함수고요.
또 공역 = 치역이면 일대일 대응이에요.
조건을 만족하는 개수에 따라 함수 → 일대일함수 → 일대일 대응의 순서가 되는 거죠.
왼쪽 그림은 집합 X의 원소 다섯 개에 Y의 원소 한 개가 대응하니까 함수에요. f(1) = f(2)니까 그냥 함수에요.
가운데 그림은 집합 X의 원소에 대응하는 집합 Y의 원소가 다 달라요. 그런데 공역은 {a, b, c, d, e}이고 치역은 {a, b, c, d}로 공역 ≠ 치역이라서 일대일함수네요.
오른쪽 그림은 집합 X의 원소에 대응하는 집합 Y의 원소가 다 다르므로 일대일함수인데, 여기에 치역 = 공역이니까 일대일 대응이네요.
항등함수와 상수함수
항등식 알죠? 항등식은 항상 성립하는 등식이에요. 여기서 항등은 항상 같다는 뜻이죠. 항등함수에서 항등도 같은 뜻이에요. 집합 X의 원소와 이에 대응하는 집합 Y의 원소가 항상 같다는 얘기죠.
집합 X의 임의의 원소 x에 대하여 f(x) = x인 함수를 말해요.
집합 X의 원소 1에는 집합 Y의 원소 1이 대응해요. 2에는 2가 대응하고요. 항상 자기 자신과 같은 값이 대응하죠?
위 그림에서 X의 1, 2, 3, 4, 5가 모두 Y의 c에만 대응해요. 이처럼 X의 모든 원소가 Y의 한 원소와만 대응하는 경우를 상수함수라고 해요.
항등함수: 집합 X의 임의의 원소 x에 대하여 f(x) = x인 함수
상수함수: 집합 X의 임의의 원소 x에 대하여 f(x) = c인 함수
함께 보면 좋은 글
함수, 함수의 정의, 대응
정의역, 공역, 치역, 함숫값, 서로 같은 함수
함수의 그래프
함수의 그래프
함수의 그래프는 일차함수, 이차함수의 그래프에서 많이 그려봤죠? 이 글에서는 이미 알고 있는 함수의 그래프의 의미를 다시 한 번 정의해보고, 그 뜻을 정확하게 하는 거예요. 그렇다고 정의를 외우거나 하지는 마세요. 그 의미만 잘 이해하면 됩니다. 기존에 알고 있던 내용에 추가하거나 새로운 게 없으니까 아주 쉬워요.
그리고 좌표평면 위의 도형의 그래프를 보고 이 그래프가 함수의 그래프인지 아닌지를 판단하는 방법도 공부할 거예요. 이것 역시 함수의 정의만 잘 기억하고 있다면 무척 쉬운 내용이라서 금방 이해할 수 있을 거예요.
함수의 그래프
함수는 집합 X의 원소에 집합 Y의 원소가 하나만 대응할 때를 말해요. 이렇게 서로 대응하는 원소들을 순서쌍으로 나타낼 수 있겠죠? (x, y) = (x, f(x))
여러 함수 중에서 함수의 정의역과 공역이 숫자일 때, 순서쌍들을 XY 좌표평면에 나타낼 수 있어요. 이렇게 나타낸 점들의 집합을 함수의 그래프라고 합니다. 일차함수의 그래프, 이차함수 그래프 그리기에서 그래프를 많이 봤죠?
한 가지 덧붙이자면 지금까지 공부했던 함수의 그래프는 정의역과 공역이 실수 전체의 집합이었어요. 그래서 직선이나 포물선만 함수의 그래프라고 생각하기 쉬운데, 아래 그림처럼 점들만 찍힌 경우도 함수의 그래프라고 할 수 있어요.
X = {-3, -2, -1, 0, 1, 2, 3}, Y = {-3, -2, -1, 0, 1, 2, 3} 인 함수에요.
이런 모양은 나중에 공부할 건데 곡선 모양인 함수의 그래프에요.
정의역, 공역을 보고 함수의 그래프를 그리는 것도 중요하지만, 그래프를 보고 이 그래프가 함수의 그래프인지 아닌지 알아낼 수 있어야 해요.
함수는 집합 X의 원소 하나에 집합 Y의 원소 하나가 대응해야 해요. 따라서 이걸 이용하면 함수의 그래프인지 아닌지 알아낼 수 있어요. y축에 평행한 직선을 하나 그어보세요. 그 직선과 그래프가 두 점에서 만나면 하나의 x에 두 개의 y가 대응하니까 그 그래프는 함수의 그래프가 아니에요.
다음 그래프를 보고 함수의 그래프가 아닌 것을 고르시오.
(1) |
(2) |
(3) |
(4) |
보통 정의역과 공역에 대한 언급이 없다면 실수 전체의 집합으로 보는데요. 이 유형의 문제에서는 따로 언급하지 않더라도 정의역과 공역은 실수 전체의 집합이 아니라 그래프가 그려져 있는 부분으로 한정합니다.
함수의 그래프인지 아닌지는 y축에 평행한 직선을 그어서 직선과 그래프가 두 점에서 만나는지를 확인하면 돼요.
(4) 번을 보죠. x = 0인 y축이 있으니 따로 직선을 그을 필요가 없겠네요. x = 0에 y의 두 점이 대응해요. 그 외에도 모든 x에 y 두 개가 대응하죠. 따라서 (4) 번 원의 방정식의 그래프는 함수가 아닙니다.
함께 보면 좋은 글
함수, 함수의 정의, 대응
정의역, 공역, 치역, 함숫값, 서로 같은 함수
[중등수학/중1 수학] - 순서쌍과 좌표평면
[중등수학/중1 수학] - 함수 그래프, 함수의 그래프 특징 비교
[중등수학/중2 수학] - 일차함수의 그래프
[중등수학/중3 수학] - 이차함수 그래프 그리기
함수, 함수의 정의, 대응
함수는 중학교에서 3년 내내 공부했던 거예요. 함수, 일차함수, 이차함수 그리고 그래프를 공부했었죠? 근데, 기억이 잘 안 나죠? 그래서 이 글에서는 함수의 뜻을 처음부터 다시 정리해볼 거예요.
용어의 의미만 제대로 파악하고 있어도 반은 먹고 들어가는 겁니다. 원소의 의미와 그림을 함께 연결지어서 생각하면 이해하기가 훨씬 쉬울 거예요.
함수는 지난 3년 동안 계속 공부해왔던 것처럼 앞으로 3년 동안 계속 공부할 거니까 이번 기회에 확실히 정리해 놓으세요.
함수
두 집합 X, Y가 있을 때, X의 원소와 Y의 원소를 짝을 지어주는 걸 대응이라고 해요. 대응변, 대응각 들어봤죠? X의 원소 x가 Y의 원소 y와 짝지어질 때, x에 y가 대응한다고 하고 기호로는 x → y라고 나타내요.
두 집합 X, Y에서 집합 X의 각 원소에 대하여 집합 Y의 원소가 하나씩만 대응할 때, 이 대응을 집합 X에서 집합 Y로의 함수라고 하며, 이것을 기호로 f: X → Y라고 나타내요. f는 영어단어 function의 첫 글자 f를 의미합니다.
함수가 되기 위해서는 몇 가지 조건을 만족해야 해요. 첫 번째로 집합 X의 한 원소 x에 집합 Y의 원소 중 하나만 대응해야 해요. 집합 X의 원소에 집합 Y의 원소가 여러 개 대응하면 안 돼요.
두 번째는 집합 X의 모든 원소에 집합 Y의 원소가 대응해야 합니다. 집합 X의 원소 중 집합 Y의 원소와 대응하지 않는 원소가 있으면 안 돼요.
X는 이순신, 강감찬, 김유신, 을지문덕, 계백 원소를 가진 집합이고, Y는 조선, 고려, 신라, 고구려, 백제라는 나라 이름을 원소로 가진 집합이에요.
X에 있는 위인들을 Y에 있는 나라와 연결해봤더니 한 사람에 한 나라씩 대응하죠? 그래서 이 경우는 함수예요.
이번에도 마찬가지로 X에는 사람, Y에는 나라 이름을 연결했어요. 이순신, 김시민, 권율에는 조선이, 온달, 을지문덕에는 고구려가 대응해요. Y에 있는 고려, 신라, 백제에는 대응하는 게 없어요. 하지만 X의 모든 원소에 Y의 원소들이 하나씩 대응하고 있으니까 이 경우도 함수에요.
X의 이성계에 Y의 조선과 고려 두 개가 대응하죠. X의 원소에 Y의 원소가 하나만 대응해야 하는데, 그렇지 않으므로 이 경우는 함수가 아니에요. 이성계는 고려 시대에 살다가 조선을 건국했으니까 양쪽 모두에 대응하도록 연결했어요.
X의 원소들에 Y의 원소들이 하나씩 대응하고 있어요. 그런데 X의 원소 중 단군왕검은 Y의 원소와 대응하고 있지 않죠? X에 대응하지 않은 원소가 있으므로 이 경우도 함수가 아닙니다.
함께 보면 좋은 글
[중등수학/중1 수학] - 함수의 뜻과 함숫값, 함수의 정의
[중등수학/중2 수학] - 일차함수 뜻, 정의역, 공역, 치역
[중등수학/중3 수학] - 이차함수의 뜻, 이차함수란?
끈기만 있으면 풀 수 있는 수학문제
공식을 몰라도 열심히만 하면 풀 수 있는 수학 문제를 소개할께요.
경우의 수 문제 푸는 법에서 소개한 것과 비슷하게, 정말로 근성과 끈기만 있다면 누구든지 풀 수 있는 문제에요. 문제만 제대로 이해하고 그림만 제대로 그리고 숫자만 잘 세면 어렵지 않게(?) 풀 수 있으니까 한 번 도전해보세요.
그림의 주인공은 문제를 정말 정말 열심히 풀었는데, 아쉽게도 틀렸어요. 글자가 작아서 어디에서 잘못되었는지 확인할 수가 없네요.
근성으로 푸는 수학문제
조금 더 쉬운 방법으로 풀어보죠. 그림 속의 사각형을 보면서 둘레의 길이를 구해볼까요? 둘레의 길이니까 실선으로 표시된 부분의 길이만 구해야겠죠?
아랫부분의 정사각형이 1개 있을 때 둘레의 길이: 4
아랫부분의 정사각형이 2개 있을 때 둘레의 길이: 8
아랫부분의 정사각형이 3개 있을 때 둘레의 길이: 12
아랫부분의 정사각형의 개수 | 1 | 2 | 3 | 4 |
둘레의 길이 | 4 | 8 | 12 | 16 |
아랫부분의 정사각형의 개수가 1, 2, 3개로 늘어날 때 둘레의 길이는 4, 8, 12로 늘어나요. 정비례하는 규칙을 찾을 수 있겠죠?
(둘레의 길이) = 4 × (아랫부분의 정사각형의 개수)
x를 아랫부분의 정사각형의 개수, y를 둘레의 길이라고 놓으면 y = 4x라는 함수의 관계식으로 쓸 수 있어요.
문제에서 구하는 건 아랫부분의 정사각형의 개수가 50개일 때, 즉 x = 50일 때의 y니까 위 식에 넣어보면
사각형 둘레의 길이 = 4 × 50 = 200
200이네요.
원래 이 문제는 고등학교 수학의 등차수열 문제에요. 따라서 원래대로 수열을 이용해서 푼다면 a1 = 4이고 공차 d = 4인 등차수열로 풀어야 해요. an = 4 + (n - 1) × 4 = 4n이라고 쓸 수 있지요.
a50 = 4 × 50 = 200
어찌 됐든 답은 200이네요.
함께 보면 좋은 글
[중등수학/중1 수학] - 경우의 수 문제 푸는 법
[중등수학/중1 수학] - 정비례와 반비례 - 함수의 관계식
[고등수학/수학 1] - 등차수열, 등차수열의 일반항
고1 수학 목차, 공통수학 목차
2013년 이전 고등학교 1학년 수학목차입니다. (2012년, 2011년, 2010, …… 등에도 해당)
2014년 이후 고등학교 1학년은 2014년 고1 수학 목록을 참고하세요.
- 집합과 명제
- 수 체계
- 식의 계산
- 다항식의 덧셈과 뺄셈, 곱셈
- 곱셈공식
- 곱셈공식의 변형
- 다항식의 나눗셈
- 항등식과 항등식의 성질
- 미정계수법 - 계수비교법, 수치대입법
- 나머지정리, 인수정리
- 조립제법 1 - 조립제법 하는 법
- 조립제법 2 - 나누는 식의 x의 계수가 1이 아닐 때
- 인수분해 공식
- 복잡한 식의 인수분해 - 치환, 복이차식
- 인수정리를 이용한 인수분해
- 다항식의 공약수와 공배수, 최대공약수와 최소공배수
- 다항식의 최대공약수와 최소공배수의 활용
- 유리식, 분수식, 유리식의 사칙연산
- 부분분수 공식, 번분수
- 가비의 리, 비례식
- 여러가지 유리식의 풀이
- 무리식, 무리식의 연산
- 이중근호
- 무리수가 서로 같을 조건
- 방정식과 부등식
- 방정식 ax + b = 0의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차방정식의 풀이
- 이차방정식의 판별식, 실근, 허근
- 이차방정식 근과 계수와의 관계
- 두 수를 근으로하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
- 이차방정식의 켤레근
- 이차방정식의 인수분해
- 이차방정식의 실근의 부호
- 고차방정식의 인수분해, 고차방정식의 풀이
- 고차방정식의 풀이 - 치환, 복이차식
- 상반방정식
- 삼차방정식 근과 계수와의 관계
- 삼차방정식의 허근 ω의 성질
- 연립방정식 - 미지수가 3개인 연립일차방정식
- 연립이차방정식의 풀이 1
- 연립이차방정식의 풀이 2
- 부정방정식
- 부등식의 성질, 부등식끼리의 사칙연산
- 부등식 ax > b의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차부등식의 풀이
- 절댓값 기호를 포함한 부등식의 풀이 2
- 이차부등식, 이차부등식의 해
- 판별식과 이차부등식의 해
- 해가 주어졌을 때 이차부등식 구하기
- 이차부등식이 항상 성립할 조건
- 연립이차부등식
- 절대부등식, 부등식의 증명에 사용되는 실수의 성질
- 절대부등식의 증명 - 산술, 기하, 조화평균
- 절대부등식의 증명 - 코시 슈바르cm 부등식
- 도형의 방정식
- 두 점 사이의 거리
- 선분의 내분점과 외분점
- 좌표평면 위의 내분점과 외분점
- 내분점과 외분점의 관계
- 삼각형 무게중심의 좌표
- 직선의 방정식, 직선의 방정식 구하기
- 직선의 방정식 일반형과 표준형
- 절댓값 기호를 포함한 식의 그래프
- 두 직선의 위치관계 - 평행, 일치, 수직
- 두 직선의 위치관계와 일차방정식의 해의 개수
- 교점을 지나는 직선의 방정식
- 점과 직선 사이의 거리
- 원의 방정식
- 원의 방정식 일반형과 표준형
- 아폴로니오스의 원
- 축에 접하는 원의 방정식
- 두 원의 교점을 지나는 원의 방정식
- 원과 직선의 위치관계
- 원의 접선의 방정식 1 - 접점을 알 때
- 원의 접선의 방정식 2 - 기울기를 알 때
- 원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
- 점과 도형의 평행이동
- 점과 도형의 대칭이동 - x축, y축, 원점
- 점과 도형의 대칭이동 - 직선에 대한 대칭이동
- 부등식의 영역 - f(x) > 0, f(x) < 0
- 부등식의 영역 - f(x, y) > 0, f(x, y) < 0
- 연립부등식의 영역
- 부등식의 영역과 최대, 최소
- 함수
- 삼각함수
- 일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
- 호도법과 라디안
- 부채꼴 호의 길이와 넓이
- 삼각함수의 뜻과 정의, sin, cos, tan
- 삼각함수 사이의 관계
- 삼각함수 각의 변환 1 - 2nπ ± θ, -θ
- 삼각함수 각의 변한 2 - π ± θ, π/2 ± θ
- 삼각함수 각의 변환 총정리
- 삼각함수표
- 삼각함수의 그래프 - sin 그래프
- 삼각함수의 그래프 - cos 그래프
- 삼각함수의 그래프 - tan 그래프
- 삼각함수 그래프의 이동, 평행이동, 주기, 최대, 최소
- 삼각함수를 포함한 식의 최댓값과 최솟값
- 삼각방정식
- 삼각부등식
- 사인법칙, 사인법칙 증명
- 제1 코사인법칙, 제1 코사인법칙 증명
- 제2 코사인법칙, 제2 코사인법칙 증명
- 사인법칙, 코사인법칙 총정리
- 삼각형의 넓이
- 헤론의 공식
- 평행사변형의 넓이, 사각형의 넓이
- 순열과 조합
함수의 활용
함수의 활용은 일차방정식의 활용과 비슷해요. 문제가 비슷한 게 아니라 문제를 푸는 순서가 비슷하다는 거죠.
차이가 있다면 일차방정식의 활용은 미지수가 x 하나인 것에 반해, 함수의 활용은 변수가 x, y 두 개라는 것이지요. 대신 함수는 관계식의 기본형태 두 가지가 주어져 있어서 그대로 이용하면 되기 때문에 오히려 쉬운 부분이 있어요.
그리고 함수의 활용에서는 일차방정식의 활용 2에서 사용했던 공식을 사용하기도 하니까 이 공식을 잘 외워두세요. 또 정비례와 반비례를 이용하여 함수의 관계식을 구하는 과정이 필수이므로 이 내용 또한 이해하고 있어야 합니다.
함수의 활용
함수의 활용 문제를 푸는 단계는 아래와 같아요.
- 주어진 문제에서 변화하는 두 양을 x, y로 놓아요.
함수에서 사용하는 문자 x, y는 변수에요. 문제에서 변하는 양을 찾아서 x, y로 놓아요. - x, y의 관계가 정비례, 반비례인지 확인하고 함수식을 구해요.
정비례는 x가 2배, 3배, …가 될 때 y도 2배, 3배, …가 되는 관계이고 y = ax (a ≠ 0) 의 꼴이에요.
반비례는 x가 2배, 3배, …가 될 때, y는배,
배, …가 되는 관계로
(a ≠ 0) 의 꼴이에요.
- 특정한 값을 대입하거나 그래프를 그려서 구하는 값을 찾으세요.
②에서 만든 함수식을 이용하여 구하는 값을 찾으세요. - 문제에서 원하는 답을 고르세요.
함수식을 통해 구한 값 중에서 문제의 뜻에 맞는 답을 고릅니다. 예를 들어 거리나 사람 수 등은 양수를 선택하세요.
문제에 따라서 사용하는 함수의 기본꼴이 달라지기 때문에 어떤 함수식을 사용해야하는지 결정하는 단계인 ②번이 매우 중요해요.
함수의 활용 - 정비례
정비례는 x가 2배, 3배, …가 되면 y도 2배, 3배, …가 되는 걸 말해요. 이때 기본식은 y = ax (a ≠ 0) 의 꼴이에요. 정비례는 문제에서 바로 알 수 있는 경우도 있지만, 혹시 그렇지 않다면 비례식을 세울 수 있는지 보세요. 이때도 정비례 관계에요. 비례식을 세울 수 있을 때는 정비례의 기본꼴을 이용하지 않고 비례식을 풀면 곧바로 함수식을 구할 수 있어요.
한 상자에 10,000원인 사과가 있다. 사과 상자의 개수를 x, 사과의 가격을 y라고 할 때 x, y의 관계식을 구하고 사과 7상자를 사려면 얼마의 돈이 필요한지 구하여라.
1상자에 10,000원이면 2상자는 20,000원, 3상자는 30,000원이겠죠? x와 y가 정비례 관계에요.
y = ax의 꼴인데, 1상자가 10,000원이므로 x = 1, y = 10000을 대입하면
y = 10000x라는 관계식을 구할 수 있어요.
7 상자를 살 때의 가격을 물어봤으니 x = 7을 대입하면 y = 10000 × 7 = 70000(원)이네요.
1L의 기름으로 20km를 가는 자동차가 있다. 이 자동차에 xL의 기름을 채웠을 때 달릴 수 있는 거리를 ykm라고 한다면, 8L의 기름으로 자동차가 갈 수 있는 거리를 구하여라.
1L의 기름 : 20km의 거리 = xL : ykm라는 비례식을 세울 수 있네요. 이건 비례식을 바로 풀어버리죠. (내항의 곱) = (외항의 곱)인 건 알고 있죠?
y = 20x
여기에 문제에서 구하라고 한 기름이 8L일 때의 거리니까 y = 20 × 8 = 160(km)이에요.
함수의 활용 - 반비례
반비례는 x가 2배, 3배, …가 될 때, y는 배,
배, …가 되는 걸 말하는데, 이때 기본식은
(a ≠ 0) 의 꼴이에요. 반비례인지 확신이 서지 않을 때는 x, y의 곱이 일정한 값을 가지는지 보세요. xy가 일정한 값을 가지면 양변을 x로 나눠주세요. 반비례 함수의 기본꼴과 같아져요.
48개의 사탕이 있다. x명의 학생에게 사탕을 나누어주면 한 사람이 y개의 사탕을 받을 때, 여덟 명의 학생에게 사탕을 나누어 준다면 한 학생당 몇 개의 사탕을 받을 수 있는지 구하여라.
학생이 1명이라면 48개의 사탕을 다 받을 수 있죠? 그런데 학생이 2명이라면 한 명이 24개의 사탕을 가져요. 학생이 3명이라면 한 학생당 16개의 사탕을 받을 수 있어요. 즉 학생 수가 2배, 3배가 되면 한 학생이 받는 사탕의 수는 배,
배 되는 반비례 관계에 있어요.
사탕의 개수는 48개, 학생 수가 8명이라고 했으니 에 a = 48, x = 8을 대입해보죠.
한 사람당 6개씩 받을 수 있어요.
선영이는 총 300쪽인 책을 매일 같은 양씩 읽으려고 한다. 하루 x쪽씩 y일 동안 읽는다고 할 때 다음을 구하여라.
(1) x, y의 관계식을 구하여라.
(2) 하루 15쪽씩 읽는다고 할 때, 책을 다 읽으려면 며칠이 걸리는가?
(1) 하루에 책을 x쪽씩 y일 동안 읽는 책은 양은 xy에요. 그런데 이게 300쪽이죠. 따라서 xy = 300에서 양변을 x로 나눠주면 이 돼요.
(2) 하루 15쪽씩 읽는다고 했으니까 x = 15를 대입하면
20일 걸리네요.
함께 보면 좋은 글
함수의 뜻과 함숫값, 함수의 정의
정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수 그래프, 함수의 그래프 특징 비교
함수 그래프, 함수의 그래프 특징 비교
함수와 좌표평면에 대해서 알아봤어요. 이제 이 둘을 결합해보죠. 그게 바로 함수의 그래프에요.
함수별로 그래프를 그리는 방법과 특징이 달라요. 공통점과 차이점을 잘 이해하고 있어야 해요.
함수는 식으로 나타낼 수도 있고, 그래프로 나타낼 수도 있어요. 함수를 보고, 함수의 그래프를 그릴 수도 있어야 하고, 반대로 함수 그래프를 보고 함수식을 찾을 수도 있어야 해요.
이 글에서는 함수의 그래프가 뭔지, 함수 그래프는 어떻게 그리는 지, 함수별로 그래프는 어떻게 다른지를 비교해볼 거예요.
함수의 그래프
y = 2x라는 함수가 있을 때, (-3, -6), (-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4), (3, 6) 같은 순서쌍을 만들 수 있어요. 이 순서쌍들을 좌표평면에 나타내 보면 아래 그림처럼 되지요.
그런데 x가 정수일 때 뿐 아니라 유리수일 때도 순서쌍을 만들 수 있겠죠? 0.1, 0.11, 0.111, …, 0.2, 0.22, … 처럼요. 그러면 이런 x에 대응하는 y값들을 구해서 순서쌍을 만들고, 이 순서쌍을 좌표평면에 나타내면 점들이 모여서 선이 돼요. 이렇게 함수에서 만들 수 있는 순서쌍들을 좌표평면에 나타낸 것을 함수의 그래프라고 해요.
y = 2x의 함수에서 순서쌍을 만들어서 좌표평면에 나타내면 아래와 같은 그래프를 그릴 수 있어요.
x, y의 범위를 좁게 해서 함수의 그래프를 그려서 그렇지 실제로는 왼쪽 아래와 오른쪽 위로 계속 이어지는 그래프에요.
함수 y = ax (a ≠ 0)의 그래프
위에서 그렸던 y = 2x의 그래프가 바로 a = 2인 y = ax 형태의 그래프죠? 어떤 특징이 있나요? 일단 원점 O(0, 0)를 지나고 오른쪽 위로 향하는 직선이에요. 제1사분면과 제3사분면을 지나는 그래프네요.
이번에는 y = -2x의 그래프를 그려보죠. 마찬가지로 순서쌍을 만들고 그 순서쌍을 좌표평면에 찍어서 나타내요.
y = -2x의 그래프도 원점 O (0, 0)를 지나요. 그리고 오른쪽 아래로 향하는 직선이고, 제2사분면과 제4사분면을 지나네요.
함수 y = ax (a ≠0)의 그래프에서 x = 0이면 y = 0이니까 원점 O(0, 0)를 지나요. 그리고 a > 0이면 x와 y의 부호가 같죠? 그래서 제1사분면과 제3사분면을 지나는 거예요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.
a > 0 | a < 0 |
---|---|
원점 (0, 0)을 지나는 직선 | |
오른쪽 위로 향하는 직선 | 오른쪽 아래로 향하는 직선 |
제1사분면, 제3사분면 | 제2사분면, 제4사분면 |
함수 y = ax (a ≠ 0) 그래프 그리는 법
함수 y = ax (a ≠ 0)의 그래프는 원점을 지나는 직선이에요. 직선은 점 두 개만 있으면 그릴 수 있어요. y = ax의 그래프는 원점 O를 지나니까 원점이 아닌 다른 점의 좌표 하나만 더 알면 그릴 수 있다는 얘기예요.
y = 2x의 그래프를 예로 들면, 원점 (0, 0)과 (1, 2) 두 점을 연결해서 그리면 돼요. 굳이 x = 2, 3, 4, … 이런 점들의 순서쌍을 구할 필요가 없다는 뜻이죠. y = -2x도 원점 (0, 0)과 (1, -2) 두 점을 연결해서 그래프를 그릴 수 있어요.
함수
(a ≠ 0)의 그래프
이번에는 (a ≠ 0)의 함수의 그래프는 어떤 특징이 있는지 알아볼까요?
y = 그래프를 그려보죠.
먼저 순서쌍을 찾아보면 …, (-12, -1), (-6, -2), (-4, -3), (-3, -4), (-2, -6), (-1, -12), (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1), …이 있네요. 물론 중간마다 x = 0.1, 0.11, …, 0.2, 0.22, … 같은 순서쌍도 찾을 수 있겠죠. 이런 점들을 좌표평면에 표시하면 아래처럼 돼요. 직선이 아니라 x축, y축에 가까워지면서 한없이 뻗어 나가는 곡선이 2개가 그려졌어요. 이 곡선은 제1사분면과 제3사분면을 지나네요.
y = -의 그래프도 그려보죠.
먼저 순서쌍을 찾으면 …, (-12, 1), (-6, 2), (-4, 3), (-3, 4), (-2, 6), (-1, 12), (1, -12), (2, -6), (3, -4), (4, -3), (6, -2), (12, -1), …이 있네요. 마찬가지로 정수가 아니라 유리수 순서쌍도 무수히 많을 거고요. 좌표평면에 점을 찍어봤더니 아래 그림처럼 그래프가 그려졌어요. x축, y축에 가까워지면서 한없이 뻗어 나가는 2개의 곡선인데, 곡선은 제2사분면과 제4사분면을 지나가요.
함수 (a ≠ 0)에서 분수의 분모인 x는 0이 될 수 없으니까 y축과 만나지 않아요. 또 a ≠ 0이므로 y ≠ 0이어서 x축과도 만나지 않죠. 대신 x축, y축에 한없이 가까워지지만 할 뿐이에요. x ≠ 0, y ≠ 0이니까 원점도 지나지 않죠. 모양도 직선이 아니라 곡선이에요. 그리고 a > 0이면 x와 y의 부호가 같으니까 제1사분면과 제3사분면을 지나요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.
a > 0 | a < 0 |
---|---|
x축, y축에 한없이 가까워지는 한 쌍의 곡선 | |
제1사분면, 제3사분면 | 제2사분면, 제4사분면 |
함수
(a ≠ 0)의 그래프 그리기
는 직선이 아니라 곡선이라서 가능하면 많은 순서쌍을 찾아야 해요. 그래서 그 순서쌍을 좌표평면에 나타내고, 곡선으로 연결하는 거죠. 기본적인 형태는 같아요. 지나는 점만 다르다고 생각하면 돼요.
몇 번 연습해보면 그릴 수 있어요.
다음에 그려진 함수의 그래프를 보고, 함수를 구하여라.
(1)은 제2사분면과 제3사분면을 지나는 직선이에요. y = ax의 그래프인데, a < 0인 그래프죠. 원점 O와 (1, -3)을 지나요. y = ax에 x = 1, y = -3을 대입하면 a를 구할 수 있어요.
y = ax
-3 = a × 1
a = -3
y = -3x의 그래프네요.
(2)는 제1사분면과 제3사분면을 지나는 곡선이에요. 의 그래프라는 얘기죠. 이 그래프는 (1, 5)를 지나네요. x = 1, y = 5를 대입해보죠.
의 그래프군요.
함께 보면 좋은 글
함수의 뜻과 함숫값, 함수의 정의
정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수의 활용
정비례와 반비례 - 함수의 관계식
두 변수 x y에 대하여 x가 정해지면 그에 따라 하나의 y가 정해질 때, y를 x의 함수라고 한다고 했어요. x가 정해지면 y가 하나만 결정되는데, 이때 x와 y의 관계에서 정비례, 반비례라는 용어를 사용해요.
정비례와 반비례는 평소에 많이 들어본 말일 거예요. 정비례는 단순히 하나가 커지면 다른 하나도 커지는 것, 반비례는 하나가 작아지면 다른 것도 작아지는 것 정도로 알고 있을 텐데, 수학에서는 그 의미가 조금 달라요.
이 글에는 정비례와 반비례의 정확한 의미를 이해하고 이걸 함수식으로 표현하는 방법까지 공부해볼 거예요. 또 정비례, 반비례가 아닌 경우도 알아볼 거고요.
함수의 관계식 - 정비례와 반비례
정비례
한 권에 1,000원 하는 공책을 x권 구입했을 때의 가격 y를 표로 나타내보죠.
공책 수 x (권) | 1 | 2 | 3 | 4 | … |
내야 할 금액 y (원) | 1000 | 2000 | 3000 | 4000 | … |
x, y는 변수이고, 하나의 x에 하나의 y가 결정되니까 함수에요.
그런데 x가 1권에서 2권으로, 다시 3권으로 늘어날 때, y는 어떻게 변하나요? 공책의 권 수가 2배, 3배가 되면 내야 할 금액도 2배, 3배가 되죠? 이처럼 변수 x, y에서 x가 2배, 3배가 될 때 y도 2배, 3배가 되는 걸 정비례라고 해요.
함수가 정비례하는 경우에 y = ax (a ≠ 0)라는 관계가 성립해요. 이 경우에는 y = 1000x죠.
반비례
정비례와 반대인 경우를 볼까요?
넓이가 30cm2인 사각형을 만들려고 해요. 가로의 길이를 xcm, 세로의 길이를 ycm라고 할 때, x와 y의 관계를 알아보죠.
가로 길이 x (cm) | 1 | 2 | 3 | 5 | 6 | … |
세로 길이 y (cm) | 30 | 15 | 10 | 6 | 5 | … |
가로의 길이가 1cm → 2cm로 두 배가 되면 세로의 길이는 30cm → 15cm로 배가 되고, 가로의 길이가 1cm → 3cm로 3배가 되면 세로의 길이는 30cm → 10cm로
배가 되죠.
이처럼 x가 2배, 3배가 될 때, y는 배,
배가 되는 걸 반비례라고 해요.
함수가 반비례하는 경우에는 xy = a (a ≠ 0) 이라는 관계가 성립해요. 이 경우에는 xy = 30이죠.
정비례, 반비례가 아닌 경우
어떤 주머니에 빨간 공과 파란 공을 합쳐서 10개의 공이 들어있어요. 주머니 속에 들어있는 빨간 공의 개수를 x개, 파란 공의 개수를 y개라고 해보죠.
빨간 공의 개수 x (개) | 1 | 2 | 3 | 4 | 5 | … |
파란 공의 개수 y (개) | 9 | 8 | 7 | 6 | 5 | … |
이때는 빨간 공의 개수가 1개 → 2개로 두 배가 되면 파란 공의 개수는 9개 → 8개가 되고, 빨간 공의 개수가 1개 → 3개로 3배가 되면 파란 공의 개수는 9개 → 7개가 돼요.
x가 2배, 3배가 될 때, y가 바뀌기는 하지만 몇 배씩 바뀌는 건 아니죠? 이런 경우에는 정비례도 아니고 반비례도 아닌 경우예요.
y가 x에 정비례하고, x = 10일 때, y = 20인 함수의 관계식을 구하여라.
y가 x에 정비례하면 함수의 관계식은 y = ax (a ≠ 0)이죠. 여기에 x = 10, y = 20를 대입해보죠.
20 = a × 10
a = 2
따라서 x와 y의 관계식은 y = 2x
함께 보면 좋은 글
함수의 뜻과 함숫값, 함수의 정의
순서쌍과 좌표, 좌표평면
함수 그래프, 함수의 그래프 특징 비교
함수의 활용
함수의 뜻과 함숫값, 함수의 정의
새로운 단원 함수에요. 다행스럽게도 2013년 교육과정 개편으로 함수에서 공부할 내용이 많이 줄어들었어요. 대신 함수는 1, 2, 3학년 모든 과정에서 계속해서 배우는 단원이에요. 내용이 줄었다고 해서 중요도가 줄어든 것은 아니라는 걸 명심하세요.
함수는 개념 정의가 상당히 어려운 부분이에요. 문제를 푸는 것과는 별개로 여러 번 읽어봐야 이해가 될 겁니다.
이 글에서는 함수의 정의와 함숫값의 뜻을 알아볼 거예요. 3년 동안 사용할 개념을 이 글에서 다루니까 제대로 잘 이해해야 합니다.
변수와 상수
"한 권에 1000원 하는 공책 x권을 샀다"고 했을 때, x는 1이 될 수도 있고, 2가 될 수도 있고 100이 될 수도 있죠. 이처럼 딱 정해진 값을 갖는 게 아니라 변하는 값을 변수라고 해요. 이런 변수들은 문자로 나타내기 때문에 변하는 값을 나타내는 문자를 변수라고 하기도 해요.
문자와 식에서 식에 문자를 사용하는 걸 공부했었죠? 거기서 사용했던 문자들이 모두 변수에요.
이와 반대로 1은 언제나 1이고 10은 언제나 10이에요. 어떤 경우라도 바뀌지 않고 그대로죠. 이처럼 변하지 않는 값을 상수라고 해요. 항, 상수항, 계수, 차수에서 상수항 들어봤죠? 숫자만 있는 항을 상수항이라고 한다고 했어요. 숫자만 있는 항은 바뀌지 않으니까 상수항인 거예요.
변수: 변하는 값
상수: 변하지 않는 값
함수의 정의
한 권에 1000원 하는 공책 x권을 샀을 때 내야 할 공책의 값을 y원이라고 한다면 y = 1000x에요.
공책 수 x (권) | 1 | 2 | 3 | 4 |
내야 할 금액 y (원) |
1000 | 2000 | 3000 | 4000 |
공책의 권 수 x가 정해지면 그에 따라 내야 할 금액 y도 바뀌었네요. x와 y는 정해지지 않고 바뀌는 변수지요.
두 변수 x, y에 대하여 x가 정해지면 그에 따라 y의 값이 오직 하나로 결정될 때, y를 x의 함수라고 해요. 영어로는 Function이라고 해요. 무슨 말인지 잘 모르겠죠?
간단히 말해 위 표에서 x가 하나 정해지면 그에 따라서 y도 하나 정해지는데, 이걸 함수라고 하는 거예요.
여기서 중요한 건 하나의 x에 하나의 y가 정해져야 하는 거예요. 예를 들어서 공책을 한 권 샀는데, 1,000원 일 수도 있고 2,000원 일수도 있다면 이건 함수라고 할 수 없어요. 1권이라는 x에 1,000원, 2,000원이라는 두 개의 y가 있으니까요.
x가 바뀌는 데, y는 바뀌지 않아도 상관없어요. 공책을 한 권 사도 1,000원, 2권 사도 1,000원, 3권 사도 1,000원이어도 상관없다는 거죠. x 한 개에 y 하나가 결정되었잖아요. 이때는 그냥 y가 겹치는 것이거든요.
두 개의 그림이 있는데, 왼쪽에는 하나의 x에 하나의 y가 정해져서 함수라고 할 수 있어요. 오른쪽 그림에서는 y가 겹치긴 하지만 하나의 x에 하나의 y가 정해져 있으니까 함수에요.
위 그림의 1에서는 1,000과 2,000의 두 개의 y로 화살표가 이어져 있어요. 하나의 x에 두 개의 y가 정해졌으니까 함수가 아니에요.
위에서 x와 y는 y = 1000x라는 관계식으로 나타낼 수 있어요. 이 x와 y의 관계식을 함수식이라고 부르는데, 1000x라는 식이 x로 되어 있는 식이라서 Function의 F와 x를 결합해서 f(x)라고 해요.
따라서 함수를 식으로 표현할 때, 함수 y = 1000x 또는 f(x) = 1000x라고 하죠.
어떤 특정한 함수가 아니라 일반적인 함수를 나타낼 때는 y = f(x)라고 해요. 에프엑스라는 가수를 왜 함수그룹이라고 부르는지 알겠죠?
함수: 두 변수 x, y에 대하여 x가 정해지면 그에 따라 y의 값이 하나만 결정될 때, y를 x의 함수. y = f(x)
다음 중 함수가 아닌 것을 고르시오.
(1) x보다 큰 자연수 y
(2) 한 그릇에 5,000원 하는 자장면 x 그릇을 먹었을 때의 금액 y 원
두 변수 x, y에 대하여 x에 따라 y가 하나만 정해질 때 함수라고 한다고 했어요.
(1)번은 예를 들어 x = 2라고 하면 2보다 큰 자연수는 3, 4, 5, … 여러 개가 있죠? 하나가 아니에요. 따라서 (1)은 함수가 아니에요.
(2)번은 금액 y = 5000x의 관계가 있고, x 하나에 y가 하나만 정해지니까 함수라고 할 수 있어요.
함숫값
함수에서는 x에 따라서 y의 값이 하나만 결정된다고 했어요. x에 따라서 하나로 결정되는 그 y를 함숫값이라고 해요.
f(x) = 1000x에서
x = 1일 때, y = 1000이므로 x = 1일 때의 함숫값은 1000이죠. 이걸 식으로 쓰면 f(1) = 1000이 되죠.
x = 2일 때, y = 2000이므로 f(2) = 2000
x = 3일 때, y = 3000이므로 f(3) = 3000
쉽게 생각하세요. 우리 대입이라는 걸 공부했죠? 대신 넣는 거예요.
f(x) = 1000x에서
x = 1을 대입하면 x를 모두 1로 바꾸는 거예요. f(1) = 1000
x = 2를 대입하면 f(2) = 1000 × 2 = 2000
x = 3을 대입하면 f(3) = 1000 × 3 = 3000
여기서 1000, 2000, 3000이 x = 1, 2, 3일 때의 함숫값이에요.
함숫값: y = f(x)에서 x의 값에 따라 하나로 정해지는 y의 값
f(a): y = f(x)에서 x = a일 때의 함숫값
f(x) = ax + 4일 때, f(2) = 6이다. 다음을 구하여라.
(1) a는 얼마인가?
(2) f(4) - f(3)
(1) 에서 f(2) = 6이라는 말은 x = 2일 때, 함숫값이 6이라는 뜻이에요. 즉 f(x) = ax + 4에 x = 2를 대입하면 6이 나온다는 뜻이지요.
6 = 2 × a + 4
2 = 2a
a = 1
f(x) = x + 4 네요.
(2)번은 f(x) = x + 4이므로 x = 4, x = 3을 대입하면
f(4) - f(3) = 4 + 4 - (3 + 4) = 1
함께 보면 좋은 글
정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수 그래프, 함수의 그래프 특징 비교
함수의 활용