직선의 정의와 직선이 만날 때 생기는 점(교점), 직선이 만나서 생기는 각(교각)에 대해서 공부하고 있어요.
이제는 두 직선이 만날 때 두 직선의 관계에 대해서 알아보죠. 두 직선이 만나므로 평행한 두 직선은 아니고 그렇다고 일치하는 두 직선도 아니에요.
두 직선이 만나는 교점에서 교각이 90°인 직각일 때 어떤 의미를 가지는지 공부해봐요.
수직과 직교, 수선
직선 AB와 직선 CD가 만나는 점은 교점이라고 하고, 만나서 생기는 각은 교각이라고 해요. 그런데 이 교각이 90°일 때가 있는데, 이때를 두 직선이 직교한다고 해요. 직각으로 만난다는 말이지요.
당연한 얘기지만 한 교각이 90°면 두 직선이 만나서 생기는 모든 교각이 90°에요.
직선 AB와 직선 CD가 직교할 때, 두 직선은 서로 수직이라고 말해요. 아주 따지고 들어가면 의미의 차이가 있지만 그냥 직교와 수직은 같은 뜻이라고 생각해도 좋아요.
수학에서는 의미를 쉽게 알 수 있게 기호로 표시하죠. 수직, 직교는 기호로 ⊥로 표시해요. 모음인 ㅗ처럼 생겼죠? 세로인 직선과 가로인 직선이 직각으로 만났을 때를 기호로 표시한 거라는 걸 알 수 있겠지요?
직선 AB와 직선 CD가 수직이면 로 씁니다.
직선 AB와 직선 CD가 직교할 때, 한 직선을 다른 직선의 수선이라고 해요. 수직인 선이라는 뜻이죠. 직선 AB는 직선 CD의 수선이고, 직선 CD는 직선 AB의 수선이 되는 거죠.
직교, 수직, 수선은 두 직선의 교각이 90°일 때라는 걸 기억하세요.
수선의 발
한 직선 l과 직선 위에 있지 않은 한 점 P가 있다고 해보죠. 이때 점 P 을 지나는 새로운 직선을 그리는데, 직선 l에 수직인 직선, 즉 수선을 그었을 때 교점이 생기겠죠? 이 점을 H라고 할게요. 교점 H에는 교각이 몇 °일까요? 당연히 90°겠죠? 수선을 그었으니까요.
이때 이 점 H를 수선의 발이라고 해요. 새로 그은 직선이 직선 l의 수선이잖아요.
그냥 간단하게 두 직선이 수직으로 만나는 교점을 수선의 발이라고 생각하면 돼요. 수선의 발은 교점 중에서도 수직(직교)일 때 교점이라는 걸 알아두세요.
점과 직선 사이의 거리
두 점 사이의 거리, 중점에서 점 A와 점 B 사이의 거리는 두 점을 연결하는 가장 짧은 선, 즉 선분 AB의 길이라는 걸 공부했어요.
그럼 점 P와 직선 l 사이의 거리는 어떻게 구할까요. 마찬가지로 점 P와 직선 l을 연결하는 가장 짧은 선의 길이를 구하면 돼요. 그런데 가장 짧은 선이 뭐냐면 바로 직선 l에 수직인 선이에요. 직선 l이 수직인 선과 만나는 교점을 수선의 발, H라고 했어요. 그러니까 점 P와 직선 l 사이의 거리는 점 P와 점 H 사이의 거리가 되고, 이건 선분 PH의 길이와 같아요.
점과 직선 사이의 거리 = 점과 수선의 발 사이의 거리 = 선분 PH의 길이
점과 직선 사이의 거리를 구할 때는 점에서 직선에 수선을 그어 수선의 발을 찾고, 점과 수선의 발 사이의 길이를 구하면 되는 거죠.
다음 그림을 보고 물음에 답하여라.
선분 AB의 길이 = 5cm, 선분 BC의 길이 = 10cm, 선분 AD의 길이 = 4cm이다.
(1) 선분 AD의 수선을 모두 구하여라.
(2) 점 A와 선분 BC의 거리를 구하여라.
(1) 선분 AD의 수선을 구하라고 했네요. 수선은 수직인 직선이에요. 선분 AD에 수직인 직선은 빨간 직각 표시가 있는 선분 BD와 선분 CD, 그리고 이 둘을 포함한 선분 BC가 되겠네요.
(2) 점 A와 선분 BC의 거리를 구하라고 했는데요. 점과 선분의 거리는 점에서 선분으로 수선을 긋고, 수선과 직선이 만나는 교점(수선의 발)과 점 사이의 거리를 구하는 거죠? 점 A에서 선분 BC에 그은 수선은 선분 AD가 되고요. 이 수선의 발은 점 D에요. 점 A에서 선분 BC까지의 거리는 선분 AD의 길이가 되고 이건 문제에서 4cm라고 줬네요. 따라서 점 A와 선분 BC 사이의 거리는 4cm네요.
함께 보면 좋은 글
두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
맞꼭지각, 동위각, 엇각
작도, 수직이등분선의 작도