일차방정식의 활용 문제는 유형이 매우 다양해요. 그리고 문제 유형마다 문제를 쉽게 풀 수 있는 풀이법이 있어요. 유형별 풀이법에 대해서는 잘 이해하고 있어야 합니다.
그렇다고 공식으로 달달 외우기보다는 문제를 많이 풀어서 자연스럽게 익혀야 해요. 일차방정식의 활용 문제는 문장으로 되어 있기 때문에 식을 세우는 연습도 해야 하거든요. 실제 해보면 식을 세우는 게 제일 어렵게 느껴져요.
문제 유형별로 어떻게 식을 세워야 하는지 알아보죠. 식만 잘 세우면 푸는 건 별로 어렵지 않거든요.
일차방정식의 활용
일차방정식의 활용 문제를 풀 때는 아래의 순서대로 진행하면 됩니다.
- 문제에서 구하려는 것을 x라고 놓는다.
문제를 잘 읽어보고, 문제에서 구하려는 것이 무엇인지 잘 찾아야 해요. - 문제의 조건에 맞는 방정식을 세운다.
- 문제에서 원하는 답을 구한다.
일차방정식의 풀이에서 공부한 방법으로 일차방정식을 풀어요. - 문제에서 원하는 답을 구한다.
방정식의 해와 문제에서 요구하는 답이 다른 경우가 있어요. 따라서 문제에서 요구하는 게 x 인지 확인하세요.
문제에서 구하라고 하는 걸 꼭 x라고 해야 하는 건 아니에요. 경우에 따라서 식을 가장 쉽게 세울 수 있는 값을 x로 놓는 경우도 있어요. 문제 유형에 맞게 잘 선택해야 해요.
어떤 수에 관한 문제
어떤 수를 구하는 문제는 아주 쉽죠. 어떤 수를 x로 놓고 식을 세워서 구하면 돼요. 방정식의 해가 바로 문제에서 구하라고 하는 어떤 수입니다.
어떤 수와 20의 합은 어떤 수를 5배 한 것보다 4가 크다고 한다. 어떤 수를 구하여라.
어떤 수를 x라고 놓고 식을 세워보죠.
x + 20 = 5x + 4
x - 5x = 4 - 20
-4x = -16
x = 4
자릿수에 관한 문제
십의 자리가 2이고, 일의 자리가 4인 수는 24라고 쓰죠. 그럼 십의 자리가 3이고, 일의 자리가 a인 수는 3a라고 쓸까요? 아니에요. 문자가 있는 경우에는 곱셈기호가 생략된 경우라서 전혀 다른 수에요.
십의 자리가 3이고, 일의 자리가 a인 수 = 3 × 10 + a
십의 자리 숫자가 a이고, 일의 자리 숫자가 5인 자연수가 있다. 이 자연수의 일의 자리 숫자와 십의 자리 숫자를 바꾸면 처음 수보다 9가 크다고 할 때, 처음 수를 구하여라.
처음 수에서 십의 자리 숫자가 a, 일의 자리 숫자가 5라고 했으므로 10 × a + 5에요.
십의 자리와 일의 자리를 바꾼 나중의 수는 10 × 5 + a가 되지요.
나중의 수가 처음 수보다 9가 크다고 했으니 처음 수에 9를 더해야 나중의 수가 되겠네요. 이걸 식으로 나타내보죠.
(10 × a + 5) + 9 = 10 × 5 + a
10a + 14 = 50 + a
10a - a = 50 - 14
9a = 36
a = 4
처음 수의 십의 자리 숫자는 4에요. 문제에서 구하려는 건 십의 자리 숫자가 아니라 처음 수에요. 그래서 십의 자리 숫자와 일의 자리 숫자를 조합한 45가 문제의 답입니다.
방정식의 해와 문제의 답이 다른 경우예요.
연속하는 자연수에 관한 문제
12와 13은 연속하는 자연수에요. 20과 21도 연속하는 자연수지요. 두 자연수 사이에는 1이라는 차이가 있어요. 연속하는 두 자연수 중 작은 수를 x라고 하면 큰 수는 (x + 1)로 쓸 수 있는 거지요. 물론 큰 걸 x, 작은 걸 x - 1로 해도 상관은 없어요.
그럼 연속하는 짝수 또는 연속하는 홀수는 어떨까요? 짝수는 2 차이가 나죠? 그래서 연속하는 두 짝수에서 작은 수를 x라고 놓으면 큰 수는 (x + 2)로 놓을 수 있어요. 홀수도 마찬가지고요.
연속하는 세 자연수는 크기가 작은 것부터 x, x + 1, x + 2로 쓸 수 있어요. 큰 것부터 쓴다면 x, x - 1, x - 2로 쓸 수 있겠죠. 하지만 실제로 식을 세워서 계산할 때는 이 둘보다 가운데 수를 x로 놓고, 작은 걸 x - 1, 큰 걸 x + 1로 놓는 게 제일 편리해요.
연속하는 두 자연수: x, x + 1
연속하는 두 짝수(홀수): x, x + 2
연속하는 세 자연수: x - 1, x , x + 1
연속하는 세 짝수의 합이 60일 때, 가장 작은 짝수를 구하여라.
연속하는 세 짝수에서 가운데 수를 x라고 놓으면 가장 작은 짝수는 x - 2, 가장 큰 짝수는 x + 2에요. 세 자연수의 합이 60이니까 이걸 식으로 세워보죠.
(x - 2) + x + (x + 2) = 60
3x = 60
x = 20
여기서 방정식의 해 20은 중간 짝수에요. 문제에서 구하는 답은 가장 작은 짝수이므로 답은 18이네요.
물론 문제에서 구하라고 한 가장 작은 짝수를 x로 놓고, 다른 짝수를 x + 2, x + 4로 해서 문제를 풀어도 좋아요.
나이에 관한 문제
나이에 관한 문제는 현재 나이와 미래 나이를 비교하는 유형이에요. 현재는 몇 살인데, 미래에는 지금보다 "몇 살 많다 혹은 몇 배이다" 이런 식이죠.
나이를 구하는 문제이긴 하지만 나이를 미지수 x로 놓으면 계산이 복잡해져요. 문제에서 요구하는 나이에 도달하는 년수를 미지수 x로 놓는 것이 쉬워요. 년수를 x로 놓은 다음에 x년 후의 나이를 x를 포함한 식으로 표현하는 거지요. 현재의 나이가 14살이라면 5년 뒤의 나이는 (14 + 5)살이잖아요. 그럼 x년 뒤의 나이는 (14 + x)로 쓸 수 있어요.
철수의 나이는 14살이고, 아빠의 나이는 46살이다. 아빠의 나이가 철수의 나이의 3배가 될 때 철수의 나이를 구하여라.
x년 후 철수의 나이는 (14 + x)살
x년 후 철수 아빠의 나이는 (46 + x)살
아빠의 나이가 철수의 나이의 3배가 되는 걸 식으로 세우면.
3(14 + x) = 46 + x
42 + 3x = 46 + x
3x - x = 46 - 42
2x = 4
x = 2
2년 뒤에 아빠의 나이가 철수의 나이의 3배가 돼요. 이때 철수의 나이는 16살이네요.
함께 보면 좋은 글
등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이
일차방정식의 활용 2