폄면에서 두 직선의 위치관계에서 두 직선은 만나는 경우와 만나지 않는 경우가 있었어요. 만나는 경우는 2가지였으니까 전체 총 3가지 경우가 있었죠. 한 점에서 만난다, 일치, 만나지 않는다(평행)
공간에서 두 평면의 위치 관계는 한 점(교점)이 아니라 한 직선(교선)에서 만난다는 것 빼고는 평면에서 두 직선의 위치 관계와 똑같아요. 한 직선에서 만난다. 일치, 평행
![]() |
![]() |
![]() |
평면에서 두 직선의 위치 관계 | 공간에서 두 직선의 위치 관계 | |
만난다. | 한 점에서 만난다. | 한 직선에서 만난다. |
일치 | ||
만나지 않는다. | 평행 |
두 평면 사이의 수직 관계
공간에서 평면과 직선의 수직에서 평면과 평면에 있지 않는 직선이 수직으로 만나는 경우를 공부했는데요. 평면 Q와 수직인 직선 l이 평면 P에 포함할 때, 평면 P와 평면 Q도 서로 수직이에요. Q ⊥ l → P ⊥ Q
두 평면 사이의 거리
평행한 두 평면 P, Q사이에는 거리를 구할 수 있어요. 평행하지 않은 평면 사이의 거리는 구할 수 없고요. 평행하지 않으면 사이가 일정하지 않으니까 위치에 따라 값이 달라지잖아요.
평행한 두 평면 중 한 평면 위의 점에서 다른 평면에 그은 수선의 길이를 평행한 두 평면 P, Q 사이의 거리라고 하고, 이 거리는 두 평면 사이 어디에서든 일정해요.
$P\quad\parallel\quad Q\quad\rightarrow\quad\overline{AB}\quad=\quad\overline{CD}$
반대로 서로 다른 점에서 구한 거리가 일정하면 두 평면은 평행이에요.