삼차방정식 중에서 특이한 형태의 삼차방정식 하나를 더 공부할 거예요. x3 = 1인데요. 그냥 보면 x = 1이라는 실근이 하나보이죠? x = 1 말고 허근이 더 있는데, 이 허근을 오메가(ω)라고 해요. 그런데 이 ω가 재밌는 성질이 있어요. 그래서 이 글에서는 오메가의 성질에 대해서 알아볼 거예요.
오메가 (ω)의 성질을 외울 수 있으면 외우면 좋아요. 너무 헷갈려서 외우기 어렵다면 성질을 유도할 수 있어야 해요. ω2이 정확하게 무슨 값인지는 몰라도 "ω2이 특정한 값을 갖고 있다"는 사실은 기억하고 있어야 한다는 얘기죠. 성질의 정확한 값을 모르더라도 성질이 있다없다 정도만 기억하고 있다가 문제에 맞게 유도할 수 있을 정도는 되어야 합니다.
x3 = 1 허근 오메가(ω)의 성질
삼차방정식 x3 = 1의 해를 구해보죠.
x3 = 1
x3 - 1 = 0
(x - 1)(x2 + x + 1) = 0
x = 1 or
인수분해 공식 a3 - b3 = (a - b)(a2 + ab + b2)을 이용해서 인수분해 했고, 근의 공식을 이용해서 근을 구했어요.
허근 를 볼까요? = ω (오메가)라고 한다면 켤레근을 = (오메가 바)라고 할 수 있죠?
일단 ω와 는 x3 = 1의 근이니까 ω3 = 1, = 1이에요.
또, x2 + x + 1의 두 근이기도 하므로 ω2 + ω + 1 = 0, 이에요. 이차방정식의 근과 계수와의 관계에 의해서 두 근의 합과 곱도 구할 수 있어요.
이라는 얘기는 ω와 가 서로에게 곱셈에 대한 역원 즉, 역수라는 얘기예요. ,
또 위 성질들을 합쳐서 다음 성질도 유도해 낼 수 있어요.
x3 = 1의 한 허근 ω | 켤레근 |
---|---|
ω3 = 1 | = 1 |
ω2 + ω + 1 = 0 | |
x3 = 1의 한 허근을 ω라고 할 때 다음을 구하여라.
(1) ω2013 + ω2014 + ω2015 + … + ω2019
(2)
x3 = 1
x3 - 1 =0
(x - 1)(x2 + x + 1) = 0
ω3 = 1, ω2 + ω + 1 = 0, 등 많은 성질이 있어요.
(1) ω2013 + ω2014 + ω2015 + … + ω2019
= ω2013(1 + ω + ω2) + ω2016(1 + ω + ω2) + ω2019
= (ω3)671(1 + ω + ω2) + (ω3)672(1 + ω + ω2) + (ω3)673
= 1 × 0 + 1 × 0 + 1 (∵ ω3 = 1, ω2 + ω + 1 = 0)
= 1
x3 = -1 허근 오메가(ω)의 성질
삼차방정식 x3 = -1에서도 비슷한 성질을 알 수 있어요. 둘을 헷갈리지 마세요.
x3 = -1
x3 + 1 = 0
(x + 1)(x2 - x + 1) = 0
x = -1 or
한 허근 = ω, 켤레근 = 라고 해보죠.
x3 = 1에서와 같은 방법을 이용하면 아래의 성질을 유도할 수 있어요.
x3 = -1의 한 허근 ω | 켤레근 |
---|---|
ω3 = -1 | = -1 |
ω2 - ω + 1 = 0 | |
함께 보면 좋은 글
삼차방정식 근과 계수와의 관계
이차방정식의 켤레근
이차방정식의 근과 계수와의 관계
인수분해, 인수분해 공식
항등원과 역원, 연산법칙