완전제곱식을 이용한 이차방정식의 풀이를 이용하면 이제 웬만한 이차방정식의 해는 구할 수 있어요. 그런데 그 과정이 너무 복잡하죠. 이차항의 계수로 나누고, 숫자를 더해주고, 인수분해하고 등등……

그래서 이 과정을 생략하고 바로 근만 구할 방법, 즉 공식이 있어요. 그래서 그 공식은 어떤 식인지 어떤 과정을 거쳐서 만들어지는지 배워볼까요?

이차방정식 근의 공식을 유도하는 과정은 완전제곱식을 이용한 이차방정식의 풀이 과정을 그대로 하면 됩니다. 숫자 대신에 문자를 사용한다는 차이뿐이에요.

완전제곱식을 이용한 이차방정식의 풀이

완전제곱식을 이용해서 이차방정식을 푸는 과정은 아래와 같아요.

  1. 이차항의 계수로 양변을 나눈다
  2. 상수항을 우변으로 이항
  3. 완전제곱식 만들기을 양변에 더해준다.
  4. 좌변을 완전제곱식으로 인수분해: (x+p)2=k
  5. 제곱근을 이용하여 해를 구한다.

아래 예제를 통해서 한 번 더 확인하세요.

완전제곱식을 이용한 이차방정식의 풀이

근의 공식 유도

위 복잡한 과정을 생략하고 바로 근만 구하는 공식이 있어요. 다음 표에서 왼쪽은 일반적인 식을 이용한 과정이고 오른쪽은 이차방정식의 일반형을 이용한 과정이에요. 숫자가 문자로 바뀐 것만 다르고 방법과 과정은 모두 같아요. 연습장에 여러 번 써보면서 연습을 해야 합니다.

이제 공식이 어떻게 만들어지는 지 이해하셨죠? 이제 공식을 외워야합니다.

ax2 + bx + c = 0     (a, b, c는 상수 a ≠ 0)의 근
근의 공식

근의 공식은 모든 이차방정식의에 사용할 수 있어요. 인수분해가 되던 안 되던 상관없습니다. 앞으로도 계속 사용하는 가장 중요한 공식 중 하나이니까 꼭 외우세요.

근의 공식 - 짝수 공식

근의 공식 중에 짝수 공식이라는 게 있어요. 짝수 공식은 x 일차항의 계수가 짝수(2b')일 때 사용하는 공식이에요. 위에서 봤던 공식으로 풀지 못하는 건 아니지만, 이 짝수 공식을 이용하면 계산이 조금 더 간단해지죠. 외우면 좋지만, 공식이 두 개라서 헷갈린다면 굳이 외우지 않아도 되는 공식이에요.

ax2 + 2b'x + c = 0     (a, b', c는 상수 a ≠ 0)의 근
근의 공식 - 짝수공식

 

혹시 시간나면 이차방정식을 푸는 새로운 방법에 대해서도 읽어보세요. 이 글의 유도보다 조금 더 쉬워요.

두 근의 합과, 곱, 평균을 이용해서 이차방정식 풀기

함께보면 좋은 글

이차방정식의 풀이 - 제곱근을 이용
완전제곱식을 이용한 이차방정식의 풀이
이차방정식 근의 개수, 판별식 이용

정리해볼까요

이차방정식 근의 공식

  • ax2 + bx + c = 0     (a, b, c는 상수 a ≠ 0)의 근
              근의 공식
 
그리드형