정수의 사칙연산 세 번째, 정수의 곱셈이에요.

정수의 곱셈정수의 덧셈 둘 다 부호가 같은 정수와 부호가 다른 정수를 계산할 때의 방법이 달라서 둘을 헷갈릴 수 있어요.

정수의 덧셈과 곱셈은 두 가지 경우로 나누는 것 같지만 각 경우에서 결과의 부호 붙이는 방법이 다르니까 잘 보세요. 부호가 같은 정수를 더하면 공통부호에 절댓값의 합을, 부호가 다른 정수를 더하면 절댓값이 큰 정수의 부호에 절댓값의 차를 넣었다는 걸 기억하고 있죠?

정수의 곱셈에서도 정수의 덧셈에서 성립했던 교환법칙과 결합법칙이 성립하는지도 알아볼 거예요.

정수의 곱셈

정수의 덧셈, 덧셈에 대한 교환법칙, 결합법칙에서 정수의 부호가 같을 때와 다를 때로 나눠서 했죠? 정수의 곱셈에서도 부호가 같을 때와 다를 때 두 가지 경우로 나눠서 설명할게요.

부호가 같은 정수의 곱셈

부호가 같은 두 정수를 곱하면 곱한 결과는 (+)에요. 양의 정수죠.

7 × 4 = 28의 양변을 양의 정수로 써보면
(+7) × (+4) = (+28)이 돼요. 양의 정수 두 개를 곱하면 결과도 양의 정수가 나오는 거죠. 부호는 (+), 숫자는 절댓값의 곱이에요.

(-7) × (-4)는 얼마일까요? 두 양의 정수를 곱할 때와 마찬가지로 두 음의 정수를 곱하면 양의 정수가 돼요. 절댓값의 곱이죠. 그래서 (-7) × (-4) = (+28)이에요.

부호가 다른 정수의 곱

부호가 다른 정수를 곱하면 무조건 결과는 음의 정수예요. 두 정수의 절댓값의 곱에 (-) 부호를 붙여요.

(-7) × (+4)는 두 정수의 부호가 다르니까 (-)고, 절댓값의 곱이 28이라서, (-7) × (+4) = (-28)이에요.

(+7) × (-4)도 두 정수의 절댓값의 곱 28에 두 정수의 부호가 다르니까 (-)를 붙여서 (+7) × (-4) = (-28)이 돼요.

정수의 곱은 두 정수의 부호가 같으냐 다르냐에 따라 결과의 부호가 달라지긴 하지만 어찌 됐던지 간에 절댓값은 곱해요.

부호가 같은 두 정수를 곱: 두 정수의 절댓값의 곱에 (+) 부호
(+) × (+) = (+), (-) × (-) = (+)
 
부호가 다른 두 정수의 곱: 두 정수의 절댓값의 곱에 (-) 부호
(+) × (-) = (-), (+) × (-) = (-)

다음을 계산하여라.
(1) (+4) × (-2)       (2) (+3) × (+2) × (-2) × (+4)

곱하는 두 정수의 부호가 같으면 결과는 (+), 두 정수의 부호가 다르면 (-)에요. 숫자는 무조건 절댓값의 곱이고요.

(1)은 두 정수의 부호가 다르니까 (-)겠네요. (+4) × (-2) = (-8)

(2)는 식이 조금 긴데요, 앞에서부터 차례대로 두 개씩 곱해보죠.
(+3) × (+2) × (-2) × (+4) = (+6) × (-2) × (+4) = (-12) × (+4) = (-48)

거듭제곱, 여러 정수의 곱

거듭제곱

거듭제곱은 같은 수나 문자가 여러 번 곱해져 있는 걸 말해요. (+1)의 거듭제곱을 볼까요?

(+1)1 = (+1)
(+1)2 = (+1) × (+1) = (+1)
(+1)3 = (+1)2 × (+1) = (+1)
(+1)4 = (+1)3 × (+1) = (+1)
(+1)5 = (+1)4 × (+1) = (+1)

(+1)의 거듭제곱에는 모두 양의 정수만 있어요. 음의 정수가 하나도 없지요. 그랬더니 결과가 (+)가 됐네요. 다음에는 (-1)의 거듭제곱을 보죠.

(-1)1 = (-1)
(-1)2 = (-1) × (-1) = (+1)
(-1)3 = (-1)2 × (-1) = (+1) × (-1) = (-1)
(-1)4 = (-1)3 × (-1) = (-1) × (-1) = (+1)
(-1)5 = (-1)4 × (-1) = (+1) × (-1) = (-1)

어떤 특징이 있죠? 지수가 1, 3, 5면 결과가 (-1)이 나오고, 지수가 2, 4면 결과가 (+1)이 나와요. 이걸 좀 확장해서 지수가 홀수면 (-), 지수가 짝수면 (+)가 나온다고 말할 수 있죠.

여러 정수의 곱

(-1) × (-2) × (-3)을 구해보죠.
= (+2) × (-3)
= (-6)

(-1) × (-2) × (-3) × (-4) 는
= (+2) × (-3) × (-4)
= (-6) × (-4)
= (+24)

두 계산에서 어떤 특징이 있냐면 음의 정수를 홀수개 곱하면 결과가 (-)가 되고, 짝수개 곱하면 결과가 (+)가 된다는 거예요.

(+1)의 거듭제곱은 양의 정수가 나왔죠? 음의 정수 없이 양의 정수만 곱하면 결과가 (+)가 돼요.

음의 정수의 거듭제곱에서 지수가 홀수면 홀수개의 음의 정수를 곱하므로 결과는 (-), 음의 정수의 거듭제곱에서 지수가 짝수면 짝수개의 음의 정수를 곱하므로 결과는 (+)가 돼요. 위 세 가지를 하나로 합쳐보죠.

거듭제곱, 여러 정수의 곱에서
음수의 지수 또는 곱하는 음수의 개수가 홀수 → 결과는 (-)
음수의 지수 또는 곱하는 음수의 개수가 0 또는 짝수 → 결과는 (+)

다음을 계산하여라.
(1) (-2)3 × (-3)2
(2) (+3) × (+2) × (-2) × (+4)

거듭제곱, 여러 정수의 곱에서 음의 정수의 개수가 홀수개면 결과는 (-), 0개 또는 짝수개면 (+)에요.

(1)에서 음수 (-2)의 지수가 홀수인 3이므로 결과는 (-)겠네요. 그리고 음수 (-3)의 지수는 짝수인 2니까 결과는 (+)고요.
(-2)3 × (-3)2
= (-8) × (+9) = (-72)

(2)에는 음의 정수가 1개에요. 홀수개니까 결과는 (-)에요. 그리고 나머지 숫자들의 절댓값을 다 곱해주면 되죠.
(+3) × (+2) × (-2) × (+4)
= -(3 × 2 × 2 × 4) = (-48)

정수에 대한 교환법칙, 결합법칙, 분배법칙

정수의 덧셈에서는 교환법칙, 결합법칙이 성립하지만, 정수의 뺄셈에서는 성립하지 않는다고 했어요. 그럼 정수의 곱셈에서는 두 법칙이 성립할까요?

교환법칙은 연산기호 좌우에 있는 정수의 자리를 바꿔서 계산해도 결과가 같다는 걸 보이면 돼요. 또 결합법칙은 괄호의 위치를 바꿔가며 계산한 결과가 같다는 것을 보이면 되고요.

(-7) × (-4) = (+28)이에요.
(-4) × (-7) = (+28)로 × 기호 양쪽의 수의 자리를 바꿔도 결과가 같죠? 따라서 곱셈에서도 교환법칙이 성립해요.

{(-7) × (-4)} × (+2) = (+28) × (+2) = (+56)이고,
(-7) × {(-4) × (+2)} = (-7) × (-8) = (+56)으로 괄호를 어디에 치느냐에 상관없이 두 식의 값이 같죠. 결합법칙도 성립해요.

정수의 곱셈에 대한 교환법칙과 결합법칙이 성립
a × b = b × a
(a × b) × c = a × (b × c)

함께 보면 좋은 글

정수의 덧셈, 덧셈에 대한 교환법칙, 결합법칙
정수의 뺄셈
정수의 덧셈과 뺄셈 혼합계산
정수의 나눗셈, 정수의 사칙연산 혼합계산
분배법칙, 분배법칙, 교환법칙, 결합법칙 비교

정리해 볼까요

정수의 곱셈

  • 부호가 같은 정수의 곱: 절댓값의 곱에 (+) 부호
  • 부호가 다른 정수의 곱: 절댓값의 곱에 (-) 부호

거듭제곱, 여러 정수의 곱

  • 지수 또는 음수의 개수가 홀수: (-)
  • 지수 또는 음수의 개수가 0, 짝수: (+)

곱셈에 대한 교환법칙, 결합법칙

  • a × b = b × a
  • (a × b) × c = a × (b × c)
 
신고