고등수학/고1 수학
-
삼각형 외심의 좌표 구하기2025.07.03
-
분수함수에서 ad - bc ≠ 0인 이유2025.06.08
-
수학적 귀류법2025.05.31
-
두 근의 합과 곱을 알 때, 실근, 허근 판별하기2025.05.23
삼각형 외심의 좌표 구하기
중학교 2학년 때 공부했던 삼각형의 외심 기억하죠? 이번에는 삼각형 외심의 좌표를 구해볼까요?
삼각형 외심의 좌표는 2가지 방법으로 구할 수 있어요.
첫번째는 외심의 정의를 이용하는 방법이에요. 두번째는 외심의 성질을 이용하는 방법이고요.
삼각형 외심의 좌표 구하기 - 외심의 정의 이용
첫번째 외심의 정의를 이용해서 외심의 좌표를 구해보죠.
삼각형의 외심은 세 변의 수직이등분선의 교점이에요. 물론, 세 변의 수직이등분선을 다 구하지 않고, 두 변의 수직이등분선의 교점만 구해도 돼요.
여기서는 변의 수직이등분선이라는 게 결정적인 힌트에요. 일단 삼각형에서 두 변의 방정식을 각각 구하고, 이 두 변과 수직이등분선의 방정식을 구해서 이 두 방정식의 교점을 찾는 거예요. 어려워보이죠? 하지만 생각보다 더 어려울 거예요.
좌표 위에 세 점 A(x1, y1), B(x2, y2), C(x3, y3)를 꼭짓점으로 하는 △ABC의 외심의 좌표를 구해보죠.
1단계, 두 변의 방정식을 각각 구해야하는데, 두 점을 지나는 직선의 방정식을 공식을 이용해서 구할 수 있어요.
$$ \overline{AB}의 방정식: y - y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} (x - x_{1})\\ 중점: \left( \frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2} \right)$$ $$ \overline{BC}의 방정식: y - y_{2} = \frac{y_{3} - y_{2}}{x_{3} - x_{2}} (x - x_{2})\\ 중점: \left( \frac{x_{2} + x_{3}}{2}, \frac{y_{2} + y_{3}}{2} \right)$$
2단계, 각 변의 수직이등분선의 방정식을 구해보죠.
$\overline{AB}$의 방정식과 중점을 구했으니, 여기에 수직이등분선의 직선의 방정식을 구할 수 있죠? 두 직선이 서로 수직이면 기울의 곱 = -1이에요. $$ \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \times 기울기 = -1\\ 기울기 = - \frac{x_{2} - x_{1}}{y_{2} - y_{1}}$$
이 직선은 $\overline{AB}$의 중점을 지나니까 기울기와 한 점의 좌표를 알 때 직선의 방정식 구하는 공식으로 구할 수 있어요.
$$ y - \frac{y_{1} + y_{2}}{2} = - \frac{x_{2} - x_{1}}{y_{2} - y_{1}} \left( x - \frac{x_{1} + x_{2}}{2} \right)$$
같은 방법으로 $\overline{BC}$의 수직이등분선의 방정식을 구할 수 있죠?
$$ \frac{y_{3} - y_{2}}{x_{3} - x_{2}} \times 기울기 = -1\\ 기울기 = - \frac{x_{3} - x_{2}}{y_{3} - y_{2}}$$
이 직선은 $\overline{BC}$의 중점을 지나요.
$$ y - \frac{y_{2} + y_{3}}{2} = - \frac{x_{3} - x_{2}}{y_{3} - y_{2}} \left( x - \frac{x_{2} + x_{3}}{2} \right)$$
3단계, 연립방정식을 이용해서 이 두 직선의 교점을 구하면 바로 외심의 좌표예요.
이 이후의 과정은 너무 복잡하니까 그냥 구하지 말죠. 아무튼 순서를 잘 기억하세요.
- 삼각형의 두 꼭짓점을 이용해서 변의 방정식과 중점을 구한다. × 2
- 각 변의 수직이등분선의 방정식을 구한다.
- 연립방정식을 이용하여 ②에서 구한 수직이등분선의 교점의 좌표를 구한다.
삼각형 외심의 자표구하기 - 외심의 성질 이용
두 번째 방법은 삼각형 외심의 성질을 이용하는 방법이에요.
삼각형 외심의 성질은 무엇이었나요? 외심에서 세 꼭짓점에 이르는 거리가 같잖아요. 그러니까 외심의 좌표를 점O(x, y)라고 놓고, 좌표평면에서 두 점 사이의 거리 공식을 이용해서 $\overline{OA} = \overline{OB} = \overline{OC}$ 를 구하는 거죠.
A = B = C꼴의 연립방정식이니까 A = B or B = C or C = A 중 2개를 골라서 연립방정식을 만들고 풀면 돼요.
진짜로 풀지는 말고, 그 방법만 알고 있으면 돼요.
결과는 이거예요. 심심하면 외워보세요.
$$x = \frac{ (x_1^2 + y_1^2)(y_2 - y_3) + (x_2^2 + y_2^2)(y_3 - y_1) + (x_3^2 + y_3^2)(y_1 - y_2) }{ 2 \cdot (x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2))}\\\\ y = \frac{ (x_1^2 + y_1^2)(x_3 - x_2) + (x_2^2 + y_2^2)(x_1 - x_3) + (x_3^2 + y_3^2)(x_2 - x_1) }{ 2 \cdot (x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2))}$$
분수함수에서 ad - bc ≠ 0인 이유
분수함수 중에 $y\quad =\quad \frac{cx \quad + \quad d}{ax \quad + \quad b} $꼴의 함수가 있어요. 이 함수는 분자에서 일차항의 계수인 a ≠ 0이어야 하고, 식에 사용된 계수들이 ad - bc ≠ 0이어야 해요.
분자에서 일차항의 계수 a = 0이면 $y \quad = \quad \frac{c}{b}x\quad + \quad \frac{d}{b}$꼴로 계수가 유리수인 다항함수예요. 그래서 a ≠ 0이어야 해요.
ad - bc = 0이면 안되는 이유를 알아보죠.
$$ \begin{align}ad \quad - \quad bc \quad & = \quad 0\\ \\ ad \quad & = \quad bc\\ \\ d \quad & = \quad \frac{bc}{a} \end{align}$$
ad - bc = 0일 때, 먼저 bc를 이항해요. 그리고 앞에서 본 것처럼 a ≠ 0이니까 양변을 a로 나눴더니 d = $\frac{bc}{a}$가 됐어요.
이번에는 위에서 얻은 d = $\frac{bc}{a}$를 원래의 분수함수 $y\quad = \quad \frac{cx \quad + \quad d}{ax \quad + \quad b} $에 대입하고 분자, 분모를 각각 일차항의 계수로 묶어보죠.
$$ \begin{align} y \quad & = \quad \frac{cx \quad + \quad d}{ax \quad + \quad b} \\ \\ y \quad & = \quad \frac{cx \quad + \quad \frac{bc}{a}}{ax \quad + \quad b}\\ \\ y \quad & = \quad \frac{c \left(x\quad + \quad \frac{b}{a}\right)}{a \left(x \quad + \quad \frac{b}{a} \right)} \\ \\ y \quad & = \quad \frac{c}{a} \end{align}$$
괄호 부분을 약분했더니 y = $\frac{c}{a}$가 되었고, 이건 상수함수예요.
분모에 문자가 있어야 분수식이라고 하고, 함수식이 분수식이어야 분수함수인데, 이건 그냥 상수함수라서 다항함수예요. 그래서 분수함수에서는 ad - bc ≠ 0이라는 조건이 있어요.
수학적 귀류법
수학적 귀류법은 어떤 명제가 참임을 증명하고 싶은데, 직접 증명하기 어려울 때 사용하는 간접 증명 방법이에요.
쉽게 말해 명제를 거짓이라고 가정했더니 말이 안된다(모순이 발생한다)는 걸 보임으로써 결국 그 명제가 참이라는 걸 증명하는 거예요.
수학적 귀류법은 다음의 3단계를 거쳐요.
- 어떤 명제가 있는데, 이 명제가 거짓이라고 가정해요.
증명하고 싶은 명제의 결론을 부정해서 가정으로 삼아요. - 가정에서 논리적 결론을 이끌어 내어, 모순이 생기는 걸 보여서, 가정이 틀렸다는 걸 확인해요.
가정을 바탕으로 논리적으로 전개하다 보면 기존에 알려진 사실이나 정의에 모순되는 결과가 나오는 걸 보여줘요. 모순이 생겼으니 처음에 세웠던 가정이 거짓이에요. - 결국 원래 명제가 참이라는 결론에 도달해요.
원래 증명하고 싶었던 명제가 참이라는 결론을 내려요.
예를 들어보죠. "김철수는 남자이다."를 증명해볼까요?
- 명제가 거짓이라고 가정: 김철수는 남자가 아니다. → 김철수는 여자이다.
- 모순: 여자는 OOO, ~~~ 같은 신체적, 생물학적 특징이 있어야 하는데, 김철수는 그런 특징이 없으므로 "김철수는 여자"라는 가정이 틀렸다.
- 결론: 김철수는 여자가 아니다. → "김철수는 남자다."는 참이다.
"$\sqrt{2}$는 무리수"임을를 수학적 귀류법으로 증명하시오.
- 명제가 거짓이라고 가정: $\sqrt{2}$는 무리수가 아니다. → $\sqrt{2}$는 유리수이다.
유리수는 $\frac{a}{b}$ (a, b는 서로소인 정수, b ≠ 0) 꼴로 나타낼 수 있는 수예요. - $\sqrt{2}$ = $\frac{a}{b}$
2 = $\frac{a^{2}}{ b^{2}}$ (∵양변 제곱)
2b2 = a2
a2이 2의 배수니까 a도 2의 배수여야 해요. 따라서 a = 2k (k는 정수)라고 둘 수 있어요.
a = 2k를 2b2 = a2에 대입하면
2b2 = a2
2b2 = (2k)2
2b2 = 4k2
b2 = 2k2
b2도 2의 배수이므로 b도 2의 배수여야 해요.
a, b 모두 2의 배수이므로 a, b는 서로소인 정수라고 했던 가정과 모순이 생겨요. 가정 "$\sqrt{2}$는 유리수"가 틀렸다는 걸 알 수 있어요. - 명제 "$\sqrt{2}$는 무리수이다."는 참인 명제예요.
명제 “모든 홀수는 짝수가 아니다.”를 귀류법으로 증명하시오.
명제를 부정해야 하는데, 조건의 부정에 나온 것처럼 "모든"은 "어떤"으로 바꿔요.
- 명제가 거짓이라고 가정: 어떤 홀수가 짝수이다.
- 홀수는 2n+1, 짝수는 2n (n은 정수)이므로 어떤 홀수가 짝수이면
2n + 1 = 2m
2n + 1 = 2m
1 = 2m - 2n
1 = 2(m - n)
1이 2의 배수라는 결론이 나오는데, 이는 말이 안되죠. 모순이에요. 가정이 틀렸어요. - 모든 홀수는 짝수가 아니다. (명제는 참이다)
두 근의 합과 곱을 알 때, 실근, 허근 판별하기
이차방정식의 판별식을 이용해서 두 근이 실근인지 허근인지 판별할 수 있어요. 이번에 공부할 건 조금 확장된 버전(?)인데요. 교육과정에 있는 내용은 아닌데, 그냥 한 번 해보죠.
이차방정식은 모르지만, 이차방정식 두 근의 합과 곱을 알 때, 두 근이 실근인지 허근인지 확인하는 방법이에요. 판별식을 이용하는 방법보다 한 단계만 더 거치는 거니까 어렵지는 않아요.
식을 알면 두 근을 구해서 실근인지 허근이지 판별할 수 있는데, 식을 모르니까 두 근을 구할 수 없고, 근을 모르니까 실근인지 허근인지 판별할 수 없어요.
하지만, 이차방정식의 판별식, 실근, 허근에서도 근을 구하지 않고 실근, 허근을 판별했어요. 즉, 식을 알기만 하면 근을 구할 수 없을더라도 실근, 허근을 판별할 수는 있어요.
판별식을 이용하려면 식을 알아야 하죠. 그런데 식을 몰라요. 합과 곱만 알아요. 어떻게 해야 할까요? 식을 먼저 구해야겠죠? 식을 구하는 방법이 뭘까요? 바로 두 수를 근으로 하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식이에요.
그러니까 합과 곱을 이용해서 이차방정식을 만들고, 그렇게 만든 이차방정식에서 판별식을 구하면 두 근이 실근인지 허근인지 확인할 수 있어요.
두 근의 합과 곱을 알 때 이차방정식은 다음과 같아요.
두 근의 합이 m이고 곱이 n, 이차항의 계수가 a인 이차방정식
a(x2 - mx + n) = 0
a(x2 - 합x + 곱) = 0
위 공식을 전개해보면 ax2 - amx + an = 0이에요.
나머지 과정은 다 알죠?
D = (-am)2 - 4 × a × an
- D > 0이면 서로 다른 두 실근
- D = 0이면 중근(실근)
- D < 0이면 서로 다른 두 허근
두 근의 합이 9, 곱이 18이고 이차항의 계수가 2인 이차방정식의 근의 종류를 판별하여라.
근이 뭔지는 모르지만, 두 근의 합과 곱, 이차항의 계수를 알려줬네요. 식을 구할 수 있어요.
a(x2 - 합x + 곱) = 0
2(x2 + 9x + 18) = 0
2x2 + 18x + 36 = 0
이제 식을 알았으니 판별식을 사용할 수 있어요.
D/4 = 92 - 2 × 36
= 81 - 72
= 9 > 0
D/4 > 0이니까 서로 다른 두 실근이에요.
여기서 한 가지 더 알아둘 건, 이차항의 계수는 별 필요가 없다는 거예요.
합이 m, 곱이 n, 이차항의 계수가 a인 이차방정식
a(x - mx + n) = 0
ax2 - amx + an = 0
D = (-am)2 - 4 × a × an
= a2m2 - 4a2n
= a2(m2 - 4n)
a2은 무조건 양수니까 뒤 (m2 - 4n)의 부호만 알면되죠?
이차항의 계수 없이 공식의 괄호부분만 볼까요?
x2 - mx + n = 0
D = (-m)2 - 4 × 1 × an
= m2 - 4n
결국 이차항의 계수는 판별식의 부호에 아무런 영향을 미치지 않아요.
공통수학 1, 2 목차
각 게시글 하단의 목차 페이지는 이용하지 말고, 이 목차 페이지에서 필요한 단원의 글만 골라서 공부하세요.
공통수학 1
- 다항식
- 방정식과 부등식
- 허수와 허수단위, 복소수
- 켤레복소수와 켤레복소수의 성질
- 복소수의 사칙연산
- i의 거듭제곱, 음수의 제곱근의 성질
- 방정식 ax + b = 0의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차방정식의 풀이
- 이차방정식의 판별식, 실근, 허근
- 이차방정식 근과 계수와의 관계
- 두 수를 근으로하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
- 이차방정식의 켤레근
- 이차방정식의 인수분해
- 이차방정식의 실근의 부호
- 이차함수 총정리
- 이차함수의 최댓값과 최솟값
- 이차함수의 최대, 최소와 활용
- 이차함수의 그래프와 이차방정식의 실근
- 이차함수의 그래프와 직선의 위치관계
- 이차방정식의 실근의 위치
- 고차방정식의 인수분해, 고차방정식의 풀이
- 고차방정식의 풀이 - 치환, 복이차식
- 삼차방정식 근과 계수와의 관계
- 삼차방정식의 허근 ω의 성질
- 연립이차방정식의 풀이 1
- 연립이차방정식의 풀이 2 - 대칭식
- 부등식의 성질
- 부등식 ax > b의 풀이, 부정, 불능
- 연립부등식
- 여러가지 연립부등식
- 절댓값 기호를 포함한 일차부등식의 풀이
- 절댓값 기호를 포함한 부등식의 풀이 2
- 이차부등식, 이차부등식의 해
- 이차부등식의 해와 판별식
- 이차부등식의 해와 이차함수의 그래프
- 해가 주어졌을 때 이차부등식 구하기
- 이차부등식이 항상 성립할 조건
- 연립이차부등식
- 순열과 조합
- 행렬
공통수학 2
- 도형의 방정식
- 두 점 사이의 거리
- 선분의 내분점과 외분점
- 좌표평면 위의 내분점과 외분점
- 내분점과 외분점의 관계
- 삼각형 무게중심의 좌표
- 직선의 방정식, 직선의 방정식 구하기
- 직선의 방정식 일반형과 표준형
- 절댓값 기호를 포함한 식의 그래프
- 두 직선의 위치관계 - 평행, 일치, 수직
- 두 직선의 위치관계와 일차방정식의 해의 개수
- 교점을 지나는 직선의 방정식
- 점과 직선 사이의 거리
- 원의 방정식
- 원의 방정식 일반형과 표준형
- 아폴로니오스의 원
- 축에 접하는 원의 방정식
- 두 원의 교점을 지나는 원의 방정식
- 원과 직선의 위치관계
- 원의 접선의 방정식 1 - 접점을 알 때
- 원의 접선의 방정식 2 - 기울기를 알 때
- 원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
- 점과 도형의 평행이동
- 점과 도형의 대칭이동 - x축, y축, 원점
- 점과 도형의 대칭이동 - 직선에 대한 대칭이동
- 집합과 명제
- 집합의 뜻
- 집합에서 원소란π
- 집합의 표현방법 - 조건제시법, 원소나열법, 벤다이어그램
- 집합의 분류 - 원소개수에 따른 분류(무한집합, 유한집합, 공집합)
- 집합의 원소의 개수
- 집합의 포함관계 - 부분집합
- 진부분집합과 부분집합의 성질
- 부분집합 구하기, 부분집합의 개수 구하기
- 특정한 원소를 포함하는 부분집합의 개수 구하기
- 교집합과 합집합
- 전체집합과 여집합, 차집합
- 집합의 연산법칙 - 교환법칙, 결합법칙, 분배법칙
- 집합의 연산법칙 - 드모르간의 법칙
- 유한집합의 원소의 개수
- 명제와 조건, 진리집합, 조건의 부정
- 명제의 참, 거짓
- 명제의 역, 이, 대우, 삼단논법
- 필요조건, 충분조건, 필요충분조건
- 수학에서의 정의, 증명, 정리
- 절대부등식, 부등식의 증명에 사용되는 실수의 성질
- 절대부등식의 증명 - 산술, 기하, 조화평균
- 절대부등식의 증명 - 코시 슈바르cm 부등식
- 함수
연립이차방정식의 풀이 3 – 대칭식
이번에 공부할 연립이차방정식은 대칭식인데요. 연립이차방정식에서는 x, y라는 두 개의 미지수를 사용하죠? 이때, x와 y의 자리를 바꿔도 원래의 식과 같아지는 식을 대칭식이라고 해요.
$\left\{\begin{matrix} x + y + xy = 7 \\x^2 + 3xy + y^2 = 19 \end{matrix}\right. \rightarrow \left\{\begin{matrix}y + x + yx = 7\\y^2 + 3yx + x^2 = 19\end{matrix}\right. $
왼쪽의 x와 y를 서로 바꿨더니 오른쪽처럼 되었어요. 그런데 두 식이 똑같죠? 이런 경우를 대칭식이라고 해요.
이런 식은 x + y = u, xy = v라고 치환해서 풀어요.
$\left\{\begin{matrix}
x + y + xy = 7 \\x^2 + 3xy + y^2 = 19
\end{matrix}\right. \rightarrow
\left\{\begin{matrix}u + v = 7\\u^2 + v = 19\end{matrix}\right. $
(∵ x2 + 3xy + y2 = (x + y)2 + xy)
치환을 했더니 x, y에 대한 연립이차방정식이 u, v에 대한 연립이차방정식으로 바뀌었죠? 첫 번째 식은 1차식, 두 번째 식은 2차식이에요. 앞서 공부했던 (일차방정식 + 이차방정식)꼴의 연립이차방정식이므로 일차방정식을 한 문자에 대해 정리해서 이차방정식에 대입해서 풀면 되겠네요.
v = 7 ? u
u2 + (7 ? u) = 19
u2 ? u ? 12 = 0
(u ? 4)(u + 3) = 0
u = -3 or 4
v = 10 or 3
우리가 구해야 하는 건 u, v가 아니라 x, y잖아요. 원래 값으로 바꾸면
x + y = -3, xy = 10
x + y= 4, xy = 3
더해서 4 곱해서 3이 되는 두 수를 구하는 건데, 합과 곱이 주어졌을 때 이차방정식 구하기에 따라 식으로 만들면 x2 ? 합x + 곱 = 0꼴이니
t2 - 4t + 3 = 0
그냥 평범한 이차방정식으로 나타낼 수 있어요. 이 이차방정식을 풀면 돼요.
(t - 1)(t - 3)= 0
t = 1 or 3
x = 1, y = 3 or x = 3, y = 1
t2 + 3t + 10 = 0
t = $\frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times 10} }{2} = \frac{-3 \pm \sqrt{31}i }{2}$
x = $\frac{-3 + \sqrt{31}i}{2}$, y = $\frac{-3 - \sqrt{31}i }{2}$ or x = $\frac{-3 - \sqrt{31}i }{2}$, y = $\frac{-3 + \sqrt{31}i }{2}$
$$\left\{\begin{matrix} x = 1\\y = 3 \end{matrix}\right. , \left\{\begin{matrix} x = 3\\y = 1 \end{matrix}\right. , \left\{\begin{matrix} x = \frac{-3 + \sqrt{31}i}{2}\\ y = \frac{-3 - \sqrt{31}i}{2} \end{matrix}\right. , \left\{\begin{matrix} x = \frac{-3 - \sqrt{31}i}{2}\\y = \frac{-3 + \sqrt{31}i}{2} \end{matrix}\right.$$
이 풀이는 문자도 많이 나오고, 식이 바뀌는 부분이 많아 헷갈릴 수 있으니 주의해야 해요. 이 변화를 잘 파악해야 합니다.
x , y의 연립이차방정식 → u, v의 연립이차방정식 → t의 이차방정식 → x, y의 값
인수정리를 이용한 인수분해에서 약수 찾는 법
인수정리를 이용한 인수분해에서 인수정리에 사용할 α를 찾는 방벙 중 2번째 방법에 대해서 설명하는 글이에요.
α를 찾을 때 $\pm\frac{상수항의 \quad약수}{최고차항 \quad계수의\quad 약수}$ 중 하나라고 했는데 그 이유는 어렵지 않아요.
먼저, 간단한 거 하나만 보죠.
3 × 4 = 12라는 식에서 3, 4가 12의 약수라는 걸 알 수 있어요. 이때, 12의 약수는 1, 2, 3, 4, 6, 12인데 저 식에서는 나머지 약수는 알 수 없고 3, 4만 알 수 있죠.
다시 방정식으로 돌아와서, 최고차항이 a (a ≠ 0)이고, 세 근이 α, β, γ인 3차방정식이 있다고 해보죠.
ax3 + bx2 + cx + d = 0
a(x - α)(x - β)(x - γ) = 0
a{x3 - (α + β + γ)x2 + (αβ + βγ + γα)x - αβγ} = 0
ax3 - a(α + β + γ)x2 + a(αβ + βγ + γα)x - aαβγ = 0
삼차방정식 근과 계수와의 관계에 따르면 αβγ = -$\frac{d}{a}$예요.
세근의 곱 = $\frac{상수항}{최고차항의\quad계수}$이죠. 앞의 부호는 신경쓰지 말고요.
3 × 4 = 12 → 3, 4는 12의 약수.
αβγ = $\frac{상수항}{최고차항의\quad계수}$ → α, β, γ는 $\frac{상수항}{최고차항의\quad계수}$의 약수
12의 약수 1, 2, 3, 4, 6, 12 중에 3, 4가 있죠? 마찬가지로 $\frac{상수항}{최고차항의\quad계수}$의 약수도 많이 있을텐데 그 중에 α, β, γ가 있어요. 우리는 α, β, γ만 필요하니까 어떤 것이 α, β, γ인지 찾아야 해요.
그 방법은 $\pm\frac{상수항의 \quad약수}{최고차항 \quad계수의\quad 약수}$로 찾은 약수를 하나씩 대입해서 방정식이 성립하는지 보는 거예요. 식이 성립하면 α, β, γ중 하나고, 성립하지 않으면 α, β, γ가 아닌 다른 약수죠,
방정식의 해는 정수, 유리수, 무리수까지 있지만 우리는 계산을 쉽게 하려고 정수 약수만 찾을 거니까 여러 후보 중에서 정수만 먼저 대입해서 찾아요.
근을 모두 찾을 필요는 없고, 정수인 근 1, 2개만 찾아요. 정수가 아닌 근이 있다면 찾기가 어려울 수 있으니까요.
나머지는 조립제법을 이용하거나 인수분해 공식을 이용해서 인수분해를 하면 자연히 알게 돼요.
이건 3차방정식 뿐 아니라 4차, 5차 등 다른 방정식에서도 똑같아요. 어차피 방정식의 상수항은 근의 곱으로 된 항이니까요. 부호는 생각하지 말고요. 어차피 약수를 구할 때 앞에 $\pm$이 있으니까 부호는 상관없죠.
고등수학 (상), (하) 목차
고등교육과정이 자주 바뀌어 학년별 목차보다 단원별 목차를 이용하는 것이 더 효율적이라 판단되어 목차를 일부 수정합니다.
각 게시글 하단의 목차 페이지는 이용하지 말고, 이 목차 페이지에서 필요한 단원의 글만 골라서 공부하세요.
고등수학 (상)
- 다항식
- 방정식과 부등식
- 허수와 허수단위, 복소수
- 켤레복소수와 켤레복소수의 성질
- 복소수의 사칙연산
- i의 거듭제곱, 음수의 제곱근의 성질
- 방정식 ax + b = 0의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차방정식의 풀이
- 이차방정식의 판별식, 실근, 허근
- 이차방정식 근과 계수와의 관계
- 두 수를 근으로하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
- 이차방정식의 켤레근
- 이차방정식의 인수분해
- 이차방정식의 실근의 부호
- 이차함수의 그래프와 이차방정식의 실근
- 이차함수의 그래프와 직선의 위치관계
- 이차방정식의 실근의 위치
- 이차함수 총정리
- 이차함수의 최댓값과 최솟값
- 이차함수의 최대, 최소와 활용
- 고차방정식의 인수분해, 고차방정식의 풀이
- 고차방정식의 풀이 - 치환, 복이차식
- 상반방정식
- 삼차방정식 근과 계수와의 관계
- 삼차방정식의 허근 ω의 성질
- 연립이차방정식의 풀이 1
- 연립이차방정식의 풀이 2
- 연립이차방정식의 풀이 3 - 대칭식
- 부정방정식
- 부등식의 성질
- 부등식 ax > b의 풀이, 부정, 불능
- 연립부등식
- 여러가지 연립부등식
- 절댓값 기호를 포함한 일차부등식의 풀이
- 절댓값 기호를 포함한 부등식의 풀이 2
- 이차부등식, 이차부등식의 해
- 이차부등식의 해와 판별식
- 이차부등식의 해와 이차함수의 그래프
- 해가 주어졌을 때 이차부등식 구하기
- 이차부등식이 항상 성립할 조건
- 연립이차부등식
- 도형의 방정식
- 두 점 사이의 거리
- 선분의 내분점과 외분점
- 좌표평면 위의 내분점과 외분점
- 내분점과 외분점의 관계
- 삼각형 무게중심의 좌표
- 직선의 방정식, 직선의 방정식 구하기
- 직선의 방정식 일반형과 표준형
- 절댓값 기호를 포함한 식의 그래프
- 두 직선의 위치관계 - 평행, 일치, 수직
- 두 직선의 위치관계와 일차방정식의 해의 개수
- 교점을 지나는 직선의 방정식
- 점과 직선 사이의 거리
- 원의 방정식
- 원의 방정식 일반형과 표준형
- 아폴로니오스의 원
- 축에 접하는 원의 방정식
- 두 원의 교점을 지나는 원의 방정식
- 원과 직선의 위치관계
- 원의 접선의 방정식 1 - 접점을 알 때
- 원의 접선의 방정식 2 - 기울기를 알 때
- 원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
- 점과 도형의 평행이동
- 점과 도형의 대칭이동 - x축, y축, 원점
- 점과 도형의 대칭이동 - 직선에 대한 대칭이동
고등수학 (하)
- 집합과 명제
- 집합의 뜻
- 집합에서 원소란π
- 집합의 표현방법 - 조건제시법, 원소나열법, 벤다이어그램
- 집합의 분류 - 원소개수에 따른 분류(무한집합, 유한집합, 공집합)
- 집합의 원소의 개수
- 집합의 포함관계 - 부분집합
- 진부분집합과 부분집합의 성질
- 부분집합 구하기, 부분집합의 개수 구하기
- 특정한 원소를 포함하는 부분집합의 개수 구하기
- 교집합과 합집합
- 전체집합과 여집합, 차집합
- 집합의 연산법칙 - 교환법칙, 결합법칙, 분배법칙
- 집합의 연산법칙 - 드모르간의 법칙
- 유한집합의 원소의 개수
- 명제와 조건, 진리집합, 조건의 부정
- 명제의 참, 거짓
- 명제의 역, 이, 대우, 삼단논법
- 필요조건, 충분조건, 필요충분조건
- 수학에서의 정의, 증명, 정리
- 절대부등식, 부등식의 증명에 사용되는 실수의 성질
- 절대부등식의 증명 - 산술, 기하, 조화평균
- 절대부등식의 증명 - 코시 슈바르cm 부등식
- 함수
- 경우의 수
순열과 조합 - 순열의 활용
순열에서 가장 중요한 건 뽑는 순서에 따라 결과가 달라진다는 거예요. 그래서 뽑는 순서가 중요한지 아니면 중요하지 않은지를 잘 구별해야 해요.
문제에 따라서 한 개의 순열로 답을 구할 수 있는 경우도 있고, 여러 개의 순열을 구하여 계산해야 답을 얻을 수 있는 경우도 있어요. 또, 순열이 아니라 그냥 경우의 수를 구해야 하는 경우도 있고요.
어떤 유형에서 어떤 순서를 구할 때 순열을 쓸 것인지, 또 여러 개의 순열을 구해야 하는지를 잘 비교해 보세요.
유형이 많아서 다 다루지는 않고 간단한 것 몇 가지만 해보죠.
순열의 활용
0, 1, 2, 3, 4의 숫자가 적힌 숫자카드 다섯 장 중에서 세 장을 꺼내어 세 자리 자연수를 만들려고 한다. 경우의 수를 구하여라.
세 자리 자연수니까 백의 자리, 십의 자리, 일의 자리를 구성할 세 장의 카드가 필요해요. 다섯 장중의 세 장을 뽑는 거니까 5P3 = 5 × 4 × 3 = 60일 것 같죠?
그런데 백의 자리가 0이 되면 세 자리 자연수가 아니죠? 따라서 백의 자리는 0이 올 수 없어요. 백의 자리에 올 수 있는 숫자 카드는 1, 2, 3, 4중 하나니까 경우의 수는 4죠?
십의 자리, 일의 자리에 올 카드 두 장을 뽑아야 하는데 백의 자리에서 한 장을 뽑았으니까 남은 카드는 0을 포함한 네 장이에요. 네 장의 카드에서 두 장을 순서대로 뽑아야 하니까 4P2 = 4 × 3 = 12가지예요.
백의 자리 숫자 카드를 뽑는 경우와 십의 자리, 일의 자리 숫자 카드를 뽑는 사건이 둘 다 동시에 일어나야 하니까 곱의 법칙으로 경우의 수를 구해야겠네요.
세 자리 자연수를 만드는 경우의 수
= (백의 자리 카드를 뽑는 경우의 수) × (십의 자리, 일의 자리 카드를 뽑는 경우의 수)
= 4 × 4P2= 4 × 12= 48
숫자 유형에서는 첫 번째 자리에 0이 올 수 없다는 걸 주의해야 해요.
SM엔터테인먼트 회사에서 회식하기로 했다. 바쁜 일정 때문에 모든 그룹이 참여하지는 못하고 소녀시대 9명, f(x) 5명, 샤이니 5명, EXO 12명이 참여하였다. 같은 그룹 멤버끼리 서로 이웃하여 앉을 때, 테이블에 앉은 방법의 수를 구하여라.
같은 그룹 멤버끼리 서로 이웃해서 앉아야 하니까 소녀시대는 소녀시대끼리 샤이니는 샤이니끼리 앉아야 해요.
예를 들어 (소녀시대), (샤이니), (f(x)), (EXO) 이런 식으로 앉을 수도 있고 (소녀시대), (EXO), (샤이니), (f(x)) 이런 식으로 앉을 수도 있죠? 즉 네 그룹이 서로 순서를 바꿔서 앉을 수 있어요. 그러니까 그룹이 앉는 방법의 수는 4P4죠.
그런데 소녀시대 그룹 안에서도 멤버 9명이 자리를 앉는 방법이 있어요. 9명 멤버 모두가 순서대로 앉는 거니까 9P9죠. f(x)도 샤이니도 EXO도 각 그룹 안에서 멤버들이 앉는 방법이 있고요. 5P5, 5P5, 12P12가 될 거예요.
그룹이 앉는 것, 각 그룹의 멤버들이 앉는 건 모두 동시에 일어나니까 곱의 법칙으로 경우의 수를 구해야 해요.
따라서 답은 4P4 × 9P9 × 5P5 × 5P5 × 12P12 = 4! × 9! × 5! × 5! × 12! 이에요.
숫자가 너무 크니까 계산은 하지 않을게요.
여기서 가장 중요한 건 이웃해야 하는 것들을 하나의 묶음으로 보는 거예요. 각 그룹의 멤버들끼리 이웃해서 앉는 거니까 각 그룹을 하나의 묶음으로 보는 거지요. 그 묶음들을 배치하는 경우의 수를 구해요. 그리고 각 묶음 안에서 자리 배치를 하는 경우의 수를 구하는 거죠. 묶음을 배치하는 것과 묶음 안에서 배치하는 건 동시에 일어나는 사건이니까 이 두 개를 곱해요.
이웃하는 경우의 수를 구하는 순서예요.
- 이웃하는 것을 하나의 그룹으로 묶어서 계산
- (묶음을 배치하는 순열) × (각 묶음 안에서 구성원을 배치하는 순열)
함께 보면 좋은 글
순열과 조합 - 순열이란
순열과 조합 - 순열2. 팩토리얼(factorial), 계승
순열과 조합 - 조합이란
순열과 조합 - 조합의 성질
순열과 조합 - 조합의 활용
순열과 조합 - 조합의 활용
조합에 대해서 공부했으니까 이번에는 조합의 활용에 대해서 공부해보죠.
순열은 뽑는 순서가 중요하고 조합은 뽑는 순서는 상관이 없어요. 활용 문제는 주관식으로 나오니까 문제를 읽고 뽑는 순서가 중요한지 중요하지 않은지를 잘 파악해야 해요. 뽑을 때 꼭 뽑아야 하는 게 있는지 뽑으면 안 되는 게 있는지도 영향을 주니까 그 부분도 주의해야 하고요.
그리고 뽑기 문제가 아닐 때도 조합을 이용해서 풀어야 하는 경우가 있어요. 이런 문제는 순열과 조합의 활용이라고 알아채기가 매우 어렵습니다. 따라서 유형을 잘 익혀두세요.
조합의 활용
한 반의 학생 수가 30명일 때 다음을 구하여라.
(1) 반장 1명, 부반장 1명을 뽑는 경우의 수를 구하여라.
(2) 주번 2명을 뽑는 경우의 수를 구하여라.
(1)번은 총 2명을 뽑는데, 한 명은 반장, 한 명은 부반장이에요. 반장과 부반장을 뽑을 때는 순서가 중요해요. 뽑히는 순서에 따라 역할이 달라지니까요. 그럼 순열로 풀어야 하죠?
30명 중에 두 명을 뽑는 거니까 30P2 = 30 × 29 = 870(가지)
(2)번은 30명 중에서 2명을 뽑는데, 둘 다 주번이라서 역할이 같아요. 뽑히는 순서가 중요하지 않죠. 조합으로 풀어야 해요.
30C2 = 30 × 29 ÷ 2 = 435(가지)
수정이는 라면을 끓여 먹으려고 한다. 라면, 수프, 물, 떡, 달걀, 치즈, 만두, 파, 김치의 9가지 재료 중 라면, 수프, 물을 포함하여 5가지를 선택해서 라면을 끓인다고 할 때, 라면을 끓일 수 있는 경우의 수를 구하여라.
여기서 선택할 때 순서를 중요하지 않죠? 그러니까 조합을 이용해서 경우의 수를 구해야 해요.
9가지 중의 5가지를 선택해서 라면을 끓일 수 있어요. 그러니까 9C5인 것 같죠?
하지만 라면, 수프, 물의 세 가지는 꼭 포함해야 해요. 그렇다면 수정이가 실제로 선택할 수 있는 건 라면, 수프, 물의 세 가지를 제외한 떡, 달걀, 치즈, 만두, 파, 김치의 6가지 중 2가지예요. 그러니까 전체 재료의 수와 선택할 수 있는 재료의 수 모두에서 3을 빼줘야 해요.
9C5 → 9 - 3C5 - 3 = 6C2
위 식의 -3에서 3은 라면, 수프, 물을 의미해요.
(가지)
부분집합의 개수 구하기에서 특정한 원소 k개를 반드시 포함하는 부분집합의 개수를 구했어요. 이때 특정한 원소 k개를 제외한 원소를 이용해서 부분집합을 구하고 그 특정한 원소를 부분집합에 넣어주는 방법을 이용했었죠? 즉, (특정한 원소 k개를 반드시 포함하는 부분집합의 개수 ) = (특정한 원소 k개를 포함하지 않는 부분집합의 개수 )라는 거죠.
여기서도 같아요. 어떤 항목을 반드시 포함되어야 할 때는 그 항목을 뺀 그 나머지를 이용해서 경우의 수를 구하는 거죠. (특정한 항목을 반드시 포함하는 경우의 수) = (특정한 항목을 제외한 경우의 수)예요.
수정이는 라면을 끓여 먹으려고 한다. 라면, 수프, 물, 떡, 달걀, 치즈, 만두, 파, 김치의 9가지 재료 중 라면, 수프, 물을 포함하여 5가지를 선택해서 라면을 끓인다고 할 때, 라면을 끓일 수 있는 경우의 수를 구하여라. (단, 달걀과 치즈 중 적어도 하나는 넣어야 한다.)
문제를 살짝 바꿨어요. 나머지는 다 똑같고 달걀과 치즈 중 적어도 하나는 넣어야 해요. 달걀과 치즈 둘 다를 넣어도 되고, 달걀만 넣거나 치즈만 넣어도 괜찮아요.
이런 문제도 부분집합의 개수 구하기에서 했어요. 특정한 원소 k개 중 적어도 한 개를 포함하는 부분집합의 개수를 구하는 거였죠. 이때는 (전체 부분집합의 개수) - (특정한 원소 k개를 포함하지 않는 부분집합의 개수)를 이용해서 구했어요.
치즈도 없고 달걀도 없는 조리 방법의 수는 처음부터 라면과 치즈가 선택 목록에 없었다고 생각하면 쉽게 구할 수 있어요. 떡, 만두, 파, 김치의 4가지 중에서 2가지를 선택하는 방법의 수와 같죠.
그리고 전체 라면 조리법 수에서 달걀과 치즈가 둘 다 없는 라면 조리법 수를 빼면 둘 중 적어도 하나를 포함하는 조리법 수를 구할 수 있어요.
전체 라면의 조리 방법 개수는 위에서 구한 것처럼 9 - 3C5 - 3 = 6C2 = 15
치즈도 없고 달걀도 없는 라면의 조리 방법 수 = 6 - 2C2 = 4C2 = 6
라면, 수프, 물은 반드시 포함하고 치즈와 달걀 중 적어도 하나는 포함하는 라며 조립법 수 = 15 - 6 = 9
전체 n가지 중 r가지를 선택할 때
p가지를 반드시 포함해야 하는 경우의 수 = n - pCr - p
p가지 중 적어도 하나를 포함해야 하는 경우의 수 = (전체 경우의 수) - (p가지를 포함하지 않는 경우의 수) = nCr - n - pCr
다음 그림에서 사각형의 총 개수를 구하여라.
보통 이런 형태의 문제는 어떻게 풀었나요?
사각형 1개짜리: (3 × 4) = 12
사각형 2개짜리: (2 × 4) + (3 × 3) = 17
사각형 3개짜리: (1 × 4) + (2 × 3) = 10
사각형 4개짜리: (2 × 3) + (1 × 3) = 9
사각형 6개짜리: (1 × 3) + (2 × 2) = 7
사각형 8개짜리: 2
사각형 9개짜리: 2
사각형 12개짜리: 1
12 + 17 + 10 + 9 + 7 + 2 + 2 + 1 = 60(개)
다른 방법으로 한 번 풀어보죠.
사각형에서 각 선분에 이름을 붙여봤어요. 가로줄은 a, b, c, d, e, 세로줄은 ①, ②, ③, ④
a, b와 ①, ②가 있으면 사각형을 한 개 만들 수 있어요. 또, a, b와 ①, ③이 있으면 사각형을 만들 수 있고요. 이런 식으로 가로줄 2개와 세로줄 2개가 있으면 사각형을 만들 수 있어요.
가로줄은 총 5개가 있는데 그중 2개를 선택할 수 있죠. 세로줄은 총 4개가 있는데 그중 2개를 선택하고요. 가로줄과 세로줄에서 모두 2개씩을 골라야 하니까 곱의 법칙을 이용해야겠네요.
5C2 × 4C2 = 10 × 6 = 60
조합을 이용하니까 더 쉽게 풀 수 있죠?
일직선 위에 있지 않은 서로 다른 n개의 점에서 두 점을 잇는 직선의 개수 = nC2
일직선 위에 있지 않은 서로 다른 n개의 점에서 세 점을 잇는 삼각형의 개수 = nC3
가로 m개의 선과 세로 n개의 선이 만나서 생기는 사각형의 개수 = mC2 × nC2
직선은 서로 다른 두 점을 연결하면 생겨요. 따라서 두 점의 개수를 구하는 방법과 직선의 개수는 같아요. 삼각형은 서로 다른 세 점을 연결하면 생기니까 세 점의 개수를 구하는 방법의 개수와 삼각형의 개수가 같고요. 마지막 사각형의 개수는 위 예제에서 했던 거예요.
함께 보면 좋은 글
순열과 조합 - 조합이란
순열과 조합 - 조합의 성질
순열과 조합 - 순열이란
순열과 조합 - 순열2. 팩토리얼(factorial), 계승
이차함수의 그래프와 직선의 위치관계
보통 도형에서의 위치관계는 수직, 평행 등을 묻는데 이차함수의 그래프와 직선의 위치관계는 그런 게 아니에요. 교점이 몇 개 생기느냐를 말하죠. 앞서 했던 이차함수의 그래프와 이차방정식의 실근의 내용과 비슷하니까 별로 어렵지는 않을 거예요. 거의 한 쌍둥이라고 할 수 있어요.
이차함수 그래프의 대략적인 모습과 직선을 그리면 조금 더 쉽게 이해할 수 있으니까 그림도 함께 외우세요.
이차함수의 그래프와 직선의 위치관계
이차함수의 그래프와 직선의 위치관계는 이차함수의 그래프와 이차방정식의 실근에서 했던 내용을 살짝만 바꾸면 돼요.
이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해
중학교 2학년 때 직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식에 대해서 잠깐 공부한 적이 있어요. x축은 식으로 나타내면 y = 0이라는 직선의 방정식으로 나타낼 수 있죠? x축도 직선이니까 이걸 확장하면 이차함수의 그래프와 직선의 위치관계를 구할 수 있는 거죠.
이차함수 y = ax2 + bx + c (a ≠ 0)와 x축이 몇 개의 교점을 가지느냐를 알아볼 때 어떻게 했나요? x축이 y = 0이니까 이걸 이차함수 식에 대입해서 이차방정식을 만들고, 판별식 D의 부호를 구했죠? D > 0이면 교점이 2개, D = 0이면 교점이 1개, D < 0이면 교점이 0개예요.
이차함수 y = ax2 + bx + c (a ≠ 0)와 직선 y = mx + n 사이의 관계를 구할 때도 똑같아요. 직선 y = mx + n를 이차함수 y = ax2 + bx + c에 대입해서 이차방정식을 만들고, 판별식의 부호를 구하면 교점의 개수를 알 수 있어요.
ax2 + bx + c = mx + n
ax2 + (b - m)x + c - n = 0
위와 같은 식을 얻을 수 있는데, 이 식은 x에 대한 이차방정식이죠. x에 대한 이차방정식의 해의 개수는 판별식을 이용해서 구할 수 있어요. 해의 개수와 교점의 개수가 같으니까 해의 개수를 구해보죠.
D > 0 ⇔ 서로 다른 두 실근 ⇔ 교점 2개 ⇔ 서로 다른 두 점에서 만난다.
D = 0 ⇔ 서로 같은 두 실근(중근) ⇔ 교점 1개 ⇔ 한 점에서 만난다. (접한다.)
D < 0 ⇔ 서로 다른 두 허근 ⇔ 교점 0개 ⇔ 만나지 않는다.
이차함수의 그래프와 직선 둘 다좌표평면 위에 있어서 실수 범위에서만 다루기니까 허근은 해로 인정하지 않아요. 그래서 D < 0이면 해가 0개고, 교점도 0개입니다.
위 내용을 표로 정리해 볼게요.
| 이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계 → ax2 + (b - m)x + c - n = 0의 판별식 D 이용 | |||
| 판별식 | D > 0 | D = 0 | D < 0 |
| 위치관계 | 서로 다른 두 점에서 만난다. | 한 점에서 만난다. (접한다.) | 만나지 않는다. |
| 그래프 | |||
| 교점의 개수 | 2개 | 1개 | 0개 |
표에서는 a > 0일 때의 그래프만 그렸는데, a < 0이면 그래프가 위로 볼록이니까 그림을 180° 뒤집으면 돼요.
이차함수 y = x2 + 3x - 3의 그래프와 접하고, 기울기가 1인 직선의 방정식을 구하여라.
기울기가 1이라고 했으니까 직선은 y = x + b가 되겠네요.
이차함수의 그래프와 직선의 위치관계에서는 판별식을 이용하는데, D > 0이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나고, D < 0이면 만나지 않아요.
이 직선이 y = x2 + 3x - 3의 그래프와 접한다고 했으니까 D를 이용해서 b를 구해보죠.
x2 + 3x - 3 = x + b
x2 + 2x - 3 - b = 0
D/4 = 12 - (-3 - b) = 0
1 + 3 + b = 0
b = -4
따라서 구하는 직선의 방정식은 y = x - 4가 되겠네요.
함께 보면 좋은 글
이차함수의 그래프와 이차방정식의 실근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
연립방정식 - 연립이차방정식의 풀이
이차함수의 그래프와 이차방정식의 실근
이차함수와 이차방정식은 참 많이 닮았어요. 그래서 이차함수의 그래프를 그리고 그 그래프를 통해서 이차방정식 실근의 개수를 알 수 있지요.
이 글에서는 이차함수의 그래프와 이차방정식 실근의 개수에는 어떤 관계가 있는지 알아볼 거예요. 이차함수 그래프를 간략하게 그릴 줄 알고 이차함수와 이차방정식의 간단한 관계만 알면 금방 이해할 수 있는 내용이에요.
이차함수의 그래프와 이차방정식의 실근
이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프에서 그래프가 x축과 만나는 점이 있다고 해보죠. x축을 방정식으로 나타내면 y = 0이니까 교점에서의 x좌표를 구하려면 이차함수 식에 y = 0을 대입해서 구해요.
ax2 + bx + c = 0이라는 식이 되고 여기서 구한 x가 이차함수 그래프와 x축의 교점의 x좌표예요. 그런데 이 식의 모양은 어디서 많이 본 모양이죠? 바로 이차방정식이에요. 즉, 이차방정식의 해가 교점의 x좌표예요.
이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해
교점의 x좌표와 해가 서로 같으니까 개수도 서로 같겠죠?
이차함수 y = ax2 + bx + c의 그래프와 x축과의 교점이 2개면 이차방정식 ax2 + bx + c = 0의 해도 두 개고, 교점이 하나면 해도 하나예요.
이차함수의 그래프와 x축과의 교점이 없으면 이차방정식의 해도 없어요. 좌표평면은 실수로만 이루어져 있으니까 정확히 말하면 실근이 없는 거죠. 수를 복소수까지 확장해보면 허근을 가져요.
이 얘기는 반대로도 할 수 있어요. 이차방정식 ax2 + bx + c = 0의 해가 서로 다른 두 실근이면 이차함수 y = ax2 + bx + c의 그래프와 x축이 서로 다른 두 점에서 만나고, 이차방정식의 해가 중근이면 이차함수의 그래프와 x축은 한 점에서 만나요.
이차방정식이 실근을 가지지 않으면(서로 다른 두 허근을 가지면) 이차함수의 그래프와 x축은 만나지 않아요.
이차방정식이 실근을 몇 개 가지는지는 이차방정식의 판별식을 통해서 알 수 있어요.
ax2 + bx + c = 0
D = b2 - 4ac
D > 0이면 서로 다른 두 실근 ⇔ 서로 다른 두 점에서 만난다.
D = 0이면 서로 같은 두 실근(중근) ⇔ 한 점에서 만난다. (접한다.)
D < 0이면 서로 다른 두 허근(실근 없음) ⇔ 만나지 않는다.
이 내용을 표로 정리해보죠. 그래프의 모양을 잘 보세요.
| D > 0 | D = 0 | D < 0 | |
|---|---|---|---|
| y = ax2 + bx + c의 그래프 | x축과 두 점에서 만난다. | x축과 한 점에서 만난다. (접한다.) | x축과 만나지 않는다. |
| a > 0일 때 | |||
| a < 0일 때 | |||
| ax2 + bx + c = 0 (a ≠ 0)의 해 | 서로 다른 두 실근 | 중근 | 서로 다른 두 허근 |
| 이차함수 ax2 + bx + c (a ≠ 0)와 x축의 교점의 x좌표 = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해 | |||
이차함수의 그래프에서 이차항의 계수인 a의 부호에 따라 그래프의 볼록한 방향이 달라지는 걸 볼 수 있어요. 판별식의 부호와 a의 부호에 따라 그래프를 그릴 수 있어야 하고, 해의 개수도 알아내야 해요.
이차함수 y = x2 + 2x + k + 2의 그래프가 x축과 서로 다른 두 점에서 만나도록 하는 실수 k의 범위를 구하여라.
이차방정식 x2 + 2x + k + 2 = 0에서 D > 0 이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나요. D < 0이면 만나지 않죠.
D = 22 - 4 × 1 × (k + 2) > 0
4 - 4k - 8 > 0
4k < -4
k < -1
k < -1이면 서로 다른 두 점에서 만나네요.
함께 보면 좋은 글
이차함수의 그래프와 직선의 위치관계
이차방정식의 판별식, 실근, 허근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
2014년 고1 수학 목차 - 수1, 수2
고등학교 교육과정이 자주 바뀌어 학년별 목차보다 단원별 목차가 더 효율적이라 판단되어 목록을 일부 수정합니다.
각 게시글 하단의 목차를 이용하지 말고, 이 게시글의 목차에서 필요한 단원만 골라서 공부하세요.
각 게시글 하단의 목차 페이지는 이용하지 말아주세요.
수학Ⅰ
- 다항식
- 방정식과 부등식
- 허수와 허수단위, 복소수
- 켤레복소수와 켤레복소수의 성질
- 복소수의 사칙연산
- i의 거듭제곱, 음수의 제곱근의 성질
- 방정식 ax + b = 0의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차방정식의 풀이
- 이차방정식의 판별식, 실근, 허근
- 이차방정식 근과 계수와의 관계
- 두 수를 근으로하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
- 이차방정식의 켤레근
- 이차방정식의 인수분해
- 이차방정식의 실근의 부호
- 이차함수의 그래프와 이차방정식의 실근
- 이차함수의 그래프와 직선의 위치관계
- 이차방정식의 실근의 위치
- 이차함수 총정리
- 이차함수의 최댓값과 최솟값
- 이차함수의 최대, 최소와 활용
- 고차방정식의 인수분해, 고차방정식의 풀이
- 고차방정식의 풀이 - 치환, 복이차식
- 상반방정식
- 삼차방정식 근과 계수와의 관계
- 삼차방정식의 허근 ω의 성질
- 연립방정식 - 미지수가 3개인 연립일차방정식
- 연립이차방정식의 풀이 1
- 연립이차방정식의 풀이 2
- 부정방정식
- 부등식의 성질, 부등식끼리의 사칙연산
- 부등식 ax > b의 풀이, 부정, 불능
- 절댓값 기호를 포함한 일차부등식의 풀이
- 절댓값 기호를 포함한 부등식의 풀이 2
- 이차부등식, 이차부등식의 해
- 판별식과 이차부등식의 해
- 이차함수의 그래프와 이차부등식의 해
- 해가 주어졌을 때 이차부등식 구하기
- 이차부등식이 항상 성립할 조건
- 연립이차부등식
- 도형의 방정식
- 두 점 사이의 거리
- 선분의 내분점과 외분점
- 좌표평면 위의 내분점과 외분점
- 내분점과 외분점의 관계
- 삼각형 무게중심의 좌표
- 직선의 방정식, 직선의 방정식 구하기
- 직선의 방정식 일반형과 표준형
- 절댓값 기호를 포함한 식의 그래프
- 두 직선의 위치관계 - 평행, 일치, 수직
- 두 직선의 위치관계와 일차방정식의 해의 개수
- 교점을 지나는 직선의 방정식
- 점과 직선 사이의 거리
- 원의 방정식
- 원의 방정식 일반형과 표준형
- 아폴로니오스의 원
- 축에 접하는 원의 방정식
- 두 원의 교점을 지나는 원의 방정식
- 원과 직선의 위치관계
- 원의 접선의 방정식 1 - 접점을 알 때
- 원의 접선의 방정식 2 - 기울기를 알 때
- 원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
- 점과 도형의 평행이동
- 점과 도형의 대칭이동 - x축, y축, 원점
- 점과 도형의 대칭이동 - 직선에 대한 대칭이동
- 부등식의 영역 - f(x) > 0, f(x) < 0
- 부등식의 영역 - f(x, y) > 0, f(x, y) < 0
- 연립부등식의 영역
- 부등식의 영역과 최대, 최소
수학Ⅱ
- 집합과 명제
- 집합의 뜻
- 집합에서 원소란π
- 집합의 표현방법 - 조건제시법, 원소나열법, 벤다이어그램
- 집합의 분류 - 원소개수에 따른 분류(무한집합, 유한집합, 공집합)
- 집합의 원소의 개수
- 집합의 포함관계 - 부분집합
- 진부분집합과 부분집합의 성질
- 부분집합 구하기, 부분집합의 개수 구하기
- 특정한 원소를 포함하는 부분집합의 개수 구하기
- 부분집합, 부분집합의 개수 구하기
- 교집합과 합집합
- 전체집합과 여집합, 차집합
- 집합의 연산법칙 - 교환법칙, 결합법칙, 분배법칙
- 집합의 연산법칙 - 드모르간의 법칙
- 유한집합의 원소의 개수
- 명제와 조건, 진리집합, 조건의 부정
- 명제의 참, 거짓
- 명제의 역, 이, 대우, 삼단논법
- 필요조건, 충분조건, 필요충분조건
- 수학에서의 정의, 증명, 정리
- 절대부등식, 부등식의 증명에 사용되는 실수의 성질
- 절대부등식의 증명 - 산술, 기하, 조화평균
- 절대부등식의 증명 - 코시 슈바르cm 부등식
- 함수
- 수열
- 지수함수와 로그함수
순열과 조합 - 조합의 성질
순열과 조합의 차이에 대해서 이해했나요? 순열과 조합은 둘 다 서로 다른 n개에서 r개를 고르는 경우의 수를 말해요. 순열은 r개를 택할 때 순서대로 택하는 거고, 조합은 순서와 관계없이 그냥 택하는 거죠.
이 글에서는 조합에서 고르는 개수가 특수한 경우 즉, r = n일 때와 r = 0일 때의 값을 구해볼 거예요. 그리고 조합을 나타내는 식 nCr을 다른 식으로 표현해볼 거고요.
약간의 증명과 유도가 필요하니까 잘 보세요.
순열과 조합 - 조합의 성질
순열과 조합 - 조합이란에서 이었어요. 모양을 한 번 바꿔볼까요?
세 개의 계승을 이용해서 nCr을 표현할 수 있어요.
r = n일 때는 어떻게 되는지 한 번 보죠.
팩토리얼(factorial), 계승에서 0! = 1 이었어요.
nCn = 1인 걸 알 수 있네요.
이번에는 r = 0일 때를 보죠.
nC0 = 1로 정의할 수 있어요.
서로 다른 n개에서 r개를 고르는 조합의 수는 (단, 0 ≤ r ≤ n)
nCn = nC0 = 1
그리고 아래 네 가지는 헷갈릴 수 있으니까 따로 정리하죠.
nPn = n!
nP0 = 1
nCn = 1
nC0 = 1
함께 보면 좋은 글
순열과 조합 - 조합이란
순열과 조합 - 순열이란
순열과 조합 - 순열2. 팩토리얼(factorial), 계승
합의 법칙, 곱의 법칙
순열과 조합 - 조합이란
순열에 이어 조합이에요. 조합과 순열은 너무 비슷해서 구분하기 어려워요. 정확히 말하면 문제를 푸는 식이 특별히 어려운 게 아닌데 서술형으로 된 문제를 읽고 순열로 풀어야 하는지 조합으로 풀어야 하는지 결정하기가 어렵죠.
교과서에 나와 있는 여러 문제를 잘 읽어보고 순열과 조합을 구별할 수 있도록 유형을 잘 익혀두세요.
이 글에서는 조합의 뜻과 표현법을 알아보고 순열과의 관계를 이용해서 조합을 구하는 방법도 알아보죠.
조합이란
보통 가수들의 음반은 트랙 번호라고 해서 1번부터 노래가 순서대로 번호가 매겨져 있어요.
그룹 f(x)가 새로운 음반을 발매하려고 한다고 치죠. a부터 j까지 총 10곡의 노래가 있는데 이 중 5곡을 앨범에 넣으려고 해요. 몇 가지 경우의 수가 나오는지 계산해보죠.
이 과정을 두 단계로 나눠서 생각해볼까요? 앨범에 넣을 노래 다섯 곡을 고르는 단계와 이 다섯 곡의 노래들을 앨범에 넣을 때 앨범에 실을 순서를 결정하는 단계요.
먼저 1단계로 앨범에 넣은 다섯 곡을 결정하는 단계예요. 10곡 중에서 5곡을 고르는 경우의 수는 몇 가지가 있을까요?
- 10곡 중에서 한 곡을 고르는 경우의 수: 10
- ①에서 고른 한 곡을 뺀 나머지 9곡 중에서 한 곡을 고르는 경우의 수: 9
- ①, ②에서 고른 2곡을 뺀 나머지 8곡 중에서 한 곡을 고르는 경우의 수: 8
- ①, ②, ③에서 고른 3곡을 뺀 나머지 7곡 중에서 한 곡을 고르는 경우의 수: 7
- ①, ②, ③, ④에서 고른 4곡을 뺀 나머지 6곡 중에서 한 곡을 고르는 경우의 수: 6
①, ②, ③, ④, ⑤의 과정은 동시에 연달아서 일어나는 사건이므로 곱의 법칙을 이용해야겠지요?
10 × 9 × 8 × 7 × 6
그런데, 여기서 주의해야 할 게 있어요. ①에서 a, ②에서 b, ③에서 c, ④에서 d, ⑤에서 e라는 곡을 골랐을 때와 ①에서 b, ②에서 c, ③에서 d, ④에서 e, ⑤에서 a를 골랐을 때 차이가 있나요? 곡이 뽑힌 순서는 다르지만 두 경우 모두 a, b, c, d, e라는 다섯 곡을 뽑은 결과는 같지요? 두 경우가 서로 같으니까 단순히 10 × 9 × 8 × 7 × 6으로 경우의 수를 구할 수 없어요.
1단계는 10곡 중에서 5곡을 고르기만 했어요. 어떤 곡을 먼저 고르고 나중에 고르고는 아무런 상관이 없지요. 이처럼 서로 다른 n개에서 순서와 상관없이 r개를 고르는 걸 조합이라고 해요. 순열과 달리 조합에서는 순서가 중요하지 않아요. 그냥 r개를 고르기만 하면 돼요.
n개에서 r개를 고르는 조합은 영어단어 Combination의 첫 글자 C를 따서 nCr이라고 나타내고 엔씨알이라고 읽어요.
이 경우에는 10C5가 되겠죠.
1단계로 5곡을 다 정했어요.
이제 2단계로 앨범에 넣을 순서 즉, 트랙 번호를 정해야 해요. 트랙 번호를 매기는 건 순서대로 해야 하죠? 1단계에서 뽑은 5곡에서 한 곡씩 모두 뽑아서 순서를 매기는 거니까 이때의 경우의 수는 순열이에요. 5P5 = 5!
이번에는 1, 2단계를 하나의 과정으로 생각해보죠. 결과적으로는 10개의 노래 중에서 앨범에 넣을 5곡을 순서대로 뽑아서 트랙 번호를 정하는 거예요. 순열이죠? 10P5에요.
1, 2단계는 동시에 연달아서 일어나는 사건이므로 곱의 법칙을 이용해서 경우의 수를 구할 수 있어요. 그런데 이 경우의 수는 1, 2단계를 한 과정으로 본 10P5로 구한 경우의 수와 같죠.
계산 결과가 중요한 건 아니니까 결과를 구하지는 않을게요. 모양을 잘 보세요. n = 10, r = 5인 순열과 조합의 관계를 알 수 있죠?
이걸 n과 r을 사용해서 일반적인 순열과 조합의 관계로 나타내보죠.
여기서 r은 개수에요. 그러니까 당연히 0보다 커야겠죠? 그리고 n개 중에서 뽑는 거니까 n보다 클 수는 없어요. n보다 작거나 같지요. 0 < r ≤ n
서로 다른 n개에서 r개를 순서와 상관없이 고르는 조합의 수는
(단, 0 < r ≤ n)
조합은 순열과 팩토리얼을 이용해서 표현할 수 있겠죠? 식으로 한 번, 말로 한 번 풀어서 써보면 다음 그림처럼 나타낼 수 있어요.
조합을 구하는 방법을 조금 더 쉽게 알 수 있겠죠?
함께 보면 좋은 글
순열과 조합 - 순열이란
순열과 조합 - 순열2. 팩토리얼(factorial), 계승
합의 법칙, 곱의 법칙
경우의 수 공식 - 대표 뽑기