부등식의 영역

고등학교 교육과정이 자주 바뀌어 학년별 목차보다 단원별 목차가 더 효율적이라 판단되어 목록을 일부 수정합니다.

각 게시글 하단의 목차를 이용하지 말고, 이 게시글의 목차에서 필요한 단원만 골라서 공부하세요.

각 게시글 하단의 목차 페이지는 이용하지 말아주세요.

수학Ⅰ

  1. 다항식
  2. 방정식과 부등식
  3. 도형의 방정식

수학Ⅱ

  1. 집합과 명제
  2. 함수
  3. 수열
  4. 지수함수와 로그함수
그리드형

우리가 그리는 좌표평면은 x, y의 값의 한계가 없어요. 끝도 없이 이어지는 영역이라서 최대, 최소를 찾는 게 불가능할 때가 많아요. 이차함수의 최대 최소에서는 최댓값과 최솟값 중 하나만 가지는 경우가 많았어요.

부등식의 영역과 최대, 최소는 일정한 한계가 있는 부등식의 영역 안에서 특정한 값과 식들의 최대, 최소를 구하는 거예요. 한계가 있는 영역이기 때문에 최댓값과 최솟값을 둘 다 구할 수 있어요.

부등식의 영역에서 최댓값과 최솟값을 구하는 방법에 대해서 알아보죠.

부등식의 영역과 최대, 최소

부등식의 영역에서 특정한 값들의 최대, 최소를 구하는 거예요.

x2 + y2 ≤ 4의 영역에서 (x, y)가 움직일 때, x + y의 최댓값과 최솟값을 구해보죠.

x + y = k라고 하면
x + y = k → y = -x + k
y = -x + k에서 k는 이 직선의 방정식의 y절편이므로 y절편의 최댓값과 최솟값을 구하면 돼요.

x2 + y2 ≤ 4의 부등식의 영역과 x + y = k의 그래프를 좌표평면 위에 그려보죠.

부등식의 영역과 최대, 최소

y = -x + k는 기울기는 -1로 일정하고 y절편만 바뀌는 직선이니까 m과 n 사이의 직선이에요. m일 때, y절편 즉 k가 최대가 되고, n일 때 k가 최소가 되죠.

k값의 의미는 이해했죠? 그럼 k를 어떻게 구할 거냐? 경계선 x2 + y2 = 4와 직선 y = -x + k가 만나는 점이 있죠? 접점이 있으니까 y = -x + k는 x2 + y2 = 4의 접선의 방정식이에요.

기울기를 알 때 원의 접선의 방정식에서 기울기가 m이고 원에 접하는 방정식은 y = mx ±r이었어요.

이 경우에는 기울기가 -1이고 반지름은 2네요.

y절편이 k이고, k는 x + y이니까 x + y의 최댓값은 2 root 2, x + y의 최솟값은 -2 root 2가 되겠네요.

부등식의 영역에서 최대, 최소를 구하는 방법

  1. 주어진 부등식의 영역을 좌표평면에 그린다.
  2. 최대, 최소를 구하는 식 f(x, y) = k로 놓고 이 그래프를 부등식의 영역 안에서 움직여본다.
  3. k가 최대, 최소일 때의 값을 구한다.

k를 구하는 방법은 여러 가지가 있어요. 하지만 대게 최대, 최소인 값은 접점이나 교점 등에서 생기므로 교점의 좌표를 이용하거나 접점의 성질을 이용하면 k를 구할 수 있어요. 위 경우에서는 접점일 때 최대, 최소가 되었죠?

x ≥ , y ≥ 0인 실수 x, y가 x + y ≤ 1을 만족할 때, x - y의 최댓값 최솟값을 구하여라.

x ≥ , y ≥ 0, x + y ≤ 1의 세 부등식으로 된 부등식의 영역을 좌표평면 위에 그려보죠. 그리고 x - y = k라고 놓으면, y = x - k가 되니까 이 그래프도 그려보고요.

부등식의 영역과 최대, 최소 - 예제

x - y = k의 그래프는 m과 n 사이의 직선으로 교점인 (1, 0)을 지날 때와 (0, 1)을 지날 때 최대, 최소를 가져요.

(1, 0)을 지날 때: x - y = 1 - 0 = 1
(0, 1)을 지날 때: x - y = 0 - 1 = -1

따라서 x - y의 최댓값은 1, 최솟값은 -1입니다.

함께 보면 좋은 글

부등식의 영역 - y > f(x), y < f(x)
부등식의 영역 2 - f(x, y) > 0, f(x, y) < 0
연립부등식의 영역, 연립부등식의 영역 구하기
원의 접선의 방정식 2 - 기울기를 알 때 접선의 방정식
직선의 방정식, 직선의 방정식 구하기
[중등수학/중3 수학] - 이차함수의 최댓값고 최솟값, 이차함수의 최대 최소

정리해볼까요

부등식의 영역에서 최대, 최소를 구하는 방법

  1. 주어진 부등식의 영역을 좌표평면에 그린다.
  2. 최대, 최소를 구하는 식 f(x, y) = k로 놓고 이 그래프를 부등식의 영역 안에서 움직여본다.
  3. k가 최대, 최소일 때의 값을 구한다.
<<  수학 1 목차  >>
 
그리드형

연립부등식의 영역은 부등식의 영역 두 개를 합쳐놓은 걸 말해요. 부등식을 두 개 이상 합쳐놓은 게 연립부등식이니까요.

연립부등식을 푸는 방법과 연립부등식의 영역을 구하는 방법은 근본적으로 같아요. 연립부등식에서는 수직선에 그렸다면 연립부등식의 영역에서는 좌표평면에 그림을 그린다는 차이가 있을 뿐이에요.

그래프를 그려야 해서 복잡해 보이지만 (연립부등식의 영역) = (부등식의 영역) + (연립부등식) 이라는 사실만 기억하고, 관련된 두 내용만 잘 기억하고 있다면 크게 어렵지는 않을 거예요.

연립부등식의 영역

연립부등식의 풀이에서는 각각의 부등식의 해를 구하고 이를 수직선에 그려서 공통인 부분의 해를 찾았어요. 연립부등식의 영역도 똑같아요. 각각의 부등식의 영역을 그린 다음 공통인 부분을 구하면 됩니다.

f(x, y) = 0은 원의 방정식, g(x, y) = 0은 직선의 방정식이라고 한다면, f(x, y) < 0, g(x, y) > 0의 그래프는 아래와 같아요.

연립부등식의 영역

f(x, y) < 0, g(x, y) > 0의 공통부분을 칠한 오른쪽 그림이라는 연립부등식의 영역이 됩니다.

식과 부등호의 방향은 바뀌겠지만, 그 방법은 모두 같아요.

연립부등식의 영역
각각의 부등식의 영역을 그린다.
두 부등식의 영역의 공통부분(교집합)을 구한다.

곱으로 표시된 연립부등식의 영역

이번에는 연립부등식이 조금 다른 형태인데요.

f(x, y)·g(x, y) < 0이라는 부등식이에요.

두 식을 곱해서 0보다 작다는 얘기는 부호가 서로 반대라는 얘기예요. 하나가 양수이면 다른 하나는 음수여야 하죠.

총 네 개의 부등식의 영역 그러니까 두 개의 연립부등식의 영역이 생겼어요. or이니까 연립부등식의 영역 두 개를 합한 거예요.

좀 복잡하지만, 집합으로 나타내보면 다음과 같아요.
[{f(x, y) > 0} {g(x, y) < 0}] [{f(x, y) > 0} {g(x, y) < 0}]

곱으로 표시된 연립부등식의 영역

이번에는 f(x, y)·g(x, y) > 0을 보죠.

어떤 두 식을 곱해서 0보다 크다는 말은 두 식이 모두 양수이거나 모두 음수여야 하죠?

역시 마찬가지로 네 개의 부등식의 영역, 두 개의 연립부등식이 생겼어요. or이니까 역시 각각의 연립부등식의 영역을 구한 다음 서로 합쳐야 하죠.

부등식의 영역을 네 개가 구해야 하고, 어떤 건 교집합, 어떤 건 합집합이어서 상당히 복잡하죠? 쉽게 구하는 방법이 있어요.

곱으로 표시된 연립부등식의 영역 구하는 순서

  1. f(x, y) = 0, g(x, y) = 0의 도형의 방정식을 그린다.
  2. 경계선 위에 있지 않은 임의의 점을 처음 부등식에 대입한다. 계산이 편리한 (0, 0), (1, 0) 등
  3. 조건에 맞는 영역을 칠한다.
    • 대입한 점이 부등식을 만족하면 그 점이 속한 영역 및 건너뛴(이웃하지 않은) 영역
    • 대입한 점이 부등식을 만족하지 않으면 그 점이 속하지 않은 영역 및 건너뛴(이웃하지 않은) 영역

다음 부등식의 영역을 좌표평면 위에 나타내어라.
(1)
(2) (x + y - 1)(x2 + y2 - 4) < 0

x2 + y2 < 4의 영역은 왼쪽 그림이고 x + y - 1< 0의 영역은 가운데, 이 둘의 공통부분이 오른쪽 그림이에요.

연립부등식의 영역 예제 1 풀이

(2) 번. (x + y - 1)(x2 + y2 - 4) < 0

두 개의 연립부등식의 영역으로 나눠서 구해도 되고, 점을 대입해서 영역을 구해도 돼요. x + y - 1 = 0과 x2 + y2 - 4 = 0의 그래프를 좌표평면에 그렸더니 네 개의 영역으로 나뉘어졌어요.

연립부등식의 영역 예제 1 풀이 1

(0, 0)은 경계선 위에 있지 않으므로 점을 대입해보면
(0 + 0 - 1)(02 + 02 - 4) < 0
4 < 0

부등식을 만족하지 않으므로 (0, 0)이 포함되어 있지 않은 ①번 영역과 ① 영역의 건너뛴(이웃하지 않은) ③ 영역이 구하는 영역이 되겠네요.

연립부등식의 영역 예제 1 풀이 2

함께 보면 좋은 글

부등식의 영역 - y > f(x), y < f(x)
부등식의 영역 2 - f(x, y) > 0, f(x, y) < 0
[중등수학/중2 수학] - 연립부등식, 연립부등식의 풀이
[중등수학/중2 수학] - 여러가지 연립부등식

정리해볼까요

연립부등식의 영역

  • 각각의 부등식을 영역을 구한 다음 그 공통부분
  • 곱으로 표시된 연립부등식의 영역
    도형의 방정식을 그린 다음 임의의 점을 부등식에 대입
    • 부등식을 만족하면 해당 영역 및 이웃하지 않은 영역
    • 부등식을 만족하지 않으면 점이 속하지 않은 영역 및 이웃하지 않는 영역
<<  수학 1 목차  >>
 
그리드형

앞서 부등식의 영역 - y > f(x), y < f(x)에서는 직선과 이차함수 등 y = f(x) 꼴의 식을 이용하는 부등식의 영역에 대해서 알아봤는데요. 이번에는 f(x, y) = 0 꼴의 식을 이용하는 부등식의 영역에 대해서 알아볼 거예요.

부등식의 모양만 다를 뿐 원리나 그리는 방법 등은 같아요. 특히, 마지막에 나오는 부등식의 영역 그리는 순서는 그래프의 모양과 상관없이 모든 부등식의 영역을 구할 때 사용하는 방법이니까 잘 기억해두세요.

다음에 공부할 연립부등식의 영역을 구하려면 이 글의 내용을 꼭 이해하고 넘어가야 해요.

원의 내부와 외부를 나타내는 부등식

원의 방정식 표준형은 (x - a)2 + (y - b)2 = r2이죠. 좌변은 임의의 점 (x, y)에서 (a, b)까지의 거리를 제곱한 거고 우변은 반지름의 제곱이죠. 즉 원의 방정식은 (a, b)로부터 r만큼의 거리에 있는 점들을 말하는 거예요.

그렇다면 (x - a)2 + (y - b)2 > r2은 무슨 뜻일까요? (a, b)로부터 r보다 더 먼 거리에 있는 점들을 얘기하죠?

부등식의 영역 - 점과 원점 사이의 거리

그림의 P(x1, y1)에서 원의 중심 C(a, b)까지의 거리는 반지름 r보다 더 커요. 좌표평면 위의 두 점 사이의 거리 공식을 이용해서 식으로 나타내보죠.

즉 원 밖의 임의의 점에서는 (x - a)2 + (y - b)2 > r2이 성립해요. 거꾸로 말해 (x - a)2 + (y - b)2 > r2이 성립하는 점들은 원의 바깥쪽에 있다는 거지요.

부등식의 영역 - f(x, y) > 0

같은 방법으로 (x - a)2 + (y - b)2 < r2이 성립하는 점들은 원의 안쪽에 있다는 걸 알 수 있어요.

부등식의 영역 - f(x, y) < 0

원의 내부와 외부를 나타내는 부등식
(x - a)2 + (y - b)2 > r2의 영역은 (x - a)2 + (y - b)2 = r2의 바깥쪽
(x - a)2 + (y - b)2 < r2의 영역은 (x - a)2 + (y - b)2 = r2의 안쪽

부등식 f(x, y) > 0, f(x, y) < 0의 영역

도형의 방정식을 f(x, y) = 0으로 나타내잖아요? 그래서 이를 이용한 부등식은 f(x, y) > 0 또는 f(x, y) < 0으로 표시합니다.

이 부등식의 영역을 나타내는 순서는 다음과 같아요.

  1. 좌표평면에 f(x, y) = 0의 그래프를 그린다.
    • 등호가 포함되어 있으면 실선
    • 등호가 포함되어있지 않으면 점선
  2. f(x, y) = 0 위에 있지 않은 임의의 점의 좌표를 대입한다.
  3. 조건에 맞는 영역을 칠한다.
    • 부등식을 만족하면 그 점이 속한 영역
    • 부등식을 만족하지 않으면 그 점이 속하지 않은 영역

2단계에서 임의의 점은 (0, 0), (1, 0)처럼 계산을 쉽게 할 수 있는 점들이 좋아요.

다음 부등식의 영역을 좌표평면 위에 나타내어라.
(1) x2 + y2 > 9
(2) (x - 2)2 + (y - 1)2 < 16

일단 f(x, y) = 0의 그래프를 그리고 임의의 점을 대입한 다음 부등식을 만족하면 점이 있는 영역, 부등식을 만족하지 않으면 점이 속하지 않은 영역을 칠하면 돼요.

(1)에 (0, 0)을 대입해보면 0 + 0 > 9로 부등식을 만족하지 않아요. 따라서 (0, 0)이 속하지 않은 영역을 칠해야 해요. 원의 방정식인데, 좌변이 우변인 반지름의 제곱보다 크기 때문에 원의 바깥쪽을 바로 칠해도 되고요.

부등식의 영역 예제 풀이. x<sub>2</sub> + y<sub>2</sub> > 9

(2)에 (0, 0)을 대입하면 (-2)2 + (-1)2 < 16으로 부등식을 만족하죠. 따라서 (0, 0)이 속한 영역을 칠하면 되겠네요. 원의 방정식인데, 좌변이 우변인 반지름의 제곱보다 작기 때문에 원의 안쪽을 바로 칠해도 되고요.

부등식의 영역 예제 풀이. (x - 2)<sup>2</sup> + (y - 1)<sup>2</sup> < 16

함께 보면 좋은 글

부등식의 영역 - y > f(x), y < f(x)
원의 방정식, 원의 방정식 표준형
두 점 사이의 거리, 좌표평면위의 두 점 사이의 거리

정리해볼까요

부등식의 영역 - f(x, y) > 0, f(x, y) < 0

  1. 좌표평면에 f(x, y) = 0의 그래프를 그린다.
    • 등호가 포함되어 있으면 실선
    • 등호가 포함되어있지 않으면 점선
  2. f(x, y) = 0 위에 있지 않은 임의의 점의 좌표를 대입한다.
  3. 조건에 맞는 영역을 칠한다.
    • 부등식을 만족하면 그 점이 속한 영역
    • 부등식을 만족하지 않으면 그 점이 속하지 않은 영역
<<  수학 1 목차  >>
 
그리드형

중학교 때, 일차부등식의 풀이에서는 부등식의 해를 수직선 위에 나타냈었잖아요. 부등식의 영역은 부등식을 만족하는 점을 수직선이 아니라 좌표평면에 나타내는 거예요.

설명은 되게 복잡한 것 같지만 식을 그냥 들여다보면 금방 알 수 있을 거예요.

부등식은 등식에서 등호만 부등호로 바뀐 거잖아요. 그래서 부등식의 영역을 그릴 때 등식을 이용해서 그려요. 여기서 이용하는 등식은 이차함수, 직선의 방정식과 원의 방정식 등이에요. 따라서 이들 도형의 방정식을 좌표평면에 나타낼 줄 알아야 해요.

부등식의 영역

x에 대한 일차부등식을 만족하는 x를 수직선에 나타냈던 것처럼 x, y에 대한 부등식을 만족하는 점 (x, y)를 좌표평면에 나타내는데, 이 점 전체의 집합을 부등식의 영역이라고 합니다.

부등식 y > x, y < x의 영역

일차부등식의 영역 1

y = x 그래프와 y축에 평행한 직선, 세 점 P(x, y), Q(x1, y1), R(x2, y2)이 있어요.

점 P(x, y)는 y = x 그래프 위의 점이니까 x좌표와 y좌표가 같아요.
y = x …… ①

점 Q(x1, y1)를 한 번 보죠. y축에 평행한 직선 위에 있으므로 점 P의 x좌표와 점 Q의 x좌표는 같아요.
x = x1 …… ②

점 Q의 y좌표인 y1은 x좌표인 x1보다 크죠?
y1 > x1 …… ③

①, ②, ③에 의해서 y1 > x1 = x = y이므로 y1 > y에요.

y축에 평행한 직선에서 y1 > y가 되는 점 Q는 엄청나게 많겠죠? 점 P보다 위에 있는 점들은 모두 이 조건을 만족하니까요.

y축에 평행한 직선을 왼쪽, 오른쪽으로 움직이면 엄청나게 많은 점 Q를 찾을 수 있고, 이런 점들을 모두 모으면 하나의 영역으로 표시되는데 이게 바로 위 그래프에서 파란색으로 표시된 부분이에요.

이번에는 점 R(x2, y2)를 보죠. y축에 평행한 직선 위에 있으므로 점 R의 x좌표 x2는 점 P의 x좌표와 같아요.
x2 = x …… ④

점 R의 y좌표 y2는 x좌표 x2보다 작고요.
y2 < x2 …… ⑤

①, ④, ⑤에 의해서 y2 < x2 = x = y이므로 y2 < y가 돼요.

마찬가지로 y축에 평행한 직선을 왼쪽, 오른쪽으로 옮기면 엄청나게 많은 점 R을 찾을 수 있고 이 점들을 모두 모으면 하나의 영역으로 표시할 수 있어요.

y > x가 나타내는 영역은 y = x 그래프의 위쪽이고,
y < x가 나타내는 영역은 y = x 그래프의 아래쪽이에요.

부등식 y > f(x), y < f(x)의 영역

일차부등식의 영역 2

y = ax + b의 그래프에요.

같은 방법을 이용하면 y > ax + b를 만족하는 점들의 영역과 y < ax + b를 만족하는 점들의 영역을 찾을 수 있어요.

그래프에서 y = ax + b를 실선이 아닌 점선으로 표시했는데, 이건 y > ax + b, y < ax + b에 등호가 들어있지 않기 때문이에요. 일차부등식의 풀이에서 수직선 위에 부등식을 그릴 때 점을 까맣게 칠하면 ≤, ≥를 나타내고, 하얗게 그리면 <, >를 나타냈던 것과 같아요.

이차부등식의 영역

이차함수 그래프 y = ax2 + bx + c와 부등식 y > ax2 + bx + c, y < ax2 + bx + c의 영역을 나타낸 것입니다.

y > f(x)가 나타내는 영역: y = f(x) 그래프의 윗부분
y < f(x)가 나타내는 영역: y = f(x) 그래프의 아랫부분
부등호에 등호가 없으면 y = f(x)는 점선으로 표시

부등식의 영역 그리는 순서

  1. 기준이 되는 도형의 방정식 y = f(x)의 그래프를 그린다.
    이때, 주어진 식의 부등호에 등호가 없으면 점선, 등호가 있으면 실선
  2. 해당 영역을 색으로 칠한다.
    • y > f(x) 또는 y ≥ f(x)이면 그래프보다 위쪽 영역
    • y < f(x) 또는 y ≤ f(x)이면 그래프보다 아래쪽 영역

함께 보면 좋은 글

[중등수학/중2 수학] - 일차부등식의 풀이
[중등수학/중2 수학] - 연립부등식, 연립부등식의 풀이
부등식 ax > b의 풀이, 부정, 불능
절댓값 기호를 포함한 일차부등식의 풀이
이차부등식, 이차부등식의 해
이차부등식의 풀이, 판별식과 이차부등식의 해
절대부등식, 부등식의 증명에 이용되는 실수의 성질

정리해볼까요

부등식의 영역

  • 좌표평면에서 x, y에 대한 부등식을 만족하는 점 (x, y)를 좌표로 하는 점 전체의 집합
  • y > f(x) → y = f(x)의 윗부분
  • y < f(x) → y = f(x)의 아랫부분
  • 부등식에 등호가 없으면 y = f(x)의 그래프를 점선으로
<<  수학 1 목차  >>
 
그리드형

+ 최근글