원의 방정식

앞서 부등식의 영역 - y > f(x), y < f(x)에서는 직선과 이차함수 등 y = f(x) 꼴의 식을 이용하는 부등식의 영역에 대해서 알아봤는데요. 이번에는 f(x, y) = 0 꼴의 식을 이용하는 부등식의 영역에 대해서 알아볼 거예요.

부등식의 모양만 다를 뿐 원리나 그리는 방법 등은 같아요. 특히, 마지막에 나오는 부등식의 영역 그리는 순서는 그래프의 모양과 상관없이 모든 부등식의 영역을 구할 때 사용하는 방법이니까 잘 기억해두세요.

다음에 공부할 연립부등식의 영역을 구하려면 이 글의 내용을 꼭 이해하고 넘어가야 해요.

원의 내부와 외부를 나타내는 부등식

원의 방정식 표준형은 (x - a)2 + (y - b)2 = r2이죠. 좌변은 임의의 점 (x, y)에서 (a, b)까지의 거리를 제곱한 거고 우변은 반지름의 제곱이죠. 즉 원의 방정식은 (a, b)로부터 r만큼의 거리에 있는 점들을 말하는 거예요.

그렇다면 (x - a)2 + (y - b)2 > r2은 무슨 뜻일까요? (a, b)로부터 r보다 더 먼 거리에 있는 점들을 얘기하죠?

부등식의 영역 - 점과 원점 사이의 거리

그림의 P(x1, y1)에서 원의 중심 C(a, b)까지의 거리는 반지름 r보다 더 커요. 좌표평면 위의 두 점 사이의 거리 공식을 이용해서 식으로 나타내보죠.

즉 원 밖의 임의의 점에서는 (x - a)2 + (y - b)2 > r2이 성립해요. 거꾸로 말해 (x - a)2 + (y - b)2 > r2이 성립하는 점들은 원의 바깥쪽에 있다는 거지요.

부등식의 영역 - f(x, y) > 0

같은 방법으로 (x - a)2 + (y - b)2 < r2이 성립하는 점들은 원의 안쪽에 있다는 걸 알 수 있어요.

부등식의 영역 - f(x, y) < 0

원의 내부와 외부를 나타내는 부등식
(x - a)2 + (y - b)2 > r2의 영역은 (x - a)2 + (y - b)2 = r2의 바깥쪽
(x - a)2 + (y - b)2 < r2의 영역은 (x - a)2 + (y - b)2 = r2의 안쪽

부등식 f(x, y) > 0, f(x, y) < 0의 영역

도형의 방정식을 f(x, y) = 0으로 나타내잖아요? 그래서 이를 이용한 부등식은 f(x, y) > 0 또는 f(x, y) < 0으로 표시합니다.

이 부등식의 영역을 나타내는 순서는 다음과 같아요.

  1. 좌표평면에 f(x, y) = 0의 그래프를 그린다.
    • 등호가 포함되어 있으면 실선
    • 등호가 포함되어있지 않으면 점선
  2. f(x, y) = 0 위에 있지 않은 임의의 점의 좌표를 대입한다.
  3. 조건에 맞는 영역을 칠한다.
    • 부등식을 만족하면 그 점이 속한 영역
    • 부등식을 만족하지 않으면 그 점이 속하지 않은 영역

2단계에서 임의의 점은 (0, 0), (1, 0)처럼 계산을 쉽게 할 수 있는 점들이 좋아요.

다음 부등식의 영역을 좌표평면 위에 나타내어라.
(1) x2 + y2 > 9
(2) (x - 2)2 + (y - 1)2 < 16

일단 f(x, y) = 0의 그래프를 그리고 임의의 점을 대입한 다음 부등식을 만족하면 점이 있는 영역, 부등식을 만족하지 않으면 점이 속하지 않은 영역을 칠하면 돼요.

(1)에 (0, 0)을 대입해보면 0 + 0 > 9로 부등식을 만족하지 않아요. 따라서 (0, 0)이 속하지 않은 영역을 칠해야 해요. 원의 방정식인데, 좌변이 우변인 반지름의 제곱보다 크기 때문에 원의 바깥쪽을 바로 칠해도 되고요.

부등식의 영역 예제 풀이. x<sub>2</sub> + y<sub>2</sub> > 9

(2)에 (0, 0)을 대입하면 (-2)2 + (-1)2 < 16으로 부등식을 만족하죠. 따라서 (0, 0)이 속한 영역을 칠하면 되겠네요. 원의 방정식인데, 좌변이 우변인 반지름의 제곱보다 작기 때문에 원의 안쪽을 바로 칠해도 되고요.

부등식의 영역 예제 풀이. (x - 2)<sup>2</sup> + (y - 1)<sup>2</sup> < 16

함께 보면 좋은 글

부등식의 영역 - y > f(x), y < f(x)
원의 방정식, 원의 방정식 표준형
두 점 사이의 거리, 좌표평면위의 두 점 사이의 거리

정리해볼까요

부등식의 영역 - f(x, y) > 0, f(x, y) < 0

  1. 좌표평면에 f(x, y) = 0의 그래프를 그린다.
    • 등호가 포함되어 있으면 실선
    • 등호가 포함되어있지 않으면 점선
  2. f(x, y) = 0 위에 있지 않은 임의의 점의 좌표를 대입한다.
  3. 조건에 맞는 영역을 칠한다.
    • 부등식을 만족하면 그 점이 속한 영역
    • 부등식을 만족하지 않으면 그 점이 속하지 않은 영역
<<  수학 1 목차  >>
 
그리드형

원의 접선의 방정식 세 번째에요. 이번에는 원 밖의 한 점에서 원에 그은 접선의 방정식이에요. 원 안에서는 원에 접선을 그을 수는 없으니까 당연히 원 밖의 한 점이어야겠죠?

여기서는 공식이 나오지 않아요. 게다가 접선의 방정식을 구하는 방법도 기울기를 알 때 접선의 방정식에서 했던 방법을 그대로 사용하니까 이해하기 쉬울 거예요. 대신 계산이 조금 복잡한데 문제에서는 계산하기 쉽게 식을 간단하게 주니까 많이 어렵지는 않을 거예요.

앞에서 충분히 했던 내용이니까 나머지는 그대도 하면 되고, 핵심적인 내용 딱 한 가지만 기억하세요.

원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식

원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식

원 밖의 한 점 P(x1, y1)에서 원 (x - a)2 + (y - b)2 = r2에 그은 접선의 방정식을 구하는 건데 다른 말로는 점 P(x1, y1)을 지나고 원 (x - a)2 + (y - b)2 = r2에 접하는 직선의 방정식이라고도 표현해요. 직선이 2개가 생기죠?

이 직선의 기울기를 아직 모르는데 m이라고 가정해 볼게요. 이게 이 글의 핵심이에요. 기울기를 m으로 놓는 거요. 그럼 우리가 구하려고 하는 접선의 방정식은 기울기가 m이고 점 P(x1, y1)을 지나는 직선이에요. 직선의 방정식 구하기에서 해봤죠?

y - y1 = m(x - x1)

이 직선에서 m을 구하면 식이 완성돼요. m을 구하는 방법은 두 가지에요. 원의 접선의 방정식 2 - 기울기를 알 때 접선의 방정식에서 했던 방법 두 가지와 같아요. 판별식 D를 이용하는 방법과 (원의 중심과 직선 사이의 거리) = (반지름)을 이용하는 방법이요.

위의 직선을 y에 관해서 정리하면 표준형으로 바꿀 수 있어요. y = m(x - x1) + y1

이렇게 y에 관해서 정리한 식을 원의 방정식 (x - a)2 + (y - b)2 = r2에 대입하면 x에 관한 이차방정식이 되고, 여기서 판별식 D = 0일 때, m을 구하면 돼요.

위의 직선을 일반형으로 바꿔보세요. mx - y - mx1 + y1 = 0

원의 중심 (a, b)에서 접선 mx - y - mx1 + y1 = 0까지의 거리가 반지름 r과 같다는 것을 이용해서 m을 구할 수도 있어요.

원 밖의 한 점(x1, y1)에서 원 (x - a)2 + (y - b)2 = r2에 그은 접선의 방정식
기울기를 m이라고 가정하고 y - y1 = m(x - x1)이라는 식을 세운다.
(1) y - y1 = m(x - x1)을 원의 방정식에 대입하여 판별식 D = 0 이용하여 m을 구하거나
(2) 원의 중심(a, b)에서 직선까지의 거리 = 반지름을 이용하여 m을 구한다.

(0, 4)를 지나고 x2 + y2 = 9에 접하는 직선의 방정식을 구하여라.

한 점을 지나고 원에 접하는 직선의 방정식이 바로 한 점에서 그은 접선의 방정식이에요. 같은 말이니까 헷갈리지 마세요.

직선의 방정식의 기울기를 m이라고 가정하면 이 직선이 (0, 4)를 지나니까 식을 세울 수 있어요.
y - 4 = m(x - 0)
y = mx + 4

이 식을 원의 방정식에 대입해보죠.
x2 + (mx + 4)2 = 9
x2 + m2x2 + 8mx + 16 - 9 = 0
(m2 + 1)x2 + 8mx + 7 = 0

D/4 = (4m)2 - (m2 + 1) × 7 = 0
16m2 - 7m2 - 7 = 0
9m2 = 7
m2 =
m = ±

답은 y = ±x + 4

이번에는 판별식이 아니라 원의 중심에서 접선까지의 거리를 이용해서 구해볼까요?

y = mx + 4
mx - y + 4 = 0

원의 중심은 (0, 0)이고 반지름은 3, 접선의 방정식은 mx - y + 4 = 0이에요.

y = ±x + 4로 답이 같죠?

함께 보면 좋은 글

원의 접선의 방정식, 접점을 알 때 접선의 방정식
원의 접선의 방정식 2 - 기울기를 알 때 접선의 방정식
원과 직선의 위치관계
점과 직선사이의 거리 공식, 증명, 유도
직선의 방정식, 직선의 방정식 구하기
직선의 방정식의 일반형, 직선의 방정식의 표준형

정리해볼까요

원 밖의 한 점 (x1, y1)에서 원 (x - a)2 + (y - b)2 = r2에 그은 접선의 방정식

  1. 기울기를 m이라고 가정하고 y - y1 = m(x - x1)이라는 식을 세운다.
  2. m을 구한다.
    • y - y1 = m(x - x1)을 원의 방정식에 대입하여 판별식 D = 0 이용
    • 원의 중심(a, b)에서 직선까지의 거리 = 반지름을 이용
  3. ①의 식에 ②에서 구한 m을 대입하여 식 완성
<<  수학 1 목차  >>
 
그리드형

원의 접선의 방정식 두 번째입니다. 기울기를 알 때에요. 기울기를 알고 있으니까 이미 직선의 방정식의 절반을 알고 있는 거예요. y = mx + n꼴에서 기울기 m을 알고 있으니 y절편 n만 구하면 되겠네요.

원과 직선이 접한다는 건 한 점에서 만난다는 것이고 이는 원과 직선의 위치관계에 했던 내용이에요. 한 점에서 만나는 조건들이 있었는데 이 조건을 이용해서 원의 접선의 방정식을 구할 거예요.

원의 접선의 방정식을 구하는 공식이 나오는데, 외우기 어렵다면 원과 직선의 위치관계를 구하는 과정을 이용해서 문제를 풀어도 좋아요.

원의 접선의 방정식 - 기울기를 알 때

원의 접선의 방정식 - 기울기를 알 때

(x - a)2 + (y - b)2 = r2에 접하고 기울기가 m인 접선을 구해보죠.

원과 직선의 위치관계에서 원과 직선이 한 점에서 만날 때 판별식 D = 0이거나 (원의 중심에서 접선까지의 거리) = (반지름)인 관계가 있다고 했어요. 이를 이용해서 접선의 방정식을 구해요.

위 그림에 보면 접선의 방정식이 2개가 그려져 있어요. 기울기는 같고 y절편만 다른 두 개의 접선의 방정식이 생기기 때문이에요. 이 두 개를 모두 구해야 합니다.

판별식 D를 이용

먼저 x2 + y2 = r2에 접하는 접선의 방정식을 구해보죠. 접선의 방정식을 y = mx + k라고 하고 이 방정식을 원의 방정식에 대입해서 정리해서 D를 구해볼까요?

x2 + y2 = r2
x2 + (mx + k)2 = r2
x2 + m2x2 + 2mkx + k2 = r2
(m2 + 1)x2 + 2mkx + k2 - r2 = 0

D/4 = m2k2 - (m2 + 1)(k2 - r2) = 0
m2k2 - m2k2 + m2r2 - k2 + r2 = 0
m2r2 - k2 + r2 = 0
k2 = m2r2 + r2
k2 = r2(m2 + 1)
k = ±r

x2 + y2 = r2에 접하는 접선의 방정식은 y = mx ±r이에요.

이차함수 그래프, y = (x - p)2 + q는 y = x2의 그래프를 x축으로 p만큼 이동해서 x 대신 x - p를, y축으로 q만큼 이동해서 y 대신 y - q를 넣어 준거라고 했어요. 꼭짓점이 (0, 0)에서 (p, q)로 이동했잖아요. 원의 방정식 (x - a)2 + (y - b)2 = r2은 x2 + y2 = r2을 x축으로 a만큼, y축으로 b만큼 이동한 원의 방정식이에요. 원의 중심이 (0, 0)에서 (a, b)로 이동했어요. 그래서 접선의 방정식도 x 대신 x - a, y대신 y - b를 넣어주면 돼요.

(x - a)2 + (y - b)2 = r2의 제곱에 접하고 기울기가 m인 접선의 방정식은 y = mx ± r에 x 대신 x - a, y 대신 y - b를 넣어준 y - b = m(x - a) ± r이 됩니다.

원의 중심과 접선까지의 거리 이용

x2 + y2 = r2의 중심에서 y = mx + k까지의 거리는 반지름 r과 같아요.

원의 중심 (0, 0)
y = mx + k → mx - y + k = 0

점과 직선 사이의 거리 공식에 대입해보죠.

따라서 y = mx ± r이죠.

위와 같은 이유로 x축으로 a만큼 이동하며 x 대신 x - a를, y축으로 b만큼 이동하면 y 대신 y - b를 대입해요.

x2 + y2 = r2의 접선의 방정식은 y = mx ± r
(x - a)2 + (y - b)2 = r2의 접선의 방정식 y - b = m(x - a) ± r

기울기가 m인 원의 접선의 방정식
판별식 D를 이용: 접선의 방정식 표준형을 원의 방정식에 대입하고 D = 0이 되는 값을 구한다.
원의 중심에서 접선의 방정식까지의 거리 이용: (원의 중심에서 접선의 방정식까지의 거리) = (반지름 r) 이용
x2 + y2 = r2에 접하고 기울기가 m인 접선의 방정식: y = mx ± r
(x - a)2 + (y - b)2 = r2에 접하고 기울기가 m인 접선의 방정식: y - b = m(x - a) ± r

공식에서 (y - b)와 (x - a)는 원의 방정식에 있는 걸 그대로 가져다 쓰면 되니까 더 쉽죠?

다음을 구하여라.
(1) x2 + y2 = 16에 접하고 y = x - 1에 평행한 접선의 방정식
(2) (x - 1)2 + (y + 2)2 = 25에 접하고 기울기가 3인 접선의 방정식

(1) y = x - 1에 평행한 그래프니까 두 직선의 위치관계에 따라 기울기가 1이네요. y = x + k라고 해보죠.

x2 + (x + k)2 = 16
x2 + x2 + 2kx + k2 - 16 = 0
2x2 + 2kx + k2 - 16 = 0
D/4 = k2 - 2(k2 - 16) = 0
k2 - 2k2 + 32 = 0
k2 = 32
k = ±
k = ±4

따라서 접선의 방정식은 y = x ± 4

(2)번은 공식에 대입해서 구해볼까요?

y - b = m(x - a) ± r
y + 2 = 3(x - 1) ± 5
y = 3x - 5 ± 5

함께 보면 좋은 글

원의 접선의 방정식, 접점을 알 때 접선의 방정식
원과 직선의 위치관계
점과 직선사이의 거리 공식, 증명, 유도
두 직선의 위치관계 - 평행, 일치, 수직
두 원의 교점을 지나는 원의 방정식
축에 접하는 원의 방정식
세 점을 지나는 원의 방정식, 원의 방정식 일반형
원의 방정식, 원의 방정식 표준형

정리해볼까요

원의 접선의 방정식 - 기울기를 알 때

  • 판별식 D를 이용
  • 원의 중심에서 접선까지의 거리 = 반지름의 길이
  • (x - a)2 + (y - b)2 = r2에 접하고 기울기가 m인 접선의 방정식: y - b = m(x - a) ± r
<<  수학 1 목차  >>
 
그리드형

원 위의 한 점을 지나는 직선의 방정식을 구할 거예요. 원과 직선이 만나는 한 점을 접점이라고 하고, 접점을 지나는 직선의 방정식이니까 원의 접선의 방정식이라고 해요.

접선의 방정식도 직선의 방정식의 한 종류니까 직선의 방정식 구하기를 이용하여 구합니다. 또 접선의 방정식은 원 위의 한 점을 지나니까 이를 이용하기도 하고요.

접선의 방정식을 구하는 경우는 여러 가지가 있지만, 이 글에서는 접점의 좌표를 알 때 접선의 방정식 구하는 방법을 알아볼 거예요.

원의 접선의 방정식, 접점을 알 때 접선의 방정식

원의 방정식 (x - a)2 + (y - b)2 = r2위의 한 점에서 접하는 접선의 방정식 l을 구해보죠. 원의 중심을 C(a, b), 접점의 좌표를 P(x1, y1)라고 할게요.

원의 접선의 방정식 1 - 접점을 알 때

원의 접선은 반지름에 수직이에요. 선분 CP가 반지름이므로 구하고자 하는 접선의 방정식 l과 수직이죠. 두 직선의 위치관계에서 두 직선이 수직이면 (기울기의 곱) = -1이라고 했죠? 직선 l의 기울기를 m이라고 해보죠.

직선 l은 기울기가 m이고, P(x1, y1)을 지나는 직선이니까 직선의 방정식 구하는 공식에 넣어보면
 ……… ①

일반적으로 기울기는 인데, 원의 접선의 방정식 l은 기울기는 거꾸로예요. 그리고 앞에 (-)가 붙고요.

①의 공식으로 접선의 방정식을 구할 수도 있지만 다른 공식이 또 있어요.

접점 P(x1, y1)는 원의 방정식 (x - a)2 + (y - b)2 = r2위의 접이기도 해요. (x1, y1)을 대입해보죠.
(x1 - a)2 + (y1 - b)2 = r……… ②

①, ②식을 각각 전개해서 더한 다음에 인수분해하면 아래 공식을 유도할 수 있어요. 유도 과정은 길어서 생략할게요.

(x1 - a)(x - a) + (y1 - b)(y - b) = r2

원래 원의 방정식은 (x - a)(x - a) + (y - b)(y - b) = r2인데, (x1 - a)(x - a) + (y1 - b)(y - b) = r2으로 바뀌었죠? x 하나가 x1으로, y 하나가 y1으로 바뀐 형태예요……

원의 접선의 방정식
(x - a)2 + (y - b)2 = r2위의 접점 P(x1, y1)을 지나는 접선의 방정식

(x1 - a)(x - a) + (y1 - b)(y - b) = r2

두 가지다 같은 결과가 나옵니다. 보통은 원의 방정식의 모양과 비슷해서 외우기 쉬운 두 번째를 많이 사용하는데, 본인이 외우기 쉬운 공식을 외우세요.

다음을 구하여라.
(1) (x - 2)2 + (y + 1)2 = 5 위의 점 (3, -3)에서의 접선의 방정식
(2) (x + 3)2 + (y + 1)2 = 50 위의 점 (4, -2)에서의 접선의 방정식
(3) x2 + y2 + 6x - 2y - 7 = 0위의 점 (-2, -3)에서의 접선의 방정식

(1) 번은 원의 중심이 (2, -1)이고 접점의 좌표는 (3, -3), r2 = 5예요.

(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(3 - 2)(x - 2) + (-3 + 1)(y + 1) = 5
x - 2 - 2y - 2 - 5 = 0
x - 2y - 9 = 0

어떤 공식을 이용하든 결과가 똑같죠?

(2) 원의 중심은 (-3, -1), 접점의 좌표는 (4, -2), r2 = 50이네요.

(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(4 + 3)(x + 3) + (-2 + 1)(y + 1) = 50
7x + 21 - y - 1 = 50
7x - y - 30 = 0

(3) 번은 먼저 표준형으로 바꿔야겠네요.
x2 + y2 + 6x - 2y - 7 = 0
x2 + 6x + y2 - 2y - 7 = 0
(x + 3)2 + (y - 1)2 - 7 - 9 - 1 = 0
(x + 3)2 + (y - 1)2 = 17

원의 중심이 (-3, 1)이고 접점의 좌표가 (-2, -3), r2 = 17이군요.

(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(-2 + 3)(x + 3) + (-3 - 1)(y - 1) = 17
x + 3 - 4y + 4 = 17
x - 4y - 10 = 0

함께 보면 좋은 글

원의 접선의 방정식 2 - 기울기를 알 때
원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
원의 방정식, 원의 방정식 표준형
두 원의 교점을 지나는 원의 방정식
원과 직선의 위치관계

정리해볼까요

원의 접선의 방정식

  • (x - a)2 + (y - b)2 = r2위의 접점 P(x1, y1)을 지나는 접선의 방정식
  • (x1 - a)(x - a) + (y1 - b)(y - b) = r2
  • <<  수학 1 목차  >>
     
    그리드형

    두 원의 교점을 지나는 원의 방정식은 두 직선의 교점을 지나는 직선의 방정식과 거의 비슷해요. 두 직선의 교점을 지나는 직선의 방정식에서 표준형이 아니라 일반형을 이용했어요. 그리고 항등식의 성질을 이용했죠. 두 원의 교점을 지나는 원의 방정식에서도 일반형과 항등식의 성질을 이용합니다.

    차이가 있다면 때에 따라서는 원의 방정식이 아니라 두 원의 교점을 지나는 직선의 방정식이 나올 수도 있다는 거예요. 어떤 경우에 원의 방정식이 되고, 어떤 경우에 직선의 방정식이 되는지 잘 알아두세요.

    두 원의 교점을 지나는 원의 방정식

    두 원의 교점을 지나는 원의 방정식

    그림에서 보듯이 두 원의 교점을 지나는 원의 방정식은 무수히 많아요. 그래서 교점만 가지고는 원의 방정식을 구할 수 없죠. 대게 문제에서는 교점이 아닌 다른 점의 좌표를 주거나 다른 힌트를 줍니다. 다른 힌트를 대입할 수 있게 미리 원의 방정식을 만들어야 해요.

    두 직선의 교점을 지나는 직선의 방정식에서 ax + by + c = 0과 a'x + b'y + c' = 0의 교점을 지나는 직선의 방정식은 ax + by + c + k(a'x + b'y + c') = 0이라고 했어요. (직선의 방정식 1) + k(직선의 방정식 2) = 0이었죠.

    두 원의 교점을 지나는 원의 방정식도 똑같아요. 두 원의 방정식을 x2 + y2 + Ax + By + C = 0, x2 + y2 + A'x + B'y + C' =0이라고 한다면 (원의 방정식 1) + k(원의 방정식 2) = 0으로 두면 돼요.

    이 방정식도 k에 관한 항등식을 이용해서 증명할 수 있어요.

    두 원 x2 + y2 + Ax + By + C = 0과 x2 + y2 + A'x + B'y + C' = 0의 교점을 지나는 원의 방정식
    ⇔ (원의 방정식 1) + k(원의 방정식 2) = 0
    ⇔ x2 + y2 + Ax + By + C + k(x2 + y2 + A'x + B'y + C') = 0

    두 원의 교점을 지나는 직선의 방정식

    그런데 k = -1일 때를 보죠.

    x2 + y2 + Ax + By + C - (x2 + y2 + A'x + B'y + C') = 0
    x2 + y2 + Ax + By + C - x2 - y2 - A'x - B'y - C') = 0
    (A - A')x + (B - B')y + (C - C') = 0

    전개한 결과는 ax + by + c = 0꼴의 직선의 방정식의 일반형이에요. 즉 k = -1일 때는 두 원의 교점을 지나는 원의 방정식이 아니라 두 원의 교점을 지나는 직선의 방정식이 된다는 걸 알 수 있어요.

    두 원의 교점을 지나는 직선의 방정식

    두 원의 방정식이 x2 + y2 - 2x + 14y - 50 = 0과 x2 + y2 + 6x + 8y - 25 = 0일 때, 다음 물음에 답하여라.
    (1) 두 원의 교점과 (0, 0)을 지나는 원의 방정식
    (2) 두 원의 교점을 지나는 직선의 방정식

    두 원의 교점을 지나는 원의 방정식은 x2 + y 2 + Ax + By + C + k(x2 + y2 + A'x + B'y + C') = 0이에요. k ≠ -1이면 원의 방정식이고, k = -1이면 직선의 방정식이 되죠.

    (1)번은 x2 + y2 - 2x + 14y - 50 + k(x2 + y2 + 6x + 8y - 25) = 0인데, 이 원의 방정식이 원점 (0, 0)을 지나니까 (0, 0)을 대입해보죠.

    -50 + k(-25) = 0
    25k = -50
    k = -2

    k = -2를 원래의 식에 대입하면
    x2 + y2 - 2x + 14y - 50 - 2(x2 + y2 + 6x + 8y - 25) = 0
    x2 + y2 - 2x + 14y - 50 - 2x2 - 2y2 -12x -16y + 50 = 0
    -x2 - y2 - 14x - 2y = 0
    x2 + y2 + 14x + 2y = 0

    두 원의 교점을 지나는 원의 방정식 예제 1 답

    (2)번은 x2 + y2 - 2x + 14y - 50 + k(x2 + y2 + 6x + 8y - 25) = 0에서 k = -1이면 돼요.

    x2 + y2 - 2x + 14y - 50 - (x2 + y2 + 6x + 8y - 25) = 0
    x2 + y2 - 2x + 14y - 50 - x2 - y2 - 6x - 8y + 25 = 0
    -8x + 6y - 25 = 0
    8x - 6y + 25 = 0

    두 원의 교점을 지나는 원의 방정식 예제 2 답

    함께 보면 좋은 글

    원의 방정식, 원의 방정식 표준형
    세 점을 지나는 원의 방정식, 원의 방정식 일반형
    아폴로니오스의 원, 아폴로니오스의 원 증명
    축에 접하는 원의 방정식
    두 직선의 교점을 지나는 직선의 방정식
    직선의 방정식의 일반형, 직선의 방정식의 표준형
    항등식과 항등식의 성질

    정리해볼까요

    두 원 x2 + y2 + Ax + By + C = 0과 x2 + y2 + A'x + B'y + C' = 0의 교점을 지나는 원의 방정식

    • (원의 방정식 1) + k(원의 방정식 2) = 0
    • x2 + y2 + Ax + By + C + k(x2 + y2 + A'x + B'y + C') = 0
    • k ≠ -1이면 원의 방정식, k = -1이면 직선의 방정식
    <<  수학 1 목차  >>
     
    그리드형

    직선의 방정식에서는 축과 만나는 점이 있었어요. 그걸 x, y절편이라고 부르죠. x, y절편의 좌표를 이용해서 직선의 방정식을 구할 수 있었어요.

    원의 방정식에서는 축과 단순히 만나는 게 아니라 접하는 경우에 대해서 공부할 거예요. x, y축에 접하는 원의 방정식은 어떤 특징이 있는지 알아보고, 이를 이용해서 축에 접하는 원의 방정식을 구하는 방법도 알아볼 거예요.

    그냥 식만 생각하기보다는 그래프를 종이에 그려보면 조금 더 쉽게 문제를 풀 수 있어요. 특징이 간단하니까 그래프만 그리면 문제는 금방 풀 수 있어요.

    축에 접하는 원의 방정식

    x축에 접하는 원의 방정식

    x축에 접하는 원의 방정식

    위 그림에서 원의 중심의 좌표는 (a, b)에요. 그런데 원이 x축에 접하고 있으므로 중심의 y좌표는 반지름 r과 같아요. b = r

    원이 제 1사분면이 아니라 제 4사분면에 있다면 어떨까요? 그때도 b = r이 될까요? 원이 제 4사분면에 있다면 b < 0이에요. 반지름 r은 길이니까 무조건 0보다 커야 해요. 이때는 -b = r이라고 해야겠죠?

    두 경우에 모두 적용될 수 있게 |b| = r이라고 합니다.

    원이 제 1사분면에 있든 제 4사분면에 있든 상관없이 b2 = r2이니까 (x - a)2 + (y - b)2 = r2을 (x - a)2 + (y - b)2 = b2이라고 쓸 수 있어요.

    x축에 접하는 원의 방정식
    반지름 = 중심의 y좌표의 절댓값
    r = |b|
    (x - a)2 + (y - b)2 = b2

    y축에 접하는 원의 방정식

    y축에 접하는 원의 방정식

    위 그림에서 원의 중심의 좌표는 (a, b)에요. 그런데 원이 y축에 접하고 있으므로 중심의 x좌표는 반지름 r과 같아요. a = r

    원이 제 1사분면이 아니라 제 2사분면에 있다면 어떨까요? 그때도 a = r이 될까요? 원이 제 2사분면에 있다면 a < 0이에요. 반지름 r은 길이니까 무조건 0보다 커야 해요. 따라서 두 경우에 모두 적용될 수 있게 |a| = r이라고 해야겠죠?

    여기서도 원이 위치한 사분면에 관계없이 a2 = r2니까 (x - a)2 + (y - b)2 = a2이라고 쓸 수 있어요.

    y축에 접하는 원의 방정식
    반지름 = 중심의 x좌표의 절댓값
    r = |a|
    (x - a)2 + (y - b)2 = a2

    x, y축에 접하는 원의 방정식

    x, y축에 접하는 원의 방정식

    위 그림에서 원의 중심의 좌표는 (a, b)에요. 그런데 원이 x, y축에 접하고 있으므로 중심의 x좌표와 중심의 y좌표, 반지름 r이 같아요. a = b = r

    그런데, a, b는 원이 위치한 사분면에 따라서 부호가 달라져요. a또는 b가 (-)가 될 수 있다는 얘기지요. r은 양수여야 하니까 |a| = |b| = r이라고 해야 합니다.

    앞선 두 경우에는 r을 a 또는 b로 대신 썼는데, 이번에는 반대로 a, b를 r로 바꿔서 나타내보죠.

    원이 제 1사분면에 있으면 원의 중심은 둘 다 (+)니까 원의 중심을 (r, r)이고 할 수 있죠.
    (x - r)2 + (y - r)2 = r2

    원이 제 2사분면에 있으면 원의 중심의 x좌표는 (-), y좌표는 (+)에요. 원의 중심을 (-r, r)이고 할 수 있어요.
    (x + r)2 + (y - r)2 = r2

    원이 제 3사분면에 있으면 원의 중심은 둘 다 (-)니까 원의 중심을 (-r, -r)이고 할 수 있어요.
    (x + r)2 + (y + r)2 = r2

    원이 제 4사분면에 있으면 원의 중심의 x좌표는 (+), y좌표는 (-)에요. 원의 중심을 (r, -r)이고 할 수 있어요.
    (x - r)2 + (y + r)2 = r2

    x, y축에 접하는 원의 방정식
    원의 위치 중심의 좌표 원의 방정식
    제 1사분면 (r, r) (x - r)2 + (y - r)2 = r2
    제 2사분면 (-r, r) (x + r)2 + (y - r)2 = r2
    제 3사분면 (-r, -r) (x + r)2 + (y + r)2 = r2
    제 4사분면 (r, -r) (x - r)2 + (y + r)2 = r2

    x, y축에 접하는 원의 방정식
    반지름 = 중심의 x좌표의 절댓값 = 중심의 y좌표의 절댓값
    r = |a| = |b|

    다음 원의 방정식을 구하여라.
    (1) 중심의 좌표가 (1, 2)이고 x축에 접하는 원의 방정식
    (2) 중심의 좌표가 (-3, -4)이고, y축에 접하는 원의 방정식
    (3) 반지름의 길이가 5이고 제 4사분면에서 x, y축에 접하는 원의 방정식

    중심이 (a, b)이고 반지름이 r인 원의 방정식은 (x - a)2 + (y - b)2 = r2이에요.

    x축에 접하는 원이라면 중심의 y좌표의 절댓값과 반지름이 같고, y축에 접하는 원이라면 중심의 x좌표의 절댓값과 반지름이 같아요. x, y축에 동시에 접하는 원이라면 (중심의 x좌표 절댓값)= (중심의 y좌표 절댓값) = (반지름 r)이고요.

    (1)은 x축에 접하는 원의 방정식이니까 |중심의 y좌표| = |2| = r
    (x - 1)2 + (y - 2)2 = 22
    (x - 1)2 + (y - 2)2 = 4

    (2)는 y축에 접하는 원의 방정식이니까 |중심의 x좌표| = |-3| = r
    (x + 3)2 + (y + 4)2 = 32
    (x + 3)2 + (y + 4)2 = 9

    (3)은 x, y축에 접하는 원의 방정식이니까 |중심의 x좌표| = |중심의 y좌표| = r이에요. 그런데, 제 4사분면 위에 있으니까 중심의 x좌표는 (+), 중심의 y좌표는 (-)에요. 원의 반지름이 5니까 중심의 좌표는 (5, -5)네요.
    (x - 5)2 + (y + 5) 2= 52
    (x - 5)2 + (y + 5)2 = 25

    함께 보면 좋은 글

    원의 방정식, 원의 방정식 표준형
    세 점을 지나는 원의 방정식, 원의 방정식 일반형
    아폴로니오스의 원, 아폴로니오스의 원 증명

    정리해볼까요

    축에 접하는 원의 방정식. (x - a)2 + (y - b)2 = r2

    • x축에 접하는 원의 방정식: 반지름 r = |b|
      (x - a)2 + (y - b)2 = b2
    • y축에 접하는 원의 방정식: 반지름 r = |a|
      (x - a)2 + (y - b)2 = a2
    • x, y축에 접하는 원의 방정식: 반지름 r = |a| = |b|
      제 1사분면: (x - r)2 + (y - r)2 = r2
      제 2사분면: (x + r)2 + (y - r)2 = r2
      제 3사분면: (x + r)2 + (y + r)2 = r2
      제 4사분면: (x - r)2 + (y + r)2 = r2
    <<  수학 1 목차  >>
     
    그리드형

    아폴로니오스의 원은 고대 수학자 아폴로니오스가 발견해서 그의 이름을 따서 불러요. 발견한 사람의 이름을 붙이는 건 히포크라테스의 초승달도 있었고 에라토스테네스의 체도 있었죠?

    아폴로니오스의 원은 그렇게 중요한 내용은 아니니까 그냥 참고용으로 쉬워가는 길에 잠깐 읽는 정도라고 생각하세요. 이런 유형의 문제를 어떻게 푸는지만 알고 있으면 돼요.

    증명과정의 계산이 조금 복잡하긴 하지만 어렵지는 않으니까 직접 증명을 해보는 것도 괜찮을 듯싶네요. 꼭 해보라는 건 아니고 그냥 해보는 것도 괜찮다는 거예요.

    아폴로니오스의 원

    두 점 A, B에 대하여  :  = m : n (m ≠ n)을 만족하는 점 P을 다 모으면 원이 되는데, 이를 아폴로니오스의 원이라고 합니다.

    아폴로니오스의 원 1

    P(x, y), A(x1, y1), B(x2, y2)이라고 하고 두 점 사이의 거리를 이용하여 거리를 구해서 비례식을 세우고 정리해보죠.

    아폴로니오스의 원 증명

    중간과정은 복잡하니까 그냥 넘어가고 마지막 줄을 보면 x2 + y2 + Ax + By + C = 0꼴로 이건 원의 방정식 일반형이에요. 두 점에서 m : n의 거리에 있는 점들을 모두 모으면 원이 된다는 것을 알 수 있어요.

    조금 더 쉽게 증명해보려면 점 A, B를 그대로 평행이동시켜서 A(0, 0), B(a, 0)으로 놓고 해보세요.

    아폴로니오스의 원 2 - 내분점과 외분점

    아폴로니오스의 원에서 선분 AB의 중간에 있는 점 P는 내분점이 되고, 선분 AB의 연장선에 있는 점은 외분점이에요.

    원의 방정식이니까 원의 중심과 반지름을 구해야겠죠? 원을 잘 보면 내분점 P와 외분점 Q를 지름의 끝점으로 하는 원이에요. 원의 방정식에서 두 점을 지름의 끝점으로 하는 원의 중심은 양 끝점의 중점이라고 했지요? 아폴로니오스 원에서는 내분점 P와 외분점 Q의 중점이 원의 중심이고, 반지름은 선분 PQ 길이의 절반이에요.

    두 점 A(-2, 5), B(4, 5)에 대하여  :  = 2 : 1를 만족하는 점 P가 나타내는 도형의 방정식을 구하여라.

    P(x, y)라고 해보죠. 두 점 사이의 거리를 이용하여 비례식을 세워보죠.

    아폴로니오스의 원 예제

    답은 x2 + y2 - 12x - 10y + 45 = 0 네요.

    표준형으로 고쳐볼까요?

    x2 + y2 - 12x - 10y + 45 = 0
    x2 - 12x + y2 - 10y + 45 = 0
    x2 - 12x + 36 - 36 + y2 - 10y + 25 - 25 + 45 = 0
    (x - 6)2 + (y - 5)2 - 16 = 0
    (x - 6)2 + (y - 5)2 = 16

    원의 중심이 (6, 5)고 반지름은 4인 원의 방정식이었군요.

    m = n일 때

    아폴로니오스의 원이 만들어지려면 나누는 비율인 m, n이 서로 같지 않아야 해요. (m ≠ n)

    만약에 m = n이라면 원이 아니라 직선이 생겨요.

    아폴로니오스의 원 3 (m = n)

    이 직선은 선분 AB를 수직이등분하는 선이 됩니다.

    아폴로니오스의 원 4 (m = n)

    함께 보면 좋은 글

    원의 방정식, 원의 방정식 표준형
    세 점을 지나는 원의 방정식, 원의 방정식 일반형
    두 점 사이의 거리, 좌표평면 위의 두 점 사이의 거리
    좌표평면 위의 선분의 내분점과 외분점 공식
    내분점과 외분점 사이의 관계

    정리해볼까요

    아폴로니오스의 원

    • 두 점 A, B에 대하여  :  = m : n (m ≠ n)을 만족하는 점 P의 집합
    <<  수학 1 목차  >>
     
    그리드형

    원의 방정식 표준형에 이어서 원의 방정식 일반형에 대해서 알아볼 거예요. 식의 일반형은 좌변에 모든 항이 있고, 우변 = 0인 꼴을 말해요.

    이차함수 식 구할 때 이차함수의 일반형을 이용했어요. 바로 세 점의 좌표를 알려줬을 때죠. 원의 방정식도 비슷합니다. 세 점을 지나는 원의 방정식을 구할 때 일반형을 이용해요.

    표준형을 일반형으로 바꾸는 건 간단히 전개만 하면 되지만, 일반형을 표준형으로 바꾸는 건 조금 달라요. 하지만 이미 많이 해봤던 거라서 금방 할 수 있어요.

    세 점을 지나는 원의 방정식

    원의 방정식의 표준형은 (x - a)2 + (y - b)2 = r2이에요. 전개해보죠.

    (x - a)2 + (y - b)2 = r2
    x2 - 2ax + a2 + y2 - 2by + b2 = r2
    x2 + y2 - 2ax - 2by + a2 + b2 - r2 = 0

    여기서 -2a = A, -2b = B, a2 + b2 - r2 = C라는 문자로 치환하면
    x2 + y2 + Ax + By + c = 0

    원의 방정식 일반형
    x2 + y2 + Ax + By + C = 0

    원의 방정식 표준형은 원의 중심과 반지름을 바로 확인할 수 있는 장점이 있어요. 일반형은 그렇지 못하죠? 그런데도 일반형을 쓰는 이유는 세 점의 좌표를 알고 있을 때 조금 더 쉽게 원의 방정식을 구할 수 있기 때문이에요.

    세 점 (-2, 2), (4, -6), (5, -5)을 지나는 원의 방정식을 구하여라.

    세 점을 지나는 원의 방정식, 원의 방정식 일반형

    x2 + y2 + Ax + By + C = 0에 세 점의 좌표를 대입해보죠.

    (-2)2 + 22 - 2A + 2B + C = 0
    2A - 2B - C = 8 ……… ①

    42 + (-6)2 + 4A - 6B + C = 0
    4A - 6B + C = -52 ……… ②

    52 + (-5)2 + 5A - 5B + C = 0
    5A - 5B + C = -50 ……… ③

    A, B, C에 관한 연립방정식이 만들어졌어요. 미지수가 3개인 연립일차방정식 풀어봤었죠?

    ① + ② = 6A - 8B = -44
                  3A - 4B = -22 ……… ④

    ① + ③ = 7A - 7B = -42
                  A - B = -6  ……… ⑤

    ④, ⑤를 연립해서 풀면 A = -2, B = 4

    ①에 A = -2, B = 4를 대입하면 C = -20

    답은 x2 + y2 - 2x + 4y - 20 = 0

    원의 방정식 일반형을 표준형으로

    원의 방정식 일반형을 다시 표준형으로 바꿔보죠. 이차함수 일반형을 표준형으로 바꾸는 방법과 똑같아요.

    원의 방정식 일반형을 표준형으로 바꾸기

    원의 중심의 좌표는 원의 중심이고, 반지름은 반지름에요.

    표준형에서 우변은 반지름의 제곱이므로 0보다 커야 해요. 값을 다 비교할 필요는 없고 반지름의 분자에 있는 제곱근 안의 값만 0보다 크면 되죠.

    A2 + B2 - 4C > 0

    이차방정식의 판별식처럼 주어진 식이 원의 방정식 원인지 아닌지를 판단할 때 사용해요. 자주 사용하는 건 아니니까 꼭 알아야 하는 건 아니지만 알아두면 편리하긴 하죠.

    x2 + y2 - 6x + 8y + k = 0이 원의 방정식일 때, 상수 k의 범위를 구하여라.

    A2 + B2 - 4C > 0
    (-6)2 + 82 - 4k > 0
    36 + 64 - 4k > 0
    4k < 100
    k < 25

    일반형을 표준형으로 바꿔서 계산해볼까요?

    x2 + y2 - 6x + 8y + k = 0
    x2 - 6x + y2 + 8y + k = 0
    x2 - 6x + 9 - 9 + y2 + 8y + 16 - 16 + k = 0
    (x - 3)2 + (y + 4)2 + k - 25 = 0
    (x - 3)2 + (y + 4)2 = 25 - k

    우변 25 - k는 반지름의 제곱이므로 25 - k > 0. 따라서 k < 25

    어떤 방법으로 해도 답은 똑같아요. 편한 방법을 선택하세요.

    함께 보면 좋은 글

    원의 방정식, 원의 방정식 표준형
    [중학수학/중3 수학] y = ax2 + bx + c의 그래프, 이차함수 일반형

    정리해볼까요

    원의 방정식 일반형

    • x2 + y2 + Ax + By + C = 0
    • 세 점을 지나는 원의 방정식을 구할 때 사용
    <<  수학 1 목차  >>
     
    그리드형

    원의 방정식은 그리 어려운 내용이 아니에요. 간단하게 두 점 사이의 거리를 이용해서 구할 수 있으니까요. 원과 관련된 기본적인 용어의 정의와 특징만 이해하고 있으면 돼요. 오히려 중학교 때 공부했던 원주각, 중심각 등보다 쉽다고 할 수 있죠.

    직선의 방정식에서 표준형과 일반형을 공부했어요. 원의 방정식에도 표준형과 일반형이 있는데, 이 글에서는 원의 방정식 표준형을 알아볼 거예요.

    원의 방정식 공식을 유도하는 방법과 여러 문제에서 어떻게 원의 방정식을 구하는 지를 유형별로 알아보죠.

    원의 방정식

    원은 한 점(정점)에서 같은 거리에 있는 점들의 집합이에요. 이때 한 정점을 원의 중심이라고 하고, 같은 거리를 반지름이라고 하죠.

    원의 방정식 - 좌표평면 위의 원

    좌표평면에서 한 점 C에서 같은 거리(반지름. r)에 점을 그리고 임의의 점의 좌표를 P라고 해보죠. 반지름 r은 의 길이와 같아요. 좌표평면 위의 두 점 사이의 거리 공식을 이용하여 C와 P 사이의 거리를 구해볼까요?

    P는 임의의 점이니까 원 위에 있는 모든 점은 위 방정식을 만족해요. 이 방정식이 바로 원의 방정식입니다.

    원의 중심이 (a, b)이고 반지름의 길이가 r인 원의 방정식
    ⇔ (x - a)2 + (y - b)2 = r2

    만약에 원의 중심이 원점(0, 0)이면 x2 + y2 = r2이겠죠?

    위와 같은 형태를 원의 방정식의 표준형이라고 해요. 이차함수에서도 직선의 방정식에서도 표준형이라는 용어를 사용했었죠? 표준형을 보면 반지름과 원의 중심을 쉽게 구할 수 있는 장점이 있어요.

    다음을 보고 원의 방정식을 구하여라.
    (1) 중심이 (3, 2)이고 반지름이 9인 원
    (2) 중심이 (-1, 2)이고 (2, 6)을 지나는 원
    (3) (-3, -5)와 (5, 9)을 지름의 양 끝점으로 하는 원

    원의 중심이 (a, b)이고 반지름이 r인 원의 방정식은 (x - a)2 + (y - b)2 = r2이에요.

    (1) 공식에 그대로 대입해보죠.
    (x - 3)2 + (y - 2)2 = 92

    (2) 공식에 넣어보면 (x + 1)2 + (y - 2)2 = r2에요.

    원의 방정식이 (2, 6)을 지나니까 이걸 식에 대입하면 r을 구할 수 있어요. 대입해보죠.
    (x + 1)2 + (y - 2)2 = r2
    (2 + 1)2 + (6 - 2)2 = r2
    32 + 42 = r2
    r2 = 9 + 16
    r2 = 25

    구하는 원의 방정식은 (x + 1)2 + (y - 2)2 = 25

    (3) 중심과 반지름이 아니라 지나는 두 점을 알려줬네요. 그런데 두 점이 지름의 양 끝점이라고 했어요. 지름은 원의 중심을 지나는 직선으로 지름의 중점이 원의 중심이에요. 원의 중심을 구하면 (2) 번에서 했던 방법을 이용해서 r2을 구할 수 있어요.

    원의 중심의 좌표를 (a, b)라고 한다면

    원의 중심은 (1, 2)이니까 (x - 1)2 + (y - 2)2 = r2이네요. (5, 9)를 대입해보죠.

    (x - 1)2 + (y - 2)2 = r2
    (5 - 1)2 + (9 - 2)2 = r2
    42 + 72 = r2
    r2 = 16 + 49
    r2 = 65

    따라서 원의 방정식은 (x - 1)2 + (y - 2)2 = 65

    함께 보면 좋은 글

    두 점 사이의 거리, 좌표평면 위의 두 점 사이의 거리
    직선의 방정식의 일반형, 직선의 방정식의 표준형
    직선의 방정식, 직선의 방정식 구하기
    두 직선의 위치관계 - 평행, 일치, 수직
    두 직선의 위치관계 - 일반형

    정리해볼까요

    원의 방정식

    • 원: 한 정점으로부터 같은 거리에 있는 점들의 집합
    • 원의 중심이 (a, b)이고 반지름의 길이가 r인 원의 방정식
    • (x - a)2 + (y - b)2 = r2
    • 원의 방정식 표준형: 원의 중심, 반지름을 쉽게 구할 수 있다.
    <<  수학 1 목차  >>
     
    그리드형

    2013년 이전 고등학교 1학년 수학목차입니다. (2012년, 2011년, 2010, …… 등에도 해당)

    2014년 이후 고등학교 1학년은 2014년 고1 수학 목록을 참고하세요.

    1. 집합과 명제
    2. 수 체계
    3. 식의 계산
    4. 방정식과 부등식

    1. 도형의 방정식
    2. 함수
    3. 삼각함수
    4. 순열과 조합
    그리드형

    + 최근글