이차함수의 그래프에 대해서 공부하고 있는데, y = a(x - p)2 + q꼴 이었어요. 이런 형태를 이차함수의 표준형이라고 해요.
이차방정식에서는 ax2 + bx + c = 0 꼴을 이차방정식의 일반형이라고 하는데, 이차함수에도 일반형이 있어요. 이차함수의 일반형은 이차방정식 우변의 0을 y로 바꾸고, 좌우변을 바꾼 y = ax2 + bx + c이에요.
이차함수의 일반형 y = ax2 + bx + c
y = ax2 + bx + c의 특징을 먼저 알아볼까요?
이차함수 y = a(x - p)2 + q의 그래프에서 그래프의 모양과 폭을 결정하는 건 뭐죠? 이차항의 계수인 a죠. 일반형에서도 이차항의 계수가 그래프의 폭과 모양을 결정합니다.
y = ax2+ bx + c에서 이차항의 계수는 a이고 a > 0이면 그래프는 아래로 볼록, a < 0이면 위로 볼록이에요. 또 |a|가 클수록 그래프의 폭은 좁아집니다.
x절편은 y = 0일 때의 x좌표죠? y = 0을 넣어볼까요? 0 = ax2 + bx + c가 되어서 이차방정식의 해가 x절편이 되는 걸 알 수 있어요.
y절편은 x = 0일 때의 y좌표죠? x = 0을 넣어보면 y = c가 나와요.
일반형은 표준형보다 x, y 절편 찾기가 쉬워요.
표준형은 꼭짓점이나 축의 방정식, y값의 범위를 알아보기가 쉽죠. y = a(x - p)2 + q에서 꼭짓점은 (p, q)라는 걸 알 수 있잖아요.
그러니까 꼭짓점을 찾을 때는 표준형, y절편을 찾을 때는 일반형이 편하겠죠. 그래프의 모양이나 폭은 어떤 것이든 상관없고요.
그런데 함수식을 두 가지 형태로 다 주는 건 아니잖아요. 식이 표준형이면 x = 0, y = 0을 대입해서 x, y 절편을 찾을 수 있어요. 하지만 일반형일 때는 그 상태 그대로 꼭짓점이나 y값의 범위를 찾을 방법이 없죠.
그래서 일반형을 표준형으로 바꿔야 해요.
완전제곱식을 이용한 이차방정식의 풀이
일반형은 x에 관해 내림차순으로 쓰인 식이고, 표준형은 완전제곱식을 포함하고 있는 식이에요. 그러니까 완전제곱식 + 상수항의 꼴이죠.
일반형을 완전제곱식으로 바꾸는 걸 우리는 이미 해봤어요. 바로 “완전제곱식을 이용한 이차방정식의 풀이”에서요.
완전제곱식을 이용한 이차방정식의 풀이에서 어떻게 했는지 보죠.
- 이차항의 계수로 양변을 나눈다.
- 상수항을 우변으로 이항
- 을 양변에 더해준다.
- 좌변을 완전제곱식으로 인수분해: (x + p)2 = k
- 제곱근을 이용하여 해를 구한다.
x2 - 2x - 6 = 0
기억나죠? 정말 많이 해봤던 문제잖아요.
y = ax2 + bx + c를 y = a(x-p)2 + q로 바꾸기 (일반형을 표준형으로)
이차방정식에서 완전제곱식을 만들었던 것과 이차함수의 일반형을 표준형으로 바꾸는 건 80% 비슷해요.
다른 건 두 가지. 위의 순서에서 2번에 있는 상수항을 우변으로 이항하는 게 없어요. 그리고 해를 구하는 게 아니니까 5번 단계가 필요 없어요. 두 단계가 줄었으니까 더 편하겠죠?
그다음에는 이차항의 계수로 양변을 나눈다고 했는데, 이걸 “이차항의 계수로 이차항과 일차항을 묶는다.”로 바꾸면 돼요. 인수분해한다는 얘기예요. 을 양변에 더해주는 건 좌변에만 한 번 더해주고 빼주는 걸로 바꿔요. 그 외 나머지는 다 똑같아요.
연습을 한번 해보죠.
y = 2x2 + 4x + 5의 꼭짓점의 좌표과 축의 방정식을 구하여라.
먼저 이차항의 계수로 이차항과 일차항을 묶어요.
y = 2(x2 + 2x) + 5
을 더해줘야 하는데 어디에 더하냐면 괄호로 묶인 부분 안에 더해줘요. 그리고 원래 식에 없던 값을 더해줬으니까 한 번 빼줘야 원래 식과 같은 식이 되겠죠? 빼주는 것도 괄호 안에 빼줘요. 문제에서는 (2 / 2)2 = 1을 더해주고 빼줘야겠네요.
y = 2(x2 + 2x + 1 - 1) + 5
괄호 안에 있는 부분 중 앞의 세 항(x2 + 2x + 1)을 완전제곱식으로 바꿔요.
y = 2{(x + 1)2 - 1} + 5
괄호 안에는 완전제곱식과 상수항이 남아있는데, 이 상수항을 괄호 밖으로 빼네요. 이때 주의해야할 건 괄호 앞에 이차항의 계수였던 2가 있으니까 분배법칙을 이용해서 빼내야 한다는 거예요.
y = 2(x + 1)2 - 2 + 5
y = 2(x + 1)2 + 3
완전제곱식을 이용한 이차방정식의 풀이와 거의 비슷하죠? 이렇게 표준형으로 바꿨더니 꼭짓점의 좌표와 축의 방정식을 구할 수 있겠네요. 꼭짓점은 (-1, 3), 축의 방정식은 x = -1이군요.
한 문제 더 해보죠.
y = -x2 + 4x -2의 꼭짓점과 y절편을 구하여라.
꼭짓점은 표준형에서 y절편은 일반형에서 구하는 게 편해요.
문제의 식이 일반형이니까 y절편부터 구해보죠. 이차함수 y = ax2 + bx + c에서 x = 0일 때 y 좌표가 y절편이니까 –2네요.
꼭짓점을 구하기 위해서 일반형을 표준형으로 바꿔보죠.
꼭짓점의 좌표는 (2, 2)이고 y 절편은 -2네요.