통계

중1 수학 목차

2025. 7. 4. 01:04

중학교 1학년 수학 목차입니다. 각 게시글 하단의 목차보다 여기 있는 목차를 이용해주세요.

각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.

중2 수학 목차
중3 수학 목차

  1. 자연수
  2. 정수와 유리수
  3. 문자와 식, 일차방정식의 풀이
  4. 그래프와 비례관계

  1. 도형의 기초
  2. 평면도형
  3. 입체도형
  4. 통계
그리드형

네이버 오픈캐스트를 발행하면서 가장 답답했던 건 통계가 매우 빈약하다는 거였어요. 단순히 당일 하루와 전체의 방문자, 구독자 수만 알려줬으니 통계 서비스가 사실상 없다고 해도 과언이 아니었죠.

그런 네이버 오픈캐스트에 통계 서비스가 추가되었습니다. 물론 아주 자세한 내용까지 확인할 수는 없지만 그래도 기초적인 내용 정도는 확인할 수 있어요.

오픈캐스트 발행하시는 분들은 꼭 확인해보세요.

네이버 오픈캐스트 통계보기

네이버 오픈캐스트에 통계 서비스가 추가되었습니다.

네이버 오픈캐스트 통계페이지 출시

이전에는 그냥 단순히 총 구독자와 총 방문자 수를 보여주기만 했는데, 이제는 날짜, 성별, 연령별 통계를 제공합니다. 다만 아직 아주 초반이라 통계 자료를 다 모으지 못한 것 같아요. 또 PC로 접속한 경우에만 통계에 포함됩니다.

운영중인 오픈캐스트 페이지에 가면 오픈캐스트 이름 옆에 "통계보기" 버튼이 생길 걸 볼 수 있어요.

네이버 오픈캐스트 통계- 통계 보기 버튼

 

 날짜별 통계입니다. 구독자 수, 방문자 수, 해지 수를 색이 다른 막대그래프를 이용해서 보여주네요.

네이버 오픈캐스트 통계- 구독자, 방문자, 해지

 

 그 아래는 성별/연령별 분포입니다.

네이버 오픈캐스트 통계- 성별/연령별 분포

여자 방문객이 남자의 3배나 되네요. 중등수학이라는 오픈캐스트를 발행하고 있어서 방문객 대부분이 중학생이 포함된 10대여야 하는데, 다른 연령대에 비해 크게 많지는 않아요. 부모님의 아이디를 사용하는 것일 수도 있겠네요.

성별이나 연령을 알아내기위해서 로그인한 사용자의 정보를 이용할 듯 싶은데요. 로그인 하지않고 네이버 메인을 통해서 유입된 경우에는 어떻게 통계에 나타나는 지 모르겠어요.

다음은 연령대별 성별 분포입니다. 50대 이상을 제외한 모든 연령에서 여성의 비율이 높네요. 

네이버 오픈캐스트 통계- 연령대별 성별 분포

 

인기캐스트는 가장 조회가 많이 된 캐스트의 목록인데, 목록만 보여주고 몇 명이 조회했는 지는 나오지 않는군요.

 

사실 이런 서비스에는 통계가 꼭 필요했었는데 이제서야 구색이 갖춰졌네요. 네이버 소프트웨어도 오픈하는 등 네이버의 서비스가 전반적으로 나아지려나 봐요.

함께 보면 좋은 글

네이버 오픈캐스트 구독, 오픈캐스트 사용방법
네이버 오픈캐스트와 애드센스 수익의 관계
네이버 오픈캐스트와 블로그 방문자
블로그 재방문자 비율을 높여야하는 이유

그리드형

줄기와 잎 그림

2013. 2. 13. 12:30

이름만 봐서는 나무의 줄기에서 잎이 펼쳐져 있는 모습을 상상할 수 있을 거예요. "참 잘했어요." 스티커 붙이던 포도송이와 비슷하다고 생각할 테지만 줄기와 잎 그림은 그림이라기보다는 표에 가까워요.

어떤 자료를 보고 줄기와 잎 그림을 그리는 방법과 줄기와 잎 그림을 보고 원하는 내용을 읽어내는 방법을 알아보죠.

줄기와 잎 그림

어떤 반 학생 10명의 키를 쟀더니 아래와 같아요.

155cm, 172cm, 164cm, 152cm, 168cm, 177cm, 163cm, 159cm, 172cm, 164cm

이 반 학생들의 키의 분포를 알아보기 쉽게 하려고 모양을 조금 바꿔봤어요.

학생들의 키 (15 | 2는 152cm)
줄기
15 2 5 9
16 3 4 4 8
17 2 2 7

이상하게 생긴 표가 하나 있죠? 이게 바로 줄기와 잎 그림이에요.

키가 150cm대, 160cm대, 170cm대 이렇게 할 때 앞의 두 자리 백의 자리, 십의 자리 숫자 15, 16, 17이 위 그림에서 왼쪽에 있는 줄기에 해당해요. 잎에 해당하는 숫자들은 일의 자리 숫자들이죠. 줄기 칸의 15와 같은 줄 잎 칸의 2가 나타내는 건 152cm이고, 줄기 칸의 15와 잎 칸의 5가 나타내는 건 155cm예요. 줄기 칸의 15와 잎 칸의 9가 나타내는 건 159cm죠.

줄기와 잎 그림에서 조합해낼 수 있는 키가 위에 적혀있는 키와 같은지 비교해보죠.

줄기 칸의 17에 보면 바로 옆 잎 칸에 2 2 7이라고 적혀있어요. 이 숫자들이 나타내는 키는 172cm, 172cm, 177cm라는 걸 알 수 있죠? 172cm는 두 번으로 겹치는데, 겹치는 것과 상관없이 모두 써줬어요. 줄기의 16에도 잎 칸에는 4가 두 번 적혀있어요.

줄기와 잎 그림을 보고 알 수 있는 건 뭘까요? 일단 줄기 15칸에는 잎에 숫자 3개가 적혀있어요. 150cm대 키가 3명이라는 걸 알 수 있죠. 160cm대는 4명, 170cm대도 3명이라는 걸 알 수 있어요. 전체는 10명이네요.

10명 학생 각자의 키를 구할 수 있어요. 163cm, 164cm, 164cm, … 이런 식으로요.

164cm보다 큰 학생의 수를 구할 수 있나요? 164cm니까 줄기에서 16을 찾고, 잎에서 4보다 큰 숫자를 찾으면 되겠죠? 8 한 개가 있으니까 1명이에요. 그리고 줄기에서 16보다 큰 17에 3명이 있으니까 164cm 보다 큰 학생의 수는 총 4명이에요.

줄기와 잎 그림을 보고 각각의 자료뿐 아니라 자료의 분포 상태도 금방 알아볼 수 있겠죠?

줄기와 잎 그림 그리는 방법

이번에는 줄기와 잎 그림을 직접 그려보죠.

  1. 세로로 선을 긋고 왼쪽에 줄기의 숫자를 씁니다.
    이때, 잎 자리에는 일의 자리 숫자를 적으니까 줄기에는 일의 자리를 제외한 숫자를 크기 순서대로 씁니다.
  2. 선의 오른쪽에 잎의 숫자를 쓰는데, 줄기의 십의 자리 숫자에 맞게 각 자료의 일의 자리 숫자만 가로로 쓰세요.
    일의 자리 숫자를 크기 순서대로 씁니다.
  3. 제목을 적고 오른쪽에 (줄기 | 잎)의 설명을 쓰세요.

수학 점수에요. 92, 84, 88, 76, 96, 72, 92, 84, 68, 96

수학 점수가 68점부터 96점까지 있네요. 60점대부터 90점대까지 있다는 뜻이죠.

① 세로로 선을 긋고, 왼쪽 줄기에는 60점대의 숫자 6, 70점대의 숫자 7, 80점대의 숫자 8, 90점대의 숫자 9를 적어요.

줄기
6
7
8
9

② 잎에는 점수대별로 일의 자리 숫자를 쓰는데, 크기 순서대로 씁니다. 첫 번째 점수는 92점이니까 줄기 9칸의 잎에 2를 적으세요. 그다음 84점은 줄기 8칸의 잎에 4를 적고요. 88점은 줄기 8칸의 4옆에 8을 적어요. 남은 7개의 점수도 같은 방법으로 적으세요.

줄기
6
7
8 4 8
9 2

③ 마지막으로 수학 점수라는 제목을 적고, 오른쪽에 괄호를 열고 (6 | 8은 68점)이라고 써줍니다. 처음으로 조합할 수 있는 숫자를 보기로 들면 돼요.

수학 점수 (6 | 8은 68점)
줄기
6 8
7 2 6
8 4 4 8
9 2 2 6 6

A, B 두 반의 수학 점수를 줄기와 잎 그림으로 나타낸 것이다. 왼쪽은 A, 오른쪽은 B반일 때, 그림을 보고 물음에 답하여라.
(1) 가장 점수가 높은 학생의 점수는 몇 점이고, 어느 반에 속해있는가?
(2) A, B 반에서 80점 미만의 점수를 받은 학생은 몇 명씩 있는가?

수학 점수 (6 | 8은 68점)
줄기
6 8
2 6 6 7 2 6
0 4 8 8 8 8 4 4 8
2 2 9 2 2 6 6

줄기와 잎 그림인데, 이번에는 두 개를 하나로 합친 거예요. 가운데에 줄기가 있고, 양옆에 잎이 있죠? 왼쪽 잎은 A반의 점수, 오른쪽 잎은 B반의 점수네요.

(1) 가장 높은 점수를 받은 학생이 A반에서는 92점, B반에서는 96점이니까 양쪽 모두를 통틀어서 가장 높은 점수는 96점이고, B반 소속이에요.

(2)번 80점 미만의 학생은 줄기가 6, 7인 학생의 수를 구하면 되겠죠? A 반에는 줄기 7에 해당하는 학생이 3명, 6에 해당하는 학생은 0명이므로 총 3명이고요. B반에는 줄기 7에 해당하는 학생이 2명, 6에 해당하는 학생이 1명이니까 총 3명이네요.

함께 보면 좋은 글

도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

줄기와 잎 그림

  • 각 자료의 값을 알 수 있고, 전체적인 분포를 쉽게 파악
  • 줄기의 숫자와 잎의 숫자 하나를 결합

줄기와 잎 그림 그리는 순서

  1. 세로로 선을 긋고 왼쪽에 줄기의 숫자
  2. 선의 오른쪽에 잎의 숫자를 쓰는데, 줄기의 십의 자리 숫자에 맞게 각 자료의 일의 자리 숫자만 가로로
  3. 제목을 적고 오른쪽에 (줄기 | 잎)의 설명
 
그리드형

이번 글은 누적도수의 그래프를 그리는 방법에 대한 글로 통계 마지막 시간이에요.

통계는 크게 보면 두 가지에요. 용어 배우고, 표와 그래프를 그리는 거지요.

각 용어에 도수, 상대도수, 누적도수가 있어요. 각 용어에 맞게 표나 그래프 그리는 법을 익혀두세요.

누적도수의 그래프를 그리는 방법은 도수분포다각형이나 상대도수의 그래프 그리는 법과 딱 한 가지가 달라요. 바꿔 말하면 그 다른 한가지가 매우 중요하다는 거지요.

누적도수의 그래프 그리는 방법

  1. 세로축에 누적도수를 가로축에 각 계급의 양 끝값을 적는다.
  2. 각 계급의 끝값 중에 큰 쪽 끝값과 누적도수가 만나는 곳에 점을 찍는다. 이때 첫 번째 계급의 왼쪽 끝에 도수가 0인 점을 찍는다.
  3. 각 점을 차례대로 선으로 연결한다.

2번이 다른 그래프와 다른 점이고 가장 중요한 부분이에요.

다른 그래프에서는 양 계급 끝값의 가운데, 즉 계급값 부분에 점을 찍었는데, 누적도수의 그래프에서는 계급값이 아니라 끝값 중 큰 값에 점을 찍어요.

누적도수의 그래프

그 계급의 누적도수 = 계급의 도수 + 앞 계급의 누적도수
계급의 도수 = 해당 계급의 누적도수 - 앞 계급의 누적도수

그래프를 보고 이웃한 두 계급의 누적도수를 알면 계급의 도수를 구할 수 있겠지요?

누적도수 그래프의 특징

오른쪽 위로 올라가는 모양이에요. 누적이라는 뜻 자체가 숫자가 커진다는 걸 의미하니까 오른쪽으로 갈수록 숫자가 커지고 그 때문에 오른쪽으로 갈수록 위로 올라가는 그래프가 돼요.

경사가 가장 급한 곳의 도수가 가장 커요. 경사가 크다는 말은 앞의 누적도수와 차이가 크다는 말이지요. 함수에서 기울기를 생각해보세요. x의 증가량에 해당하는 계급의 크기는 똑같아요. 여기에 y의 증가량에 해당하는 해당 계급의 도수 (그 계급의 누적도수 - 앞 계급의 누적도수)가 클수록 경사가 커지겠죠?

경사가 없는 계급은 도수가 0인 걸 말해요. 경사가 없이 평평하다는 건 "그 계급의 누적도수- 앞 계급의 누적도수 = 0" 라는 말이잖아요.

그래프에서 마지막 계급의 오른쪽 끝점의 누적도수는 도수의 총합과 같아요. 누적도수의 분포표에서 계급의 누적도수는 도수의 총합과 같았죠? 그래프에서도 마찬가지예요.

아래는 수학 점수를 구간별로 나눈 누적도수의 그래프이다. 그래프를 보고 물음에 답하여라.
(1) 도수가 가장 큰 계급의 계급값을 구하여라.
(2) 점수가 10번째로 높은 학생이 속한 계급을 구하여라.
누적도수의 그래프

(1)번 실제 도수를 구하지 않더라도 그래프에서 경사가 가장 큰 곳이 도수가 가장 큰 계급이라고 했어요. 위 그래프에서 경사가 가장 큰 곳은 80점 이상 90점 미만인 계급이네요. 문제에서 구하라고 한 것은 계급이 아니라 계급값이니까 (90 + 80) ÷ 2 = 85가 되겠네요.

(2)번 점수가 10번째로 높은 학생이니까 오른쪽에서 10번에 해당하는 학생, 즉 11에 해당하는 도수가 속한 구간을 찾아야겠지요. 11이라는 도수와 만나는 계급은 80점 이상 90점 미만이네요.

함께 보면 좋은 글

도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표
상대도수의 그래프
누적도수와 누적도수의 분포표

정리해볼까요

누적도수의 그래프

  • 누적도수의 그래프 그리기
    1. 가로축에 계급의 양 끝값, 세로축에 누적도수를 적는다.
    2. 계급의 끝 값중 큰 값과 누적도수가 만나는 곳에 점을 찍는다. 가장 처음 계급의 왼쪽 끝 값에 도수가 0인 점을 찍는다.
    3. 점들을 선분으로 연결한다.
  • 누적도수 그래프의 특징
    • 오른쪽 위로 올라가는 모양
    • 경사가 가장 큰 곳이 도수가 가장 크다.
    • 경사가 없이 평평한 곳은 도수가 0
<<    중1 수학 목차    >>
 
그리드형

도수, 상대도수라는 용어를 공부했어요.

이번 글에서 배울 용어는 누적도수라는 용어에요. 도수, 상대도수에서 사용하는 도수와 같은 도수인데, 앞에 누적이라는 말이 붙어있죠? 국어사전에서 누적이라는 말은 "포개어 여러 번 쌓음"이라고 되어있네요.

즉, 누적도수는 도수를 계속 쌓아가는 걸 말해요. 도수분포표에서 처음 계급부터 어떤 계급까지의 도수를 차례대로 더한 값이에요. 쉽게 말해서 계급의 도수에 앞에 있는 계급의 도수까지 모두 더한다고 생각하면 돼요.

누적도수의 분포표

어떤 계급의 누적도수 = 그 계급의 도수 + 처음 계급부터 앞 계급까지의 도수의 합
                                   = 그 계급의 도수 + 앞 계급의 누적도수

아래 표에서 왼쪽은 시험 점수를 10점 단위로 나눈 계급이고, 가운데는 점수별 학생 수에요. 오른쪽에는 누적도수를 나타낸 겁니다. 이 표처럼 각 계급의 누적도수를 표로 나타낸 것을 누적도수의 분포표라고 해요.

점수(점) 학생 수(명) 누적 도수(명)
60 이상 ~ 70 미만 1 1
70 ~ 80 3 1 + 3 = 4
80 ~ 90 10 1 + 3 + 10 = 14
4 + 10 = 14
90 ~ 100 6 1 + 3 + 10 + 6 = 20
14 + 6 = 20
합계 20

제일 처음 계급인 60점 이상 70점 미만인 학생 수는 1명이에요. 이보다 앞에는 계급이 없으니까 누적도수는 1이지요.

두 번째 70점 이상 80점 미만인 학생 수는 3명이에요. 이보다 앞에는 60점 이상 70점 미만이라는 계급이 있고 도수가 1이에요. 그래서 1 + 3 = 4라는 누적도수를 갖게 돼요.

세 번째 80점 이상 90점 미만인 학생 수는 10명이에요. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만이라는 두 개의 계급이 있고, 이 계급에는 각각 1, 3이라는 도수가 있어요. 1 + 3 + 10 = 14라는 누적도수를 갖게 돼요. 사실 70점 이상 80점 미만의 누적도수가 4였기 때문에 그냥 4 + 10 = 14로 계산해도 돼요.

네 번째 90점 이상 100점 미만인 학생 수는 6명이죠. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만, 80점 이상 90점 미만이라는 세 개의 계급이 있고, 이 세 계급의 누적도수는 14지요. 그래서 누적도수는 14 + 6 = 20이에요.

누적도수의 특징

누적도수에는 두 가지 큰 특징이 있어요. 첫 번째 그림인 누적도수의 분포표에서 빨간색으로 표시된 곳이요.

  • 첫 번째 계급은 누적도수 = 도수
  • 마지막 계급의 누적도수 = 도수의 총합

첫 번째 계급은 앞 계급이 없으니까 더할 게 0이어서 누적도수와 계급의 도수가 같아요.

마지막 계급의 누적도수는 그 이후로 더할 게 없죠. 더할 수 있는 건 다 더했다는 거예요. 그래서 총 도수와 마지막 계급의 누적도수가 같아요. 마지막 계급의 누적도수와 총 도수가 같으니까 누적도수의 합계란에는 빈 칸으로 두는 거예요.

누적도수는 어떤 대상이 자료 전체에서 차지하는 위치를 알고 싶을 때 사용해요. 예를 들어 90점인 학생은 전체에서 몇 등인가를 구할 때 그냥 도수분포표보다 훨씬 편리하지요.

아래 누적도수의 분포표를 보고, A, B, C, D의 값을 구하여라.

점수(점) 학생 수(명) 누적 도수(명)
60 이상 ~ 70 미만 2 A
70 ~ 80 3 B
80 ~ 90 C 16
90 ~ 100 4 20
합계 D

A는 첫 번째 계급의 누적도수이므로 계급의 도수와 같아요. A = 2네요.
B는 계급의 도수인 3과 앞 계급의 누적도수 A = 2를 더해서 5가 되고요.
C는 그냥 도수죠. 앞 계급의 누적도수인 5와 C를 더해서 16이어야 하므로 C = 11이어야 하고요.
D는 총 도수인데, 총 도수는 마지막 계급의 누적도수와 같죠? 마지막 계급의 누적도수가 20이므로 총 도수도 20입니다.

함께 보면 좋은 글

도수분포표, 변량, 계급, 계급값, 도수
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표
상대도수의 그래프
누적도수의 그래프, 누적도수 그래프 그리는 방법

정리해볼까요

누적도수

  • 도수분포표에서 첫 번째 계급부터 어떤 계급까지의 도수를 차례대로 더하여 얻은 값
  • 계급의 누적도수 = 그 계급의 도수 + 앞 계급의 누적도수
  • 첫 번째 계급에서는 누적도수 = 도수
  • 마지막 계급의 누적도수 = 도수의 총합
<<    중1 수학 목차    >>
 
그리드형

상대도수의 그래프

2012. 7. 15. 12:30

상대도수의 분포표는 도수분포표에서 도수가 상대도수로 바뀐 것뿐이에요. 마찬가지로 상대도수의 그래프는 도수가 상대도수로 바뀐 것 빼고는 히스토그램이나 도수분포다각형과 완전히 다 같아요.

히스토그램은 가로축에 계급의 양 끝값, 세로축에 도수였죠? 상대도수의 그래프는 가로축에 계급의 양 끝값, 세로축에 상대도수를 놓고 그래프를 그리면 돼요.

상대도수 그래프 그리기

  1. 가로축에 각 계급의 양 끝값을 적는다.
  2. 세로축에 상대도수를 적는다.
  3. 히스토그램이나 도수분포다각형을 그리는 방법과 똑같은 방법으로 그래프를 그린다.

상대도수 그래프의 특징

상대도수 그래프는 각 계급의 도수가 전체에서 차지하는 비율을 쉽게 알 수 있고, 전체 도수가 다른 자료와 비교할 때 매우 편리해요.

아래는 상대도수와 상대도수의 분포표의 예제 문제에 나왔던 상대도수를 이용하여 그래프로 나타낸 겁니다.

단순히 표에서 숫자를 이용해서 비교할 때보다 그래프로 나와 있으니까 훨씬 더 쉽게 알아볼 수 있겠죠?

상대도수 그래프의 넓이

도수분포다각형에서 그래프와 가로축으로 이루어진 부분의 넓이는 히스토그램의 직사각형의 전체 넓이와 같았어요.

상대도수의 그래프에서는 도수 대신 상대도수를 사용하니까 (계급의 크기) × (상대도수의 총합)이 되는데, 상대도수의 총합은 1이니까 넓이는 계급의 크기와 같죠.

도수분포다각형의 그래프와 가로축 사이의 넓이
     = 히스토그램 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

상대도수의 그래프에서 그래프와 가로축으로 둘러싸인 넓이
= 계급의 크기

두 학급의 수학 점수를 상대도수 그래프로 나타낸 것이다. 파란색이 1반, 빨간색이 2반을 나타낼 때 물음에 답하여라.
(1) 1반에서 80점 이상 90점 미만인 학생 수가 10명이고 상대도수가 0.5일 때 1반의 전체 학생 수를 구하여라.
(2) 90점 이상인 학생 수의 비율이 더 높은 반은 몇 반인가?

(1)번에서 (상대도수) = (계급의 도수) ÷ (총 도수)에요. 1반의 전체 학생 수를 구하라고 했으니 총 도수를 구하란 말이네요. 식에 대입해 보죠.
0.5 = 10 ÷ x
x = 20
1반의 학생 수는 20명이네요.

(2)번에서는 실제 두 반에서 90점 이상인 학생이 몇 명인지 알 수도 없고, 상대도수도 몰라요. 하지만 그래프를 보면 그 숫자를 알지 못해도 누가 많은지는 알 수 있어요. 90점 이상 100점 미만의 계급에 1반의 선이 조금 더 위로 올라와 있죠? 따라서 90점 이상인 학생의 비율은 1반이 더 높다고 할 수 있겠네요.

함께 보면 좋은 글

히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표

정리해볼까요

상대도수의 그래프

  • 히스토그램과 도수분포다각형에서 도수 → 상대도수로 바꾼 것과 같다.
  • 가로축에 각 계급의 끝 값, 세로축에 상대도수를 넣는다.
 
그리드형

통계 단원에 점점 익숙해지고 있나요?

새로운 용어도 많이 나오고 표도 만들고 그래프도 그려야 해서 조금 어렵죠? 이 글에서도 새로운 용어와 표 만들기를 할 거예요. 하지만 어렵게 생각하지 마세요. 이미 공부했던 도수와 도수분포표에 숟가락 하나만 얹으면 되거든요.

상대도수

상대도수는 도수의 총합에 대한 각 계급의 도수의 비율을 말해요. 그러니까 전체에 대한 상대적인 크기죠. 상대도수를 식으로 쓰면 아래와 같아요.

계급의 상대도수 = (계급의 도수) ÷ (도수의 총합)

백분율 구할 때 어떻게 하나요? 전체 40개 중 20개의 백분율을 구할 때, 20 ÷ 40 × 100 = 50% 이렇게 구하죠? 상대도수를 구할 때는 뒤에 × 100만 빼주면 돼요. 전체 도수가 40이고, 어떤 계급의 도수가 20이면 이 계급의 상대도수는 20 ÷ 40 = 0.5인 거죠.

아래 표에서 총 도수는 20이고, 80점 이상 90점 미만의 도수가 10이죠. 그럼 80점 이상 90점 미만의 상대도수는 10 ÷ 20 = 0.5예요.

이런 식으로 각 계급의 상대도수를 모두 구하면 아래 표처럼 돼요.

점수(점) 학생 수(명) 상대도수
60 이상 ~ 70 미만 1 1 ÷ 20 = 0.05
70 ~ 80 3 3 ÷ 20 = 0.15
80 ~ 90 10 10 ÷ 20 = 0.5
90 ~ 100 6 6 ÷ 20 = 0.3
합계 20 1

도수를 표로 나타낸 것을 도수분포표라고 하지요? 그럼 상대도수를 위 표처럼 나타낸 표를 뭐라고 할까요? 바로 상대도수의 분포표라고 합니다. 도수분포표에서 도수만 상대도수로 바뀐 것뿐이에요.

상대도수의 특징

상대도수의 분포표에서 상대도수의 총합은 1이에요.

상대도수의 분포표의 제일 마지막 칸을 볼까요? 상대도수의 총합이 얼마로 나오나요? 상대도수를 다 더해보죠. 0.05 + 0.15 + 0.5 + 0.3 = 1이죠. 위 표에서만 그런 것이 아니라 모든 상대도수의 분포표에서 항상 1이에요.

상대도수는 각 계급의 도수에 비례해요.

상대도수 구하는 식을 보죠. 도수의 총합은 일정하고 바뀌는 건 도수밖에 없어요. 그러니까 도수에 비례하는 거예요.

그냥 도수도 있는데, 왜 굳이 상대도수라는 걸 구할까요? 상대도수가 유용할 때가 있기 때문이겠죠? 언제 유용하냐?

바로 도수가 너무 커서 전체를 조사하기 힘들 때예요. 예를 들어서 전체 도수의 총합이 100만이고, 어떤 계급의 도수가 30,000, 40,000 이러면 숫자가 크니까 알아보기가 쉽지 않잖아요. 이럴 때 상대도수를 이용해서 숫자를 작게 하는 거죠.

또 도수의 총합이 다른 두 개의 자료를 비교할 때도 사용해요. 1반과 2반의 수학 점수를 비교하는데, 1반은 학생이 20명이고 2반은 25명이라면 단순히 80점 이상 90점 미만 학생 수를 비교할 수는 없겠죠? 이럴 때 상대도수를 이용해서 비교해요.

다음은 두 학급의 수학 성적을 나타낸 상대도수의 분포표이다. 물음에 답하여라.
(1) A, B, C, D의 값을 구하여라.
(2) 두 반 중 90점 이상인 학생의 비율이 더 높은 학급은 어디인지 구하여라.

점수(점) 1반 2반
학생 수(명) 상대도수 학생 수(명) 상대도수
60 이상 ~ 70 미만 1 0.05 3 A
70 ~ 80 3 0.15 B 0.12
80 ~ 90 10 0.5 14 0.56
90 ~ 100 6 0.3 C D
합계 20 1 25 E

(1)번에서 A는 총 도수가 25이고, 도수가 3이니까 3 ÷ 25 = 0.12네요.

B는 두 가지 방법으로 구할 수 있어요. B ÷ 25 = 0.12에서 B = 0.12 × 25 = 3이라는 걸 알 수 있어요. 다른 방법으로 상대도수는 도수에 비례하니까 70점 이상 80점 미만의 도수, 상대도수와 비교할 수도 있고요. B : 0.12 = 14 : 0.56이라는 비례식을 만들 수 있죠.

C를 구해보죠. C는 도수도 비어있고, 상대도수도 비어있어서 다른 방법이 필요해요. 총 도수가 25니까 3 + B + 14 + C = 25가 되어야 해요. B는 위에서 3이었으니까 C = 5겠네요.

D는 5 ÷ 25 = 0.2가 되겠죠.

E는 상대도수의 총합인데, 상대도수의 총합은 무조건 1이에요. 따라서 E = 1입니다.

(2)번에서 90점 이상인 학생의 비율이 1반은 0.3이고 2반은 0.2니까 1반의 비율이 더 높군요.

함께 보면 좋은 글

도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
히스토그램과 히스토그램의 특징, 히스토그램 그리기
상대도수와 상대도수의 분포표
상대도수의 그래프

정리해볼까요

상대도수

  • 전체 도수에 대한 계급의 도수의 비율
  • 계급의 상대도수 = (계급의 도수) ÷ (총 도수)
  • 상대도수의 특징
    • 상대도수의 총 합은 항상 1
    • 상대도수는 계급의 도수에 정비례
    • 도수의 총합이 매우 크거나 도수의 총합이 서로 다른 두 자료를 비교할 때 사용
 
그리드형

자료를 표(도수분포표)로 만드는 법, 그림(히스토그램)으로 그리는 법까지 공부해봤어요. 물론 도수분포표와 히스토그램을 분석하고 정보를 찾아내는 것도 해봤고요.

이번에는 두 가지가 아닌 다른 한 가지를 더 공부할 거예요. 그림을 그리는 방법이요.

자료를 여러 가지 방법으로 표현해보면서 각각 어떤 특징이 있는지, 어떤 장점이 있는지를 살펴보죠.

이번에 배울 내용은 도수분포다각형이라는 거예요.

도수분포다각형 그리는 방법

다각형은 각이 여러 개 있는 도형이죠? 도수분포다각형은 자료를 여러 개의 각을 가진 도형으로 표현한 그림을 말해요.

꺾은선 그래프와 닮아있어요.

그럼 도수분포다각형을 어떻게 그리느냐?

  1. 히스토그램을 그리세요.
  2. 히스토그램에서 각 사각형의 윗변의 가운데에 중점을 찍어요. 특히, 계급의 양끝에 도수가 0인 계급이 있다고 생각하여 그곳에도 중점을 찍어요.
  3. 중점을 직선으로 연결하세요.

도수분포다각형을 그리는 것에 익숙해지면 굳이 히스토그램을 그리지 않아도, 계급과 도수가 만나는 곳에 점을 찍어서 그냥 그릴 수도 있겠지요.

도수분포다각형 그리기

도수분포다각형의 특징

그럼 도수분포표도 있고 히스토그램도 있는데, 굳이 또 도수분포다각형이라는 걸 왜 그리는 걸까요? 뭔가 장점이 있으니까 그리겠죠?

도수분포다각형은 변량과 도수의 분포상태를 연속적으로 관찰할 수 있어요. 꺾은선으로 되어있어서 변량과 도수의 분포의 흐름을 연속적으로 판단하기가 쉬워요.

아래에서 빨간색 선만 보면 점수가 어떻게 바뀌는지를 표에서보다 더 알아보기 쉽죠.

또 서로 다른 변량을 이용해서 그린 둘 이상의 도수분포다각형을 한 곳에 겹쳐서 그리면 서로를 비교하기 편리한 장점도 있어요.

도수분포다각형

히스토그램에서는 전체 직사각형의 넓이를 구했더니 어떤 특징이 있었죠? (계급의 크기) × (총 도수)와 같았어요. 도수분포다각형에도 넓이에 특별한 성질이 있어요.

도수분포다각형에서 선과 가로축 사이의 넓이를 구해볼까요? 선이 여러 번 꺾여있어서 넓이를 구하기가 어렵죠? 어떻게 구하냐면, 도수분포다각형 선 밖에 파란색으로 점 찍어진 곳의 넓이와 선 안의 파란색으로 점 찍어진 빈 곳의 넓이가 같아요. 빨간색 점도 그렇고, 녹색 점도 그렇지요.

도수분포다각형의 넓이

결국, 도수분포다각형의 넓이를 구하는 것과 히스토그램의 직사각형의 넓이를 구하는 게 같아요.

도수분포다각형과 가로축으로 둘러싸인 도형의 넓이
     = 히스토그램의 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
히스토그램과 히스토그램의 특징, 히스토그램 그리기

정리해볼까요

도수분포다각형

  • 도수의 분포를 다각형 모양으로 나타낸 그래프
  • 도수분포다각형 그리기
    1. 히스토그램을 그린다.
    2. 히스토그램에서 각 사각형 윗변의 가운데에 중점을 찍는다.
      계급의 양끝에 도수가 0인 계급이 있다고 생각하여 중점을 찍는다.
    3. 중점을 선분으로 연결한다.
  • 도수분포다각형의 넓이 = 히스토그램의 직사각형의 전체 넓이 = (계급의 크기) × (총 도수)
<<    중1 수학 목차    >>
 
그리드형

도수분포표에 대해서 알아봤어요. 여러 개의 자료로 표를 만들면 자료의 위치나 흐름 등을 쉽게 파악할 수 있는 장점이 있어요.

이번 글에서 공부할 히스토그램은 도수분포표에서 한 발 더 나가서 표가 아니라 그림으로 그리는 거예요. 그림이 글자보다 직관적이고 이해하기가 쉽잖아요.

히스토그램이 무엇인지, 히스토그램을 어떻게 그리는지 알아보죠.

히스토그램

도수분포표는 아래 표처럼 생겼어요. 왼쪽 칸에는 계급을 쓰고 오른쪽 칸에는 도수를 적지요. 제일 아랫줄에는 도수의 총합을 적어요.

아래는 도수분포표 만드는 법에서 사용한 수학 점수를 도수분포표로 나타낸 거예요.

점수(점) 학생 수(명)
60 이상 ~ 70 미만 1
70 ~ 80 3
80 ~ 90 10
90 ~ 100 6
합계 20

이 도수분포표의 왼쪽에 있는 계급을 가로축에, 오른쪽 칸에 있는 도수를 세로축에 표시해서 직사각형 모양으로 나타낸 그래프가 바로 히스토그램이에요.

히스토그램으로 그리면 아래처럼 생겼어요.

히스토그램

히스토그램 그리는 방법

위에서 설명한 것처럼 히스토그램의 가로축에는 도수분포표에서의 계급의 양 끝값을, 세로축에는 도수를 써요. 눈금과 눈금 사이가 아닌 눈금선이 있는 부분에 계급의 양 끝값과 도수를 써야 해요.

그리고 실제 사용하는 계급 앞과 뒤에 한 칸씩을 더 만드세요.

각 계급을 가로로, 도수를 세로로 하는 직사각형을 그려요. 주의할 건 눈금에 다 채워서 그려야 해요. 옆의 직사각형과 바로 붙도록 그립니다. 아래 그림처럼 직사각형 사이가 서로 떨어져 있으면 안 돼요. 앞의 그림은 제대로 된 히스토그램, 아래 그림은 잘못된 히스토그램입니다.

잘못된 히스토그램

히스토그램의 특징

히스토그램은 그림(그래프)이므로 자료의 분포 상태를 도수분포표보다 좀 더 쉽게 알아볼 수 있어요. 글자보다 그림이 이해하기 쉬운 건 당연하잖아요.

히스토그램에서 한 계급의 직사각형의 넓이를 한 번 구해볼까요? 한 계급에서 가로의 길이는 계급의 크기와 같아요. 세로의 길이는 도수와 같죠. 그래서 직사각형의 넓이는 (계급의 크기) × (계급의 도수)가 되겠죠? 60점 이상 70점 미만의 직사각형의 넓이는 10 × 1 = 10, 70점 이상 80점 미만의 직사각형의 넓이는 10 × 3 = 30 이렇게 구할 수 있죠.

그런데 가로에 있는 계급의 크기는 계급이 달라도 모두 일정해요. 따라서 직사각형의 넓이는 도수에 비례해요.

다음이 중요한 내용인데요. 전체 직사각형의 넓이를 구해볼까요? 각각의 직사각형의 넓이를 다 더하면 되겠죠? 60점 이상 70점 미만은 10, 70점 이상 80점 미만은 30, 80점 이상 90점 미만은 10 × 10 = 100, 90점 이상 100점 미만은 10 × 6 = 60이죠. 10 + 30 + 100 + 60 = 200이네요.

이번에는 (계급의 크기) × (총 도수)를 구해볼까요? 10 × (1 + 3 + 10 + 6) = 10 × 20 = 200이에요. 위에서 구한 직사각형의 넓이와 같죠?

직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)

아래 히스토그램을 보고 아래 물음에 답하여라.
(1) 계급값이 85점인 계급의 도수를 구하여라.
(2) 계급값이 95점인 계급의 직사각형의 넓이는 60점 이상 70점 미만인 계급의 직사각형의 넓이의 몇 배인가?
히스토그램

(1)에서 계급값이 85이므로 계급은 80점 이상 90점 미만이 되겠죠? 이 계급에서 막대의 세로가 도수니까 10이네요.

(2)는 계급값이 95점인 계급은 90점 이상 100점 미만인데, 이때의 도수는 6이에요. 60점 이상 70점 미만인 계급의 도수는 1이고요. 넓이는 도수에 비례한다고 했으니까 두 계급의 직사각형의 넓이를 비교할 때는 실제 넓이가 아닌 도수만 비교해도 돼요. 6/1 = 6이라서 넓이는 6배 입니다.

히스토그램과 막대그래프의 차이

히스토그램은 얼핏 보면 막대그래프와 닮았어요. 그런데 왜 막대그래프가 아닌 히스토그램을 그릴까요?

막대그래프는 보통 연속되지 않는 자료들을 그래프로 그릴 때 사용해요. 사과는 몇 개, 수박은 몇 개, 이럴 때 사용하죠. 수박과 사과는 서로 연결할 수 없잖아요.

히스토그램은 60 ~ 70점, 70 ~ 80점, … 처럼 서로 연속된 자료를 나타낼 때 사용합니다. 첫 번째 계급의 끝값인 70점과 두 번째 계급의 70점이 서로 연결되잖아요.

그래프를 보면 가장 눈에 띄는 게 있어요. 히스토그램은 막대가 서로 붙어 있고, 막대그래프는 벌어져 있어요. 위에서 설명한 연속이냐 연속하지 않느냐의 차이 때문에 생기는 건데요. 60 ~ 70, 70 ~ 80은 연속하니까 죽 붙여서 그려야 하는 거지요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

히스토그램이란?

  • 도수분포표의 계급을 가로축에, 도수를 세로축에 표시하여 직사각형 모양으로 나타낸 그래프
  • 도수분포표보다 자료의 분포 상태를 한 눈에 알아볼 수 있다.
  • 직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)
 
그리드형

중3 수학 목차

2012. 5. 27. 12:30

중학교 3학년 수학 목차입니다.

각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.

중1 수학 목차
중2 수학 목차

  1. 실수와 식의 계산
  2. 인수분해
  3. 이차방정식
  4. 이차함수
  1. 통계
  2. 삼각비
  3. 원의 성질
그리드형

+ 최근글