이번에는 도수분포표를 보고 분산과 표준편차를 구하는 방법이에요. 분산과 표준편차에서 얘기한 것처럼 표준편차를 구하려면, 평균 → 편차 → 분산 → 표준편차의 순서대로 구해야 해요.
그런데 도수분포표에서 평균 구하는 방법은 일반적인 평균구하는 방법과 달랐죠? 도수분포표에서의 평균 구하기에서 했던 방법으로 평균을 먼저 구해야 해요. 미리 확인하세요.
이 글에서는 1학년 때 배웠던 도수분포표 관련 내용과 앞에서 배운 산포도의 내용이 모두 총망라돼서 나와요. 산포도 구하는 방법과 공식을 꼭 기억하고 있어야 해요.
도수분포표에서 분산과 표준편차 구하기
도수분포표에서 분산과 표준편차를 구할 때 가장 중요한 것은 도수예요. 일반적인 변량들로 된 자료에서는 각각의 값들을 정확하게 알 수 있어요. 하지만 도수분포표는 정확한 값을 알 수 없기 때문에 계급값을 이용하죠. 그리고 계급값을 이용하여 얻은 값들은 도수가 포함되지 않은 값들이에요. 따라서 값에 도수를 곱해줘야 우리가 원하는 걸 얻을 수 있어요.
뭔 말인지 모르겠죠? 실제로 구해보면서 정리해보죠. 아래같은 도수분포표가 있다고 해볼까요?
점수(점) | 학생 수(명) |
---|---|
60 이상 ~ 70 미만 | 1 |
70 ~ 80 | 3 |
80 ~ 90 | 11 |
90 ~ 100 | 5 |
합계 | 20 |
평균 → 편차 → 분산 → 표준편차를 구해야 해요.
분산과 표준편차를 구할 때는 아래처럼 표를 이용해서 구하는 게 알아보기 쉽고 편해요.
점수 (점) | 학생 수 (명) | 계급값 | 계급값 × 도수 | ②편차 | (편차)2 × 도수 |
---|---|---|---|---|---|
60이상 ~ 70미만 | 1 | 65 | 65 × 1 = 65 | 65 - 85 = -20 | (-20)2 × 1 = 400 |
70 ~ 80 | 3 | 75 | 75 × 3 = 225 | 75 - 85 = -10 | (-10)2 × 3 = 300 |
80 ~ 90 | 11 | 85 | 85 × 11 = 935 | 85 - 85 = 0 | (0)2 × 11 = 0 |
90 ~ 100 | 5 | 95 | 95 × 5 = 475 | 95 - 85 = 10 | (10)2 × 5 = 500 |
합계 | 20 | 65 + 225 + 935 + 475 = 1700 | 400 + 300 + 0 + 500 = 1200 | ||
평균 | ①1700 ÷ 20 = 85 | ③1200 ÷ 20 = 60 |
- 계급값은 각 구간의 양 끝값을 더해서 2로 나눈 값이죠? 도수분포표, 변량, 계급, 계급값, 도수에서 계급값 구하는 방법도 해봤어요. 계급값을 이용해서 평균을 구했더니 85가 나왔네요.
- 평균을 구한 다음에는 편차를 구해야 해요. 편차 구하는 공식의 변량 자리에 계급값을 넣어주세요.
- 편차를 구한 다음에는 분산을 구해야 하는데요. 분산은 편차의 제곱의 평균이라고 했어요. 그런데 도수분포표에서는 편차 제곱에 도수를 구한 것들의 평균이에요. 편차의 제곱에 도수를 꼭 곱해줘야 해요.
일반적인 변량이었다면 각각 편차를 구해서 더했을 텐데, 도수분포표에서는 각각의 편차를 구할 수 없기때문에 대표인 계급값을 이용했던 거거든요. 그런데 같은 계급값을 갖는 변량이 도수의 개수만큼 있잖아요. 특정한 계급값을 대표로 갖는 도수의 개수만큼을 곱해줘야 해당 계급의 변량들의 값을 모두 더한 게 되는 거죠.
편차의 합은 0이라고 했는데, 위 도수분포표에서 편차의 합은 0이 아니에요. 대신 편차에 도수를 곱해서 더하면 0이 되는 겁니다.
각 계급의 (편차)2 × 도수를 구한 다음에 도수의 총합으로 나누면 그게 바로 분산입니다. 분산이 60이 나왔네요. - 마지막으로 표준편차는 분산에 제곱근을 씌운 거니까 가 되네요.
함께 보면 좋은 글
대푯값과 평균, 중앙값, 최빈값
산포도와 편차
분산과 표준편차
[중등수학/중1 수학] - 도수분포표, 변량, 계급, 계급값, 도수
[중등수학/중1 수학] - 도수분포표 만드는 법
[중등수학/중1 수학] - 도수분포표에서의 평균구하기