일차함수에서 우리는 제일 처음에 y = ax 에 대해서 공부했어요. 그리고 y = ax 그래프를 y축으로 b만큼 평행이동 시킨 y = ax + b 그래프를 공부했고요.
이차함수에서 y = ax2 그래프를 공부했으니 y축으로 평행이동한 그래프를 공부해야겠죠? 그게 바로 y = ax2 + q예요.
그래프를 평행이동 하면 그래프의 모양은 바뀌지 않아요. 그러니까 폭도 그대로이고, 위로/아래로 볼록한 것도 그대로에요.
일차함수의 그래프에서도 그래프의 기울기나 모양이 바뀌지는 않았어요.
이차함수 y = ax2 + q의 그래프
y = ax2 + q 그래프는 y = ax2 를 y축으로 q만큼 이동한 그래프에요.
y축에 대해서 q만큼 평행이동 했으니까 y와 관련된 항목들만 바꿔요.
y축 대칭이어서 축의 방정식은 x = 0이었어요. 축의 방정식은 x만 있고 y와 상관없죠? 그래서 축의 방정식은 x = 0 그대로예요.
x가 증가할 때 y가 증가/감소하는 구간도 역시 x > 0 일 때와 x < 0 일 때, 즉 x의 범위에 따라 달라지는 거니까 y와는 상관없어요. 그대로예요.
꼭짓점은 원점(0, 0)에서 (0, q)로 바뀝니다. y축으로 이동했으니 꼭짓점의 y좌표도 이동해야겠죠?
y축으로 평행이동 하면 y값의 범위도 바뀌어야 해요. a > 0이라면 y ≥ q가 될 거고, a <0이라면 y ≤ q가 돼요.
기억하세요. y = ax2가 y축 방향으로 q만큼 이동한 y = ax2 + q는 y 관련된 항목, 꼭짓점의 y좌표, y값의 범위만 바뀌고, 다른 것은 그대로라는 걸요.