이번 글에서 배울 용어는 누적도수라는 용어에요. 도수, 상대도수에서 사용하는 도수와 같은 도수인데, 앞에 누적이라는 말이 붙어있죠? 국어사전에서 누적이라는 말은 "포개어 여러 번 쌓음"이라고 되어있네요.
즉, 누적도수는 도수를 계속 쌓아가는 걸 말해요. 도수분포표에서 처음 계급부터 어떤 계급까지의 도수를 차례대로 더한 값이에요. 쉽게 말해서 계급의 도수에 앞에 있는 계급의 도수까지 모두 더한다고 생각하면 돼요.
어떤 계급의 누적도수 = 그 계급의 도수 + 처음 계급부터 앞 계급까지의 도수의 합
= 그 계급의 도수 + 앞 계급의 누적도수
아래 표에서 왼쪽은 시험 점수를 10점 단위로 나눈 계급이고, 가운데는 점수별 학생 수에요. 오른쪽에는 누적도수를 나타낸 겁니다. 이 표처럼 각 계급의 누적도수를 표로 나타낸 것을 누적도수의 분포표라고 해요.
점수(점) | 학생 수(명) | 누적 도수(명) |
---|---|---|
60 이상 ~ 70 미만 | 1 | 1 |
70 ~ 80 | 3 | 1 + 3 = 4 |
80 ~ 90 | 10 | 1 + 3 + 10 = 14 4 + 10 = 14 |
90 ~ 100 | 6 | 1 + 3 + 10 + 6 = 20 14 + 6 = 20 |
합계 | 20 |
제일 처음 계급인 60점 이상 70점 미만인 학생 수는 1명이에요. 이보다 앞에는 계급이 없으니까 누적도수는 1이지요.
두 번째 70점 이상 80점 미만인 학생 수는 3명이에요. 이보다 앞에는 60점 이상 70점 미만이라는 계급이 있고 도수가 1이에요. 그래서 1 + 3 = 4라는 누적도수를 갖게 돼요.
세 번째 80점 이상 90점 미만인 학생 수는 10명이에요. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만이라는 두 개의 계급이 있고, 이 계급에는 각각 1, 3이라는 도수가 있어요. 1 + 3 + 10 = 14라는 누적도수를 갖게 돼요. 사실 70점 이상 80점 미만의 누적도수가 4였기 때문에 그냥 4 + 10 = 14로 계산해도 돼요.
네 번째 90점 이상 100점 미만인 학생 수는 6명이죠. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만, 80점 이상 90점 미만이라는 세 개의 계급이 있고, 이 세 계급의 누적도수는 14지요. 그래서 누적도수는 14 + 6 = 20이에요.
누적도수의 특징
누적도수에는 두 가지 큰 특징이 있어요. 첫 번째 그림인 누적도수의 분포표에서 빨간색으로 표시된 곳이요.
- 첫 번째 계급은 누적도수 = 도수
- 마지막 계급의 누적도수 = 도수의 총합
첫 번째 계급은 앞 계급이 없으니까 더할 게 0이어서 누적도수와 계급의 도수가 같아요.
마지막 계급의 누적도수는 그 이후로 더할 게 없죠. 더할 수 있는 건 다 더했다는 거예요. 그래서 총 도수와 마지막 계급의 누적도수가 같아요. 마지막 계급의 누적도수와 총 도수가 같으니까 누적도수의 합계란에는 빈 칸으로 두는 거예요.
누적도수는 어떤 대상이 자료 전체에서 차지하는 위치를 알고 싶을 때 사용해요. 예를 들어 90점인 학생은 전체에서 몇 등인가를 구할 때 그냥 도수분포표보다 훨씬 편리하지요.
아래 누적도수의 분포표를 보고, A, B, C, D의 값을 구하여라.
점수(점) | 학생 수(명) | 누적 도수(명) |
---|---|---|
60 이상 ~ 70 미만 | 2 | A |
70 ~ 80 | 3 | B |
80 ~ 90 | C | 16 |
90 ~ 100 | 4 | 20 |
합계 | D |
A는 첫 번째 계급의 누적도수이므로 계급의 도수와 같아요. A = 2네요.
B는 계급의 도수인 3과 앞 계급의 누적도수 A = 2를 더해서 5가 되고요.
C는 그냥 도수죠. 앞 계급의 누적도수인 5와 C를 더해서 16이어야 하므로 C = 11이어야 하고요.
D는 총 도수인데, 총 도수는 마지막 계급의 누적도수와 같죠? 마지막 계급의 누적도수가 20이므로 총 도수도 20입니다.
함께 보면 좋은 글
도수분포표, 변량, 계급, 계급값, 도수
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표
상대도수의 그래프
누적도수의 그래프, 누적도수 그래프 그리는 방법