앞서 원주각과 중심각의 크기에서는 원주각은 중심각의 절반이고, 중심각은 원주각의 두 배라는 걸 공부했어요.
1학년 때, 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴 중심각의 크기와 부채꼴 호의 길이, 부채꼴 중심각의 크기와 부채꼴의 넓이가 정비례한다는 걸 공부했어요. 현의 길이는 중심각의 크기와 전혀 상관이 없다는 것까지요.
이 글에서는 원주각과 중심각의 관계, 부채꼴 중심각의 크기와 부채꼴 호의 길이는 정비례한다는 사실 두 가지를 하나로 합쳐서 원주각의 크기와 호의 길이는 서로 어떤 관계가 있는지 알아볼 거예요.
원주각의 크기와 호의 길이
원주각과 중심각의 크기에서 원주각의 크기는 중심각 크기의 절반이라고 했어요. 서로 다른 두 호에 대한 원주각의 크기가 같으면 중심각의 크기도 서로 같아져요. 1학년 때 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴의 중심각의 크기가 같으면 호의 길이도 같다는 걸 공부했어요.
이 두 가지를 정리해보면, 서로 다른 두 호에 대한 원주각의 크기가 같으면 중심각이 같고, 중심각이 같으면 호의 길이가 같아요. 즉 크기가 같은 원주각에 대한 호의 길이가 같아지죠.
서로 다른 두 호에서 원주각의 크기가 같다. → 중심각의 크기가 같다. → 호의 길이가 같다.
∠APB = ∠CQD
→ ∠AOB = ∠COD (∵ 2∠APB = ∠AOB, 2∠CQD = ∠COD)
→ 호AB = 호CD
이 명제의 역도 성립해요. 호의 길이가 같으면 이에 대한 원주각의 크기도 같아요.
한 원 또는 지름이 같은 원에서
크기가 같은 원주각에 대한 호의 길이는 같다.
길이가 같은 호에 대한 원주각의 크기는 같다.
원주각의 크기와 호의 길이는 정비례
1학년 때 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴의 중심각과 호의 길이는 정비례한다는 걸 공부했어요. 호에 대한 중심각은 원주각의 두 배니까 중심각 자리에 원주각을 넣으면 역시 비례가 성립하지요.
∠AOB : ∠COD = 호AB : 호CD
→ 2∠APB : 2∠CQD = 호AB : 호CD ( ∵ 2∠APB = ∠AOB, 2∠CQD = ∠COD)
→ ∠APB : ∠CQD = 호AB : 호CD
한 원 또는 지름이 같은 원에서
원주각의 크기 ∝ 호의 길이
중심각의 크기 ∝ 호의 길이
현의 길이는 중심각, 원주각의 크기와 비례하지 않는다.
그림처럼 원 위에 8개의 점이 있다. 이 점들 간의 거리가 모두 같을 때, 다음을 구하여라.
(1) 호EF의 중심각과 크기가 같은 원주각을 갖는 호를 모두 찾아라.
(2) ∠DBE와 같은 길이의 호를 갖는 원주각을 모두 찾아라.
우선 각 점들 간의 거리가 같다고 했으니 각 점들로 이루어진 호의 길이가 같겠죠? 이 호의 길이를 a라고 놓아보죠. 또 각 호의 길이가 같으니까 이 호의 길이에 대한 원주각의 크기도 같은데, 이 각을 x라고 놓아보죠.
(1) 호EF의 길이는 a이고, 원주각의 크기는 x에요. 중심각의 크기는 2x겠네요.
즉, 문제는 원주각의 크기가 2x인 호를 찾으라는 건데, 크기가 2x인 원주각은 ∠EAG, ∠DBF, ∠AGC이므로 호EG와 호DF, 호AC가 되겠네요.
(2) ∠DBE에 대한 호의 길이는 a이고 원주각의 크기는 x에요. 호의 길이가 같으면 원주각의 크기도 같아요. 각의 크기가 x인 원주각은 ∠EBF, ∠BEA네요.
함께 보면 좋은 글
원주각과 중심각의 크기, 원주각의 성질
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각