중등수학/중2 수학

일차함수 뜻

2012. 6. 14. 12:30

함수는 1학년 때 기본적인 용어에 대해서 배웠는데, 기억이 나나요?

함수: 두 변수 x, y에 대하여 x의 값이 정해지면 그에 따라 y의 값이 하나만 정해질 때, y를 x의 함수라 하고, y = f(x)라고 나타냅니다. 즉, x에 y가 하나만 대응하는 걸 함수라고 하지요. x값에 따라 y가 바뀌는 거고요.

일차함수

함수 y = f(x)에서 y가 x에 대한 일차식일 때 이 함수를 일차함수라고 해요.

일차방정식을 공부했는데요. 일차방정식은 일반적으로 ax + b = 0으로 나타내지요. 여기에 우변의 0 대신에 y를 넣고 좌, 우변의 위치를 바꾸면 일차함수의 모양이 돼요

y = ax + b (a ≠ 0, a, b는 상수)

일차함수를 찾는 방법은 일차방정식을 찾는 방법을 이용해요.

다음 중 일차함수인 것을 모두 고르시오.
(1) y = 0x + 3
(2) y = 3x + 10
(3) y = (x + 1)2 - x2
(4) y = 5
(5) xy = 1
(6) y = 2x2 + x -1

y = ax + b (a ≠ 0, a, b는 상수)인 형태가 되어야 일차함수라고 할 수 있어요. 이걸 확인하려면 먼저 식을 간단히 해야 해요.

(1)번은 x의 계수가 0이어서 일차식이 아니니까 일차함수라고 할 수 없어요
(2)번은 우변이 일차식이 맞네요. (2)번은 일차함수가 맞아요.
(3) 번은 괄호를 곱셈공식을 이용해서 전개해요. (x + 1)2 - x2 = x2 + 2x + 1 - x2 = 2x + 1가 되네요. 즉, y = 2x + 1이니까 일차함수가 맞아요
(4) 번은 일차항이 없이 그냥 상수항만 있어서 일차함수가 아니고요.
(5) 번은 y =  형태가 돼요. 분수꼴이라서 일차식이라고 할 수 없어요. 일차함수가 아니에요. x앞의 계수가 분수인 건 괜찮아요. 차이를 구별하세요
(6) 번은 일차식이 아닌 이차식이에요. 따라서 일차함수라고 할 수 없어요.

위 문제에서 일차함수는 (2) y = 3x + 10과 (3) y = (x + 1)2 - x2 두 개입니다.

함숫값의 표현

함수는 보통 y = f(x)라고 표시하는데, 이때 f(x)는 x에 대한 식이에요.

x = 3일 때의 y값을 f(3)이라고 써요. x = 3을 위 식에 대입해보죠. 대입이라는 건 x자리에 3을 넣는 거잖아요. 계산을 하는 건 아니지만 x 자리에 3을 넣으면 y = f(3)이에요.

반대로 f(5)를 보고 "x에 5를 넣었을 때 y값이구나."하는 걸 읽을 수 있어야 해요.

함수 y = 5x - 1에서 다음 값을 구하여라.
(1) f(3)
(2) f(5) - f(1)

(1) f(3)은 x = 3 일 때의 y 값이니까 x = 3을 대입해요.
y = 5 × 3 - 1 = 14

(2)번 f(5) - f(1) = (5 × 5 - 1) - (5 × 1 - 1) = 24 - 4 = 20입니다.

함께 보면 좋은 글

[중등수학/중1 수학] - 함수의 뜻과 함숫값, 함수의 정의
[중등수학/중1 수학] - 정비례와 반비례 - 함수의 관계식
[중등수학/중1 수학] - 함수 그래프, 함수의 그래프 특징 비교
[중등수학/중1 수학] - 함수의 활용

정리해볼까요

일차함수

  • 함수 y = f(x)에서 y가 x에 관한 일차식일 때, 이 함수를 일차함수라고 한다.
  • y = ax + b (a ≠ 0, a, b는 상수)
 
그리드형

부등식이 뭔지, 부등식은 어떻게 푸는지 알아봤다면 이제 부등식을 실제 어떤 방법으로 활용하는지 배워봐야죠.

사실, 많은 분이 "수학 배워서 어디 써먹느냐?" 하지만 부등식의 활용만큼은 실생활에서도 많이 사용할 수 있어요. 휴대전화 요금제를 정할 때라든가 두 곳의 가게 중에서 더 싼 곳을 찾을 때도 부등식은 아주 유용합니다.

부등식의 활용은 큰 틀에서는 방정식의 활용과 같아요. 미지수 정하고 식 세우고, 푸는 순서로 이루어집니다.

일차부등식과 연립부등식에서 나오는 문제의 유형은 같아요. 식의 개수만 차이가 있을 뿐이에요.

부등식의 활용

  1. 미지수 결정
    문제에서 구하고자 하는 것을 x로 놓는다.
  2. 문제의 뜻에 맞게 식 세우기
    문제의 조건에 맞는 식을 만드는 데 연립부등식이라면 식을 두 개 만드세요.
  3. 부등식 풀기
    부등식의 성질을 이용해서 부등식을 풀어서 해를 구합니다.
  4. 문제의 뜻에 맞는 해 선택
    문제에서 요구하는 해를 찾습니다. 문제에서 해의 범위를 준 경우는 물론 개수나 사람 수 등은 자연수가 되는 것에도 주의하세요.

한가지 주의해야 할 것은 등호에 관한 건데요. 식을 그냥 주면 크게 신경 쓰지 않아도 되지만, 식을 만들어야 할 때는 등호가 들어가야 하는지 들어가면 안 되는지를 잘 파악해야 해요.

부등식의 활용 유형

거리, 속력, 시간에 관한 문제

거리, 속력, 시간에 관한 문제는 방정식, 부등식을 가리지 않고 나오는 활용문제에요. 공식은 반드시 외워야 해요.

거리, 속력, 시간 공식

농도에 관한 문제

농도 문제 역시 방정식, 부등식을 가리지 않고 나오는 문제에요.

두 소금물 A, B를 하나로 섞었을 때

  • (A + B)의 소금의 양 = A 소금의 양 + B 소금의 양
  • (A + B) 소금물의 양 = A 소금물의 양 + B 소금물의 양
  • (A + B) 의 농도 = (A + B)의 소금의 양 ÷ (A + B) 소금물의 양 × 100

어떤 경우에도 농도는 +/-로 구할 수 없어요. 두 소금물을 더했다고 해서 각각의 농도를 더해서 구하면 안된다는 얘기예요. 위 농도 공식에 있는 방법으로만 농도를 구해야 해요.

소금물 A를 가열했을 때(증발시켰을 때)

  • 가열한 후의 소금양 = 가열 전 의 소금양
  • 가열한 후의 소금물의 양 = 가열 전 소금물의 양 - 증발한 물의 양

예금에 관한 문제

예금에 관한 문제에서 놓치지 말아야 할 것은 처음에 가지고 있는 예금이에요. x개월 후의 예금은 (처음 예금 + x 개월 동안 입금한 금액)이에요.

현재 수정이의 예금 통장에는 12,500원, 진리의 예금 통장에는 14,000원이 예금되어 있다. 다음 달부터 매월 수정이는 1,200원씩, 진리는 900원씩 예금할 때 수정이가 예금한 돈이 진리가 예금한 돈보다 많아지는 것은 몇 개월째부터인지 구하여라.

몇 개월째부터인지 구하라고 했으니까 월을 x라고 놓아야겠네요.

수정이는 현재 12,500원을 가지고 있고, 매달 1,200원씩 예금하면, x개월 뒤에 수정이의 총 예금은 (12500 + 1200x)원이죠.
진리는 현재 14,000원을 가지고 있고, 매달 900원씩 예금했을 때, x개월 뒤의 진리의 예금은 (14000 + 900x)원이 되겠네요.

수정이의 예금이 진리의 예금보다 많아진다고 했으니까 12500 + 1200x > 14000 + 900x가 되어야 해요.

12500 + 1200x > 14000 + 900x
    125 + 12x > 140 + 9x
       12x - 9x > 140 - 125
                3x > 15
                x > 5

5보다 커야 되니까 6개월 후에 수정이의 예금이 진리의 예금보다 많아지겠네요.

물건의 개수에 관한 문제

두 개의 물건을 샀을 때, 총 수량이 나오는 경우에는 한 물건의 개수를 x개라고 하면, 다른 물건의 개수는 (총수량 - x)가 되는 걸 이용해요.

4,500원으로 한 자루에 150원인 연필과 200원인 볼펜을 합하여 25자루를 사려고 한다. 볼펜을 연필보다 많이 사려고 할 때, 볼펜은 몇 자루를 사면 되는지 구하여라.

볼펜을 몇 자루 살 수 있는지를 물어봤으니까 볼펜의 개수를 x라고 할게요. 총 25자루를 산다고 했으니까 연필은 (25 - x) 자루가 되겠네요. 그런데 볼펜의 개수가 연필의 개수보다 많이 사려고 하니까 x > 25 - x라는 식을 세울 수 있어요.

연필과 볼펜을 사는데 드는 총비용은 200x + 150(25 - x)원일 텐데 가진 돈이 4,500원이니까 4,500원보다는 적어야겠죠. 단, 이때 4,500원이 되어도 괜찮으니까 등호가 있어도 되겠군요.
200x + 150(25 - x) ≤ 4500

두 개의 부등식이 만들어졌어요. 연립부등식 문제네요.

x > 25 - x                                       200x + 150(25 - x) ≤ 4500
2x > 25                                               4x + 3(25 - x) ≤ 90
 x > 12.5                                               4x + 75 - 3x ≤ 90
                                                                              x ≤ 15

12. 5 < x ≤ 15이고 개수는 자연수여야 하므로, 볼펜은 13, 14, 15 자루를 살 수 있어요.

과부족 문제

과부족 문제는 부등식의 풀이에서 어려운 유형이에요.

어느 반 학생들이 의자에 앉으려고 한다. 한 의자에 4명씩 앉으면 7명이 앉지 못하고, 6명씩 앉으면 의자 2개가 남을 때 의자의 개수는 최대 몇 개인지 구하여라.

의자의 개수를 구하라고 했으니까 x라고 놓을게요.

의자의 개수도 모르지만 학생 수도 몰라요. 그러니까 학생 수를 먼저 구해보죠. "한 의자에 4명씩 앉으면 7명이 앉지 못하고"에서 학생 수를 알 수 있어요. (4x + 7)명

이제부터가 중요해요. 한 의자에 6명씩 앉으면 2개가 남는다고 했는데요. 이 말이 꼭 모든 의자에 6명씩 앉았다는 뜻은 아니에요. 학생이 앉은 마지막 의자에는 6명을 다 채우지 못할 수도 있거든요. 한 명이 앉아있을 수도 있고 두 명이 앉아있을 수도 있고, 6명이 다 앉아있을 수도 있어요. 또 한 명이 앉아있다 하더라도 의자를 사용했으니까 남은 의자는 아니겠죠?

마지막 의자를 뺀 다른 의자에는 모두 6명씩 앉았을 테니까 그 학생 수는 6(x - 3)이 될 거예요. x - 3에서 3은 남은 의자 2개, 마지막 의자 1개를 나타냅니다.

마지막 의자에 한 명이 앉았을 때는 학생 수가 가장 적을 때, 6명이 앉아있으면 학생 수가 가장 많을 때죠? 그런데 학생 수는 4x + 7이니까 이걸 식으로 나타내면
6(x - 3) + 1 ≤ 4x + 7 ≤ 6(x - 3) + 6

6(x - 3) + 1 ≤ 4x + 7                                       4x + 7 ≤ 6(x - 3) + 6
6x - 18 + 1 ≤ 4x + 7                                       4x + 7 ≤ 6x - 18 + 6
        2x ≤ 24                                                       -2x ≤ -19
        x ≤ 12                                                         x ≥ 9.5

9.5 ≤ x ≤ 12 이므로 의자의 최대 개수는 12개가 되네요.

다시 강조하지만 과부족 문제에서는 마지막 의자의 학생 수를 계산하는 부분에 주의하세요.

연속하는 세 수에 관한 문제

연속하는 세수에서는 가운데 수를 x로 놓으면 돼요.

연속하는 세 자연수(정수): x - 1, x, x + 1
연속하는 세 홀수(짝수): x - 2, x, x + 2

함께 보면 좋은 글

일차부등식의 풀이
여러가지 일차부등식
연립부등식, 연립부등식의 풀이
여러가지 연립부등식

정리해볼까요

부등식의 활용

  1. 문제에서 구하고자 하는 것을 x로 놓는다.
  2. 문제에 맞게 부등식을 세운다.
  3. 부등식을 푼다.
  4. 문제의 조건에 맞는 해를 찾는다.
 
그리드형

여러가지 연립부등식

2012. 6. 12. 12:30

연립부등식의 풀이는 공통해를 찾는 과정이 중요해요. 수직선을 통해서 충분히 연습해봐야 합니다.

연립방정식에서 A = B = C 꼴의 연립방정식을 푼 기억이 나죠? 어떻게 풀었나요? A = B, B = C, A = C 중 두 개를 선택해서 연립방정식으로 풀었었죠?

이렇게 생긴 게 연립부등식에서 있어요. A < B < C인데요. 방법이 약간 달라요.

이거는 무조건 A < B, B < C를 연립해서 풀어야 해요. A < C라는 식을 만들어서는 안 됩니다. A < C라는 식에서는 A와 B, B와 C 사이의 대소를 알 수가 없잖아요. 그래서 엉뚱한 답이 나오거든요.

A < B < C → A < B and B < C

3x - 2 ≤ 2x + 4 < 20 + 4x의 해를 구하여라.

A < B < C 꼴이기 때문에 A < B와 B < C로 나누어서 연립부등식을 만들어야 해요.

3x - 2 ≤ 2x + 4와 2x + 4 < 20 + 4x로 나눌 수 있겠군요.

3x - 2 ≤ 2x + 4                                         2x + 4 < 20 + 4x
3x - 2x ≤ 4 + 2                                         2x - 4x < 20 - 4
x ≤ 6                                                           -2x < 16
                                                                      x > -8

해는 x ≤ 6과 x > -8의 공통부분인 -8 < x ≤ 6이에요.

해가 특별한 연립부등식

미지수가 2개인 일차방정식 두 개를 묶은 연립방정식에서는 보통 해가 한 쌍이었어요. 그런데 해가 특수한 연립방정식에서는 해가 무수히 많거나 하나도 없는 경우가 있었죠?

연립부등식에서도 보통은 해가 일정한 범위를 갖게 나오는데요, 그렇지 않은 경우가 있어요. 해가 한 개일 때도 있고 해가 하나도 없을 때도 있어요.

수직선으로 표현해보면 더 쉽게 이해할 수 있을 거예요.

아래 그림에서는 두 부등식의 해의 공통부분이 a라는 수로 딱 떨어져요. 이때는 x = a라는 하나의 해만 갖게 돼요.

해가 특별한 연립부등식 - 해가 하나만 있을 때

다음에는 해가 하나도 없을 때가 있어요. 즉 공통부분이 하나도 없다는 거지요. 빈 동그라미와 까맣게 칠해진 동그라미를 잘 구별해야 해요.

해가 특별한 연립부등식 - 해가 없을 때

함께 보면 좋은 글

해가 특수한 연립방정식
여러가지 일차부등식
연립부등식, 연립부등식의 풀이
부등식의 활용, 연립부등식의 활용

정리해볼까요

A < B < C 꼴의 연립부등식: A < B와 B < C로

연립부등식의 해가 1개이거나 해가 없을 수도 있다.

 
그리드형

연립부등식에 대해서 배워볼까요? 연립이라는 단어는 연립방정식에서 이미 들어본 단어입니다. 방정식을 두 개 이상 묶어놓은 것이었죠. 연립부등식은 부등식을 두 개 이상 묶어놓은 걸 말해요.

연립방정식의 해는 묶여있는 방정식들을 모두 만족시키는 미지수의 값이었죠? 마찬가지로 연립부등식의 해는 묶여있는 모든 부등식을 만족시키는 해에요. 부등식들의 해의 공통부분을 찾으면 돼요.

연립방정식과 연립부등식의 차이를 알아보죠.

우리가 배운 연립방정식은 미지수가 x, y 두 개가 있었어요. 하지만 연립부등식은 미지수가 x 하나에요.

연립방정식을 풀 때는 가감법, 대입법을 이용해서 풀었는데, 이 방법들은 기본적으로 미지수의 개수를 줄이는 방법이에요. 그런데 연립부등식은 미지수가 하나니까 따로 특별한 방법이 필요한 게 아니에요.

연립부등식은 미지수도 하나고, 특별한 방법이 필요한 것이 아니라서 연립방정식보다 조금 더 쉬워요.

연립부등식의 풀이

연립방정식에서는 두 식을 한꺼번에 이용해요. 두 식을 더하거나 한 식을 다른 식에 대입하거나요.

하지만 연립부등식은 두 식을 한꺼번에 이용하지는 않아요. 식의 독립성(?)을 유지해요. 부등식별로 따로 해를 구한 다음에 공통인 부분을 찾아서 표시합니다.

  1. 각 부등식의 해를 구한다.
  2. 두 부등식의 해의 공통부분을 찾는다.

연립부등식 3x - 4 < 2x + 3 와 3x - 6 ≥ 2x - 1을 풀어라.

3x - 4 < 2x + 3                               3x - 6 ≥ 2x - 1
3x - 2x < 3 + 4                               3x - 2x ≥ -1 + 6
     x < 7                                             x ≥ 5

각 부등식의 해를 구했으니까 이제 공통인 부분을 찾아야 하는데, 수직선으로 표시해보면 쉽게 알 수 있어요.

연립부등식의 해 - 수직선으로 구하기

연립부등식의 해 구하기

제일 오른쪽에서 보라색으로 표시된 부분이 바로 두 부등식의 공통부분 즉, 연립부등식의 해에요. 5 ≤ x < 7

각각의 해를 수직선에 그린 뒤 두 수직선을 합치면 되는데, 실제로 문제를 풀 때는 수직선 하나에 함께 그리세요. 높이를 다르게 해서 구분하면 되니까요.

나중에 익숙해지면 수직선을 그리지 않고 바로 구할 수도 있어요.

함께 보면 좋은 글

일차부등식의 풀이
여러가지 일차부등식
여러가지 연립부등식
부등식의 활용, 연립부등식의 활용
연립방정식이란

정리해볼까요

연립부등식

  • 부등식을 두 개를 묶어놓은 것
  • 연립부등식의 해: 연립된 각각의 부등식을 동시에 만족시키는 해
  • 연립부등식의 풀이: 연립부등식의 해 구하기
    1. 연립부등식의 해를 각각 구한다.
    2. 각 부등식의 해를 수직선에 나타내어 공통인 부분을 찾는다.
 
그리드형

여러가지 일차부등식

2012. 6. 10. 12:30

이번에 공부할 여러 가지 일차부등식은 복잡한 일차방정식의 풀이, 복잡한 연립방정식의 풀이에서 배웠던 내용과 비슷해요.

복잡한 연립방정식에서 우리 어떻게 했죠? 괄호가 있으면 분배법칙을 이용해서 괄호를 풀고, 계수가 소수나 분수이면 적당한 수를 곱해서 정수로 바꿔줬었죠? 이번에 배울 내용도 바로 그거에요.

복잡한 식을 계산하기 쉽고 간단하게 방법을 공부할 거예요. 복잡한 식을 간단하게 바꾼 다음에 기존에 알고 있던 방법대로 일차부등식을 풀면 되지요.

괄호가 있는 일차부등식 - 분배법칙을 이용해서 전개

괄호가 있는 일차부등식은 분배법칙을 이용해서 괄호를 풀고, 동류항끼리 계산해서 해를 구해요.

3(x + 2) < 2(x - 3) + 1의 해를 구하여라.

괄호가 있으니까 전개해보죠.

3(x + 2) < 2(x - 3) + 1
3x + 6 < 2x - 6 + 1
3x - 2x < -6 + 1 - 6
x < -11

계수가 분수인 일차부등식 - 분모의 최소공배수를 곱한다.

계수가 분수인 일차부등식에는 분수의 분모의 최소공배수를 양변에 곱해주세요. 계수를 정수로 만들어 계산하는 거예요.

여러 가지 일차부등식의 풀이 - 계수가 분수일 때의 해를 구하여라.

분수의 분모가 2, 3, 4, 3으로 최소공배수는 12네요. 양변에 12를 곱해보죠.

여러 가지 일차부등식의 풀이 - 계수가 분수일 때 풀이

계수가 소수인 일차부등식 - 10의 거듭제곱을 곱한다.

계수가 소수이면 10의 거듭제곱(10, 100, 1000)을 곱하여 계수를 정수로 바꿔서 계산합니다.

0.1x + 0.06 < 0.03x - 0.5의 해를 구하여라.

소수 둘째 자리까지 있는 계수가 있으니까 100을 곱해줘야 소수가 없어지고 정수만 남겠네요. 양변에 100을 곱해보죠.

0.1x + 0.06 < 0.03x - 0.5
100(0.1x + 0.06) < 100(0.03x - 0.5)
10x + 6 < 3x - 50
10x - 3x < -50 - 6
7x < -56
x < -8

함께 보면 좋은 글

[중등수학/중1 수학] - 복잡한 일차방정식의 풀이
복잡한 연립방정식의 풀이
일차부등식의 풀이
연립부등식, 연립부등식의 풀이

정리해볼까요

여러가지 부등식의 풀이

  • 괄호가 있을 때: 분배법칙을 이용하여 괄호 전개 후 동류항 계산
  • 계수가 분수일 때: 분모의 최소공배수를 양변에 곱해서 계수를 정수로
  • 계수가 소수일 때: 10의 거듭제곱을 양변에 곱해서 계수를 정수로
 
그리드형

일차부등식의 풀이

2012. 6. 9. 12:30

부등식, 부등식의 뜻, 부등식의 성질에서 부등식이 무엇인지 부등식은 어떤 성질이 있는지 알아봤어요.

이제는 부등식의 성질을 이용해서 부등식의 해를 구해볼 거예요.

우리가 공부할 건 부등식 중에서도 일차부등식이에요. 일차부등식 뭔지 알 것 같죠? 일차방정식에서 "일차"가 뭘 뜻하는지 알고 있잖아요. 일차부등식에서도 같아요. 모든 항을 좌변으로 옮기고 우변에 0을 둔 상태에서 미지수의 차수가 일차인 부등식을 일차부등식이라고 해요.

ax + b < 0   or  ax + b ≤ 0   or  ax + b > 0   or  ax + b ≥ 0   (단, a ≠ 0)

일차방정식의 풀이

먼저 일차방정식의 풀이를 한 번 정리해보죠.

일차방정식 어떻게 풀었나요? 미지수가 있는 항은 좌변으로 상수항은 우변으로 이항이라는 걸 해요. 그리고 미지수의 계수로 양변을 나눠서 미지수 x를 구하죠?

일차방정식 4x + 5 = 2x + 3의 해를 구하여라.

4x + 5 = 2x + 3
4x - 2x = 3 - 5
2x = -2
x = -1

일차부등식의 풀이

일차부등식도 일차방정식처럼 좌변에 미지수가 있는 항, 우변에는 상수항이 오도록 이항하고 미지수의 계수로 양변을 나눠서 해를 구해요.

중요한 차이가 있다면 미지수의 계수로 양변을 나눌 때 음수로 나누면 부등호의 방향이 바뀐다는 거예요.

일차부등식 x - 3 > 5x + 5의 해를 구하여라.

x - 3 > 5x + 5
x - 5x > 5 + 3               (∵ 좌변에 x 항, 우변에 상수항이 오도록 이항)
-4x > 8                   (∵ 좌변과 우변을 각각 동류항 정리)
x < -2                     (∵ 미지수의 계수로 양변을 나눔. 계수가 음수이면 부등호 방향이 바뀜)

일차부등식의 풀이는 부등식의 성질에서 나온 것처럼 음수를 곱하거나 나눌 때 부등호 방향이 바뀌는 것만 주의하면 일차방정식의 풀이법과 완전히 같아요.

일차부등식의 해와 수직선

방정식에서는 그 해가 x = 2처럼 하나였기 때문에 그냥 쓰면 되는데, 부등식의 해는 좀 다른 모양이죠? x<2는 1도 되고 0도 되고 -1도 되고, 1/2도 돼요.

그래서 그냥 쓰는 것도 좋지만 그림으로 나타내는 방법도 있어요. 수직선 위에 표시하는 방법인데요.

  1. 일단 수직선을 가로로 하나 그어요.
  2. 그리고 부등식을 푼 해의 숫자를 적습니다. 그다음 숫자에 작은 동그라미를 그리세요. 이때 부등호가 <, >면 그냥 동그라미를, ≤, ≥면 까만 동그라미를 그리세요.
  3. 동그라미에서 위쪽으로 직선을 그립니다. 그리고 가로선을 하나 더 그을 건데요, 부등호가 <이면 왼쪽으로 >이면 오른쪽으로 선을 그으세요.
  4. 위에서 그린 선과 처음에 그었던 수직선 사이의 부분을 색칠(빗금)하세요.

x<2를 수직선에 나타내는 방법이에요. 부등호가 <이기 때문에 2위의 동그라미는 색칠되어 있지 않아요. 그리고 미지수가 2보다 작기 때문에 왼쪽으로 선을 그었어요. 2보다 작은 수인 1, 0, -1 등이 2보다 왼쪽에 있으니까 선을 왼쪽으로 긋는 거예요.

부등식의 해를 수직선에 나태내는 방법

아래는 x ≥ 4를 수직선에 나타내는 방법이에요. 부등호가 ≥라서 4위의 동그라미에 색칠했고요. x가 4보다 크니까 오른쪽으로 선을 그었어요.

부등식의 해를 수직선에 나타내는 방법 2

해를 수직선에 그리는 방법뿐 아니라 그림을 보고 해를 알아내는 것도 중요해요. 위 그림을 보고 x ≥ 4를 나타내는 것이라는 걸 알 수 있어야 한다는 얘기에요.

2x - 3 ≤ 5x - 9의 해를 구하고, 수직선에 나타내어라.

2x - 3 ≤ 5x - 9
2x - 5x ≤ -9 + 3
-3x ≤ -6
x ≥ 2

일차부등식의 해를 수직선에 표시

함께 보면 좋은 글

[중등수학/중1 수학] - 일차방정식의 풀이, 일차방정식의 뜻, 이항
부등식의 성질
여러가지 일차부등식
연립부등식, 연립부등식의 풀이

정리해볼까요

일차부등식의 풀이

  1. 좌변에는 미지수가 있는 항, 우변에는 상수항이 오도록 이항
  2. 좌변과 우변을 동류항 계산
  3. 미지수의 계수로 양변을 나눈다. - 이때 미지수의 계수가 음수이면 부등호의 방향이 바뀐다.

해를 수직선에 나타내는 방법

  • 부등호가 <, >이면 그냥 동그라미, 부등호가 ≤, ≥이면 까만 동그라미
  • x가 해보다 작으면 왼쪽으로, x가 해보다 크면 오른쪽으로
 
그리드형

부등식의 성질

2012. 6. 8. 12:30

부등식이란 무엇인지 이해하셨나요?

부등식을 이해할 때 등식과 비교해서 이해하면 좀 더 쉽게 이해할 수 있어요. 등식과 부등식은 이름에서 알 수 있듯이 사촌(?) 관계에요. 등호 대신 부등호를 사용하는 게 부등식이죠.

부등식과 등식이 비슷한 부분이 있는데, 같은 부분은 그대로 이해하면 되고, 다른 부분만 조금 더 생각하면 돼요. 두 가지 빼면 등식의 성질과 완전히 같아요. 등식의 성질을 다 알고 있겠지만 한 번 더 정리해보죠.

등식의 성질

  1. 등식의 양변에 같은 수를 더해도 등식은 성립한다.
    a = b이면 a + c = b + c
  2. 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
    a = b이면 a - c = b - c
  3. 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
    a = b이면 ac = bc
  4. 등식의 양변을 같은 수로 나누어도 등식은 성립한다.
    a = b이면 a ÷ c = b ÷ c (c ≠ 0)

등식에서는 양변에 같은 수를 더하거나 빼거나 곱하거나 나누어도 등식은 성립하는 성질이 있어요. 부등식에도 비슷한 성질이 있어요.

부등식의 성질

부등식의 양변에 똑같은 수를 더할 때: 부등호의 방향은 바뀌지 않는다.

8 > 4라는 부등식을 이용해보죠.

위 부등식의 양변에 똑같이 2를 더해볼까요? 8 + 2 > 4 + 2는 10 > 6이 되어서 부등호의 방향이 그대로예요. 양변에 음수를 더해볼까요? 8 + (-2) > 4 + (-2)을 하면 6 > 2이 되어서 부등호의 방향은 역시 바뀌지 않아요.

부등식의 양변에서 똑같은 수를 뺄 때: 부등호의 방향은 바뀌지 않는다.

이번에는 양변에서 같은 수를 빼보죠. 2를 빼 볼게요. 8 - 2 > 4 - 2는 6 > 2가 되어서 부등호가 그대로예요. 음수를 빼 볼게요. 8 - (-2) > 4 - (-2)은 10 > 6이 되어서 마찬가지로 부등호가 그대로군요.

부등식의 양변에 똑같은 수를 곱할 때: 양수를 곱하면 그대로, 음수를 곱하면 바뀐다.

자 이번에는 같은 수를 곱해볼게요. 8 × 2 > 4 × 2은 16 > 8이 되어서 부등호가 그대로예요. 음수를 곱해보죠. 좌변은 8 × (-2) = -16, 우변은 4 × (-2) = -8이 돼요. 부등호가 어떻게 되어야 하죠? -16 < -8처럼 부등호가 바뀌어야 참이죠?

부등식의 양변을 똑같은 수로 나눌 때: 양수로 나누면 그대로, 음수로 나누면 바뀐다.

나누기를 해보죠. 8 ÷ 2 > 4 ÷ 2 는 부등호 방향이 그대로예요. 음수인 (-2)로 나눠볼까요? 8 ÷ (-2)과 4 ÷ (-2) 중 어떤 게 더 큰가요? -4 < -2가 되어야 참이 되네요.

위의 내용을 다 이해했다면 이것만 기억하세요.

부등식의 성질
부등식의 양변에 음수를 곱하거나 음수로 나눌 때만 부등호의 방향이 바뀐다. 그 외에는 그대로이다

a < b일 때 다음 괄호에 알맞은 부등호를 넣어라.
(1) a+5 (    ) b+5
(2) a-3 (    ) b-3
(3) 10a (    ) 10b
(4) -2a (    ) -2b
(5) -5a + 9 (    ) -5b + 9

(1)에서 a < b 이고, 양변에 같은 수인 5를 더했으므로 부등호의 방향은 바뀌지 않고, 그대로 즉, a + 5 < b + 5가 되고요.

(2)도 마찬가지로 양변에서 같은 수를 뺐으므로 부등호의 방향이 그대로예요. a - 3 < b - 3

(3)은 양변에 양수인 10을 곱했으니까 부등호의 방향이 그대예요. 10a < 10b

(4)는 양변에 음수인 -2를 곱했어요. 그러니까 부등호의 방향이 바꿔야겠죠? -2a > -2b

(5)에는 항이 두 개가 되었는데, a, b의 계수가 바뀐 것 즉, -5를 곱해준 계산이 먼저예요. 음수인 -5를 곱했으니 부등호가 바뀌겠죠? -5a > -5b가 돼요. 거기에 양변에 9를 더했으니까 부등호의 방향은 그대로 즉, -5a + 9 > -5b + 9가 돼요.

함께 보면 좋은 글

[중등수학/중1 수학] - 등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
부등식, 부등식의 뜻
일차부등식의 풀이
여러가지 일차부등식

정리해볼까요

부등식의 성질

  1. 부등식의 양변에 같은 수를 더해도 부등호의 방향은 바뀌지 않는다.
    a > b일 때 a + c > b + c
  2. 부등식의 양변에서 같은 수를 빼도 부등호의 방향은 바뀌지 않는다.
    a > b일 때 a - c > b - c
  3. 부등식의 양변에 같은 수를 곱할 때
    • 양수를 곱하면 부등호의 방향은 바뀌지 않는다.
      a > b일 때 ac > bc (c > 0)
    • 음수를 곱하면 부등호의 방향이 바뀐다.
      a > b일 때 ac < bc (c < 0)
  4. 부등식의 양변을 같은 수로 나눌 때
    • 양수로 나누면 부등호의 방향은 바뀌지 않는다.
      a > b일 때 a ÷ c > b ÷ c (c > 0)
    • 음수로 나누면 부등호의 방향이 바뀐다.
      a > b일 때 a ÷ c < b ÷ c (c < 0)
 
그리드형

부등식, 부등식의 뜻

2012. 6. 7. 12:30

이제부터 부등식에 대해서 공부할 거예요.

부등식을 공부하기 전에 먼저 1학년 때 공부했던 등식을 한 번 짚고 넘어갈게요.

등식이라는 건 등호(=)를 가운데 두고, 등호 양쪽에 숫자와 식을 써서 양쪽이 서로 같음을 나타내는 식이죠.

부등식은 등호 대신에 부등호 (>, <, ≥, ≤)를 가운데 두고 양쪽에 숫자와 식을 써서 크기를 비교하는 식이에요. 부등호의 사용에 대해서는 1학년 때 아주 잠깐 공부했었어요.

등식에서 등호 왼쪽에 있는 숫자와 식을 좌변이라고 하고 오른쪽에 있는 식을 우변이라고 해요. 부등식에서 똑같이 부등호의 왼쪽에 있는 식과 문자를 좌변이라고 하고 오른쪽에 있는 숫자와 식을 우변이라고 해요. 또 좌변과 우변을 한꺼번에 양변이라고 불러요.

등식과 부등식의 비교
등식 부등식
= >  <  ≥  ≤
서로 같다 크다, 작다, 크거나 같다, 작거나 같다.
2 = 2 3 > 2
x = 2 x > 2
x + 4 = 2 x + 4 > 2

부등식의 표현

등식은 크기가 같은 것만 있어서 표현하기가 쉬워요. 하지만 부등호는 네 가지나 있으니까 그 각각의 부등호가 나타내는 뜻을 정확히 이해하는 게 중요해요.

부등식의 표현
표현 A 기준 B 기준
A < B A는 B보다 작다
A는 B 미만
B는 A보다 크다
B는 A 초과
A > B A는 B보다 크다
A는 B 초과
B는 A보다 작다
B는 A 미만
A ≤ B A는 B보다 작거나 같다
A는 B 이하
A는 B보다 크지 않다.
B는 A보다 크거나 같다
B는 A 이상
B는 A보다 작지 않다
A ≥ B A는 B보다 크거나 같다
A는 B 이상
A는 B보다 작지 않다.
B는 A보다 작거나 같다
B는 A 이하
B는 A보다 크지 않다

특히 "크지 않다"와 "작지 않다"에 주의하세요.

다음을 부등식으로 나타내시오.
(1) 어떤 수의 3배는 10보다 작다.
(2) 어떤 수의 7배에 2를 더한 것은 30보다 크지 않다

(1)에서 어떤 수를 모르니까 x라고 하면 어떤 수의 3배는 3x라고 할 수 있어요. 3x가 10보다 작으니까 부등호는 <를 사용해야겠네요. 그래서 답은 3x < 10이군요.

(2)는 마찬가지로 어떤 수의 7배니까 7x, 여기에 2를 더하면 7x + 2에요. 그런데 크지 않다는 건 뭘 뜻하죠? 작거나 같은 거예요. 그래서 부등호는 ≤를 써야겠죠. 7x + 2 ≤ 30이 되겠네요.

부등식의 참, 거짓

예를 들어서 3 > 2라는 부등식이 있어요. 이 부등식에서 좌변과 우변의 크기비교가 제대로 되었다면 이 부등식은 참이에요. 이 부등식은 참이네요.

그럼 3 ≥ 2라는 부등식은 어떨까요? 역시 참이네요.

3 < 2라는 부등식을 보죠. 3은 2보다 큰데 부등호는 "작다"를 나타내는 <가 쓰여 있네요. 부등식은 틀렸어요. 그래서 이때는 거짓이라고 해요.

부등식의 해

부등식의 해는 방정식의 해처럼 부등식이 참이 되게 하는 미지수의 값을 말해요.

부등식을 푼다는 말은 부등식이 참이 되게 하는 값, 즉 해를 구한다는 뜻이고요. 방정식에서도 사용했던 용어들이니 어렵지는 않죠?

부등식 x - 4 < 2 의 해를 모두 구하여라. (단, x는 자연수)

x가 자연수라고 했으니 x = 1부터 식에 대입해 보죠.

x 1 2 3 4 5 6 7
-3 < 2 -2 < 2 -1 < 2 0 < 2 1 < 2 2 < 2 3 < 2
참/거짓 거짓 거짓

위 표에서 보면 1 ~ 5까지는 부등식이 참이고, 6보다 크면 거짓이니까 이 부등식의 해는 x = 1 또는 x = 2 또는 x = 3 또는 x = 4 또는 x = 5네요.

함께 보면 좋은 글

방정식과 항등식, 등식의 뜻
부등식의 성질
일차부등식의 풀이
여러가지 일차부등식

정리해볼까요

부등식

  • 부등호(>, <, ≥, ≤)를 사용하여 수와 숫자의 대소 관계를 나타낸 식
  • 부등식의 해: 부등식을 참이 되게하는 미지수의 값
  • 부등식을 푼다: 부등식의 해를 구하는 것
 


그리드형

연립방정식의 활용

2012. 5. 24. 12:30

이제까지 연립방정식과 그 풀이법(가감법, 대입법)에 대해서 알아봤어요. 이번 글에서는 이런 방법들을 응용해서 실제로 어떻게 문제를 푸는 지 설명할게요.

연립방정식의 활용에서 제일 중요한 것은 식을 세우는 과정이에요. 문제에서 요구하는 값을 구할 수 있는 식을 제대로 세우는 연습을 많이 해야 해요.

일차방정식의 활용 1, 일차방정식의 활용 2에서 했던 내용과 큰 차이는 없어요. 식이 연립방정식이라는 것 빼고는요. 즉, 연립방정식 방정식 2개를 만들어야 해요. 그때의 기억을 되살려보세요.

연립방정식의 활용 문제 푸는 단계

  1. 구하려고 하는 것을 x, y로
    연립방정식을 활용하는 문제에서 첫 번째 해야 할 일은 문제에서 구하는 것이 무엇인지를 파악하는 거예요. 대부분은 문제 마지막에 "…?을 구하여라."라고 나오니까 금방 찾을 수 있어요. 문제에서 구하라고 하는 것을 미지수, x, y로 놓습니다.
  2. 연립방정식 세우기
    문제에서 준 정보와 미지수를 잘 조합해서 식을 세워야 해요. 연립방정식 문제니까 식은 당연히 2개가 나오겠죠.
  3. 연립방정식 풀기
    만들어진 연립방정식을 가감법과 대입법을 이용해서 풉니다.
  4. 결과 확인
    푼 결과가 실제로 맞는지 확인하세요.

시간, 거리, 속력에 관한 문제

거리, 시간, 속력에 관한 문제는 수학에서는 빼놓지 않고 나오는 문제에요. 일차방정식은 물론 이차방정식, 부등식, 함수에서까지 모든 영역에서 나오는 문제입니다. 수학뿐 아니라 과학시간에도 배우는 내용이죠.

그래서 거리, 속력, 시간 구하는 공식을 꼭 외워야 해요.

거리, 속력, 시간 공식

왼쪽에 있는 그림을 기억하세요. 가로로 그어져 있는 선을 분수에서 사용하는 그 가로선이라고 생각하면 되겠죠.

이 유형에서 주의해야 할 건 단위에요. 단위가 시간인지 분인지 km인지 m 인지 꼭 확인해야 해요.

선영이는 집에서 학교까지 3km를 가는 동안 처음에는 시속 3km의 속력으로 걷다가 중간에 시속 5km의 속력으로 뛰어서 총 40분이 걸렸다. 선영이가 학교까지 뛰어간 거리를 구하여라.

집에서 학교까지의 거리가 3km니까 걸어간 거리를 x, 뛰어간 거리를 y라고 하면 x + y = 3이에요.

이번에는 시간을 한 번 계산해보죠. 그런데 속력은 단위가 시속이므로 시단위이고 걸린 시간은 40분으로 분단위예요. 두 시간의 단위를 맞추려면 40분을 시간으로 바꿔줘야 해요.

걸어간 시간 = , 뛰어간 시간 = , 총 걸린 시간 = 

연립방정식이 만들어졌어요.

①식에서 y = 3 - x

②식에 대입하면
5x + 3(3 - x) = 10
5x - 3x + 9 = 10
2x = 1
x = 0.5
y = 2.5

따라서 선영이가 학교까지 뛰어간 거리는 2.5km네요.

농도에 관한 문제

농도에 관한 문제 역시 빠지지 않고 나오는 문제입니다. 어쩔 수 없지만, 공식을 외워야 하고요.

농도에 관한 문제에서도 g과 kg의 단위에 주의하세요.

두 소금물 A, B를 하나로 섞었을 때

  • (A + B)의 소금의 양 = A 소금의 양 + B 소금의 양
  • (A + B) 소금물의 양 = A 소금물의 양 + B 소금물의 양
  • (A + B) 의 농도 = (A + B)의 소금의 양 / (A + B) 소금물의 양  * 100

어떤 경우에도 농도는 +/-로 구할 수 없어요. 두 소금물을 더했다고 해서 각각의 농도를 더해서 구하면 안된다는 얘기예요. 위 농도 공식에 있는 방법으로만 농도를 구해야 해요.

소금물 A을 가열했을 때

  • 가열한 후의 소금양 = 가열 전의 소금양
  • 가열한 후의 소금물의 양 = 가열 전 소금물의 양 - 증발한 물의 양

소금물 A에 물만 넣었을 때

  • 물을 넣은 후의 소금양 = 물을 넣기 전의 소금양
  • 물을 넣은 후의 소금물의 양 = 물을 넣기 전의 소금물의 양 + 넣은 물의 양

8% 소금물에 5% 소금물을 섞어서 6% 소금물 600g을 만들려고 한다. 8% 소금물과 5% 소금물의 양을 구하여라.

두 소금물을 섞어서 600g의 소금물을 만든다고 했으니까, 8% 소금물의 양을 x, 5% 소금물의 양을 y라고 하면 x + y = 600이라는 식을 하나 만들 수 있어요.

8% 소금물과 5% 소금물에 들어있는 소금의 양을 합치면 6% 소금물 600g에 들어있는 소금의 양과 같아요. 이걸 식으로 써보죠.

(8% 소금물에 들어있는 소금의 양) + (5% 소금물에 들어있는 소금의 양) = (6% 소금물에 들어있는 소금의 양)

연립방정식이 만들어졌네요.

①식에서 y = 600 - x

②식에 대입하면
8x + 5(600 - x) = 3600
3x = 600
x = 200
y = 400

8% 소금물은 200g, 5% 소금물은 400g이네요.

함께 보면 좋은 글

[중등수학/중2 수학] - 연립방정식의 활용 2
[중등수학/중2 수학] - 해가 특수한 연립방정식
[중등수학/중2 수학] - 복잡한 연립방정식의 풀이

정리해볼까요

연립방정식의 활용 문제 푸는 순서

  1. 구하려는 값을 찾아서 x, y로 놓기
  2. 연립방정식 세우기
  3. 연립방정식 풀기
  4. 결과 확인
 
그리드형

지금까지 배운 연립방정식은 일차식이라서 기본적으로 해는 (x, y)의 한 쌍만 존재해요. 그런데 그렇지 않은 경우가 있어요. 아주 특이하게 해가 무수히 많은 경우도 있고 해가 하나도 없는 경우가 있거든요.

어떤 경우에 해가 무수히 많고, 어떤 경우에 해가 하나도 없는지 알아볼까요?

해가 무수히 많은 경우

해가 무수히 많다는 건 일차방정식 두 개를 공통으로 만족하게 하는 해가 많다는 뜻이죠. 즉 두 방정식을 참이 되게 하는 (x, y) 순서쌍이 무수히 많다는 얘기에요.

위 연립방정식을 가감법으로 풀어볼까요?

위의 식을 ①식이라고 하면 ①식에 2를 곱해서 x의 계수의 절댓값을 똑같게 만들어 주면 어떻게 되나요? 4x + 2y = 16이 돼서 ②식과 같은 식이 되어 버려요.

① x 2 - ②을 해보면 좌변은 0, 우변도 0이 되서 0x + 0y = 0이라는 식이 만들어져버리죠. x, y의 값을 구할 수가 없어요.

이렇게 생각해보세요. 정수, 자연수 등의 특별한 조건이 없는 한 미지수가 2개인 일차방정식의 해의 개수는 무수히 많아요. ①식에 2를 곱했더니 ②식과 같아졌어요. 결국, 같은 식이라는 얘기죠. 두 식이 같으니까 해도 당연히 같겠죠. 그래서 공통으로 만족하게 하는 해도 무수히 많은 거죠.

해가 무수히 많은지 알아보려면 직접 계산해서 0 = 0 꼴이 나오는 경우를 찾아도 되지만 계수를 비교해서 알아내는 간단한 방법이 있어요.

①식과 ②식에서 x의 계수끼리, y의 계수끼리, 상수항끼리의 비를 구해서 비교해보는 거예요. 위 예제에서 x 계수의 비는 , y 계수의 비는 , 상수항의 비는 으로 모두 로 같아요.

연립방정식의 해가 무수히 많으려면 두 식의 x, y의 계수비와 상수항의 비가 모두 같아야 해요.

해가 무수히 많을 조건

주의. 계수를 비교할 때는 계수의 부호까지도 포함해야 해요.

계수비는 이 아니라 이 되는 거예요.

해가 하나도 없는 경우

이와는 반대로 해가 하나도 없을 때도 있어요.

가감법으로 풀기 위해서 ①식에 2를 곱해서 ②식을 빼보죠.

0x + 0y = 2

위처럼 나오는 군요. 좌변은 0인데, 우변은 2에요. 말이 안 되죠. 0과 2가 같을 수는 없잖아요.

①식에 2를 곱했더니 어떻게 바뀌었나요? 2x - 2y = 18이 되었죠? ②식과 비교해보면 좌변은 같아요. 그런데 우변이 다르죠. x, y에 똑같은 값을 넣었는데 결과가 다르게 나온다는 거예요. 결국 무슨 말이냐면 두 식을 동시에 만족하는 해가 없다는 거죠.

해가 없을 때도 두 식의 계수비를 비교해서 알아낼 수 있어요. x와 y의 계수비는 같지만 상수항의 비는 다를 때 해가 하나도 없답니다.

해가 하나도 없을 조건

기타

혹시 x 계수와 상수항의 비는 같은데 y 계수의 비가 다를 때는 어떻게 될지 궁금하지 않나요? 아래 예제 문제를 풀어보시면 궁금증을 해결할 수 있을 거예요.

제대로 풀었다면 이전에 우리가 봤던 것처럼 x, y의 한 쌍의 해가 나올 거예요. 특히 계수비가 다른 y = 0이고요.

y 계수의 비와 상수항의 비는 같고 x 계수의 비만 다를 때도 해를 한 개 구할 수 있어요.

정리해볼까요

해가 특수한 연립방정식
연립방정식 에서

  1. 해가 무수히 많을 조건: x 계수의 비 = y 계수의 비 = 상수항의 비
  2. 해가 없을 조건: x 계수의 비 = y 계수의 비 ≠ 상수항의 비
 
그리드형

연립방정식을 푸는 기본 방법인 가감법과 대입법에 대해서 연습을 많이 해야 해요.

오늘은 복잡한 연립방정식을 푸는 방법에 대해서 설명할 거예요. 복잡한 연립방정식을 푸는 방법의 핵심은 복잡한 걸 복잡하지 않게 바꾸는 거예요.

실제 연립방정식을 푸는 건 가감법과 대입법을 이용해서 풀어요. 새로운 방법으로 푸는 게 아니니 쫄지(?) 마세요. 우리가 할 건 가감법과 대입법으로 풀 수 있게 모양을 바꾸는 것뿐이랍니다. 게다가 복잡한 일차방정식의 풀이에서 이미 해봤던 내용이고요.

오늘 공부할 내용은 나중에 다룰 부등식에서도 똑같이 적용되는 거니까 잘 익혀두세요. 부등식뿐 아니라 거의 대부분의 식에서 써먹을 수 있어요.

괄호가 있는 연립방정식의 풀이

괄호가 있는 식은 괄호를 풀어서 정리해야 합니다. 괄호는 분배법칙을 이용해서 풀고, 동류항끼리 계산해서 간단히 하는 거예요.

위 문제에는 ①식과 ②식에 각각 괄호가 있잖아요. ①식의 괄호를 풀어서 동류항끼리 계산해보죠.
3x - 2x + 2y = 2
x + 2y = 2

②식도 마찬가지로 괄호를 풀어서 정리해 볼게요.
6x - 6y - 3x = -5
3x - 6y = -5

결국 문제를 아래의 연립방정식 문제로 바꿀 수 있어요.

위처럼 생긴 연립방정식은 가감법이나 대입법으로 풀 수 있겠죠?

계수가 분수인 연립방정식의 풀이

미지수의 계수가 분수일 때는 분모의 최소공배수를 모든 항에 곱해서 계수를 정수로 바꿔야 해요. 계수가 분수인 것보다 정수인 것이 계산하기가 훨씬 쉽겠죠.

위의 식을 ①식이라고 하면 ①식에서 x 계수의 분모인 2와 y계수의 분모인 3의 최소공배수 6을 ①식에 곱해줍니다. ①식의 모든 항에 6을 곱하면 식은 3x - 2y = 18로 바뀌게 돼요.

②식에서 x의 계수의 분모는 4, y 계수의 분모는 3이니까 둘의 최소공배수 12를 ②식에 곱해주면 3x - 4y = 12가 되겠군요.

주의할 점은 x, y 뿐 아니라 우변에 있는 상수항에도 같은 수를 곱해줘야 하는 거예요.

문제를 오른쪽에 있는 모양으로 바꾸면 이제 풀 수 있겠죠?

계수가 소수인 연립방정식의 풀이

이번에는 계수가 소수인 경우랍니다. 계수가 소수일 때는 식에 10의 거듭제곱인 수(10, 100, 1000)를 곱해서 계수를 정수로 바꿔줍니다.

①식에 10을 곱해서 x + 2y = 6으로 바꿀 수 있겠네요.

②식에도 10을 곱하면 3x + 2y = 10이 되고요.

문제가 아래처럼 바뀌었습니다.

A = B = C 꼴인 연립방정식의 풀이

A = B = C 꼴인 연립방정식에서는 A = B, B = C, C = A라는 세 식을 만들 수 있어요. 이 중 2개만 골라서 연립방정식을 만들어 풀면 돼요.

A = B, B = C, C = A로 만들 수 있는 연립방정식은 위 세 가지 형태입니다. 이 중에서 아무거나 하나 골라서 풀어도 해는 모두 같아요.

2x + y = 4x + 5y + 2 = x - 3y - 7

문제에 나온 식을 A = B, B = C, C = A의 세 식으로 만들어 보죠.

위처럼 세 개짜리 연립방정식이 나오는데요. 이 중에서 아무거나 두 개를 고르면 돼요. ①, ②식을 골라서 동류항 정리를 해보면

위에 있는 연립방정식으로 모양을 바꿨으니 이제는 풀 수 있겠죠.

다시 얘기하지만, 연립방정식을 푸는 새로운 방법이 아니에요. 우리가 배웠던 가감법, 대입법을 쓸 수 있도록 그 모양을 바꾸는 과정이에요.

함께 보면 좋은 글

연립방정식이란
연립방정식의 풀이법 - 가감법 1
연립방정식의 풀이법 - 가감법 두 번째
연립방정식의 풀이법 - 대입법
해가 특수한 연립방정식
연립방정식의 활용

정리해볼까요

복잡한 연립방정식의 풀이

  1. 괄호가 있는 연립방정식: 분배법칙을 이용해서 괄호 전개 -> 동류항 계산
  2. 계수가 분수일 때: 계수의 분모의 최소공배수를 식에 곱하여 계수를 정수로 바꾼다.
  3. 계수가 소수일 때: 10의 제곱수를 곱하여 계수를 정수로 바꾼다.
  4. A = B = C꼴: A = B, B = C, C = A의 세 식 중 두 개를 선택해서 연립방정식을 만들어 푼다.
 
그리드형

연립방정식의 풀이 두 번째 방법인 대입법이에요.

먼저 가감법을 정리해볼까요. 연립방정식에서 각 문자의 계수 중 절댓값의 최소공배수가 작은 미지수의 절댓값이 같아지도록 각 식에 적당한 수를 곱해요. 그다음 계수의 부호가 같으면 두 식을 서로 빼고, 계수의 부호가 다르면 두 식을 더해서 미지수를 소거하는 방법이었어요.

가감법보다 대입법은 조금 더 쉬운 방법일 수 있어요.

대입이라는 단어가 무슨 뜻인지는 알고 있죠? 맞아요. 대신 넣은 거예요. 서로 바꾸는 거죠. "x = 2를 대입한다."라는 말은 "x 자리에 2를 넣고 x는 지운다."라는 뜻이죠. (대입, 식의 값)

연립방정식의 대입법도 마찬가지입니다.

대입법의 첫 번째 단계는 연립방정식에서 하나의 식을 고른 다음에 그 식을 한 문자에 대해서 정리하는 거예요. 한 문자에 대하여 정리하는 건 x = Oy + O처럼 좌변에 문자 하나, 우변에는 그 문자를 제외한 다른 문자와 상수항의 합 형태로 식을 바꾸는 거예요.

식을 한 문자에 대해서 정리한 후에 다른 식의 문자 자리에 대입하는 게 대입법이에요.

연립방정식의 풀이법 - 가감법 두 번째에서 봤던 예제인데요, 대입법으로 한 번 풀어볼까요?

다음 연립방정식의 해를 구하여라.
연립방정식 예제 문제

위의 식을 ①식, 아래 식을 ②식이라고 할게요.

①식을 y에 대해서 정리해보죠. 좌변에 y만 남기고 나머지는 전부 우변으로 이항해보세요.

y = 5x - 8로 바꿀 수 있네요. 이제 이 식을 ②식의 y자리에 대입합니다. 괄호를 쓰는 게 좋아요.

4x + 3 × (5x - 8) = 14라는 식이 됐네요. 이 식을 정리해서 x를 구해볼까요?

4x + 15x - 24 = 14
19x = 38
x = 2

x = 2라는 값을 얻었습니다. 이렇게 얻은 x = 2를 ①, ②식 중 아무 곳에나 넣어보죠. ①식에 넣어볼까요?

5 × 2 - y = 8
10 - y = 8
-y = -2
y = 2

y값도 구했네요. 연립방정식의 해는 x = 2, y = 2가 되는군요.

가감법으로 구했을 때와 대입법으로 구했을 때 모두 (2, 2)라는 해를 얻었어요.

두 방법 모두로 구해도 해는 같으니까 본인이 쉽다고 생각하는 방법으로 문제를 풀면 돼요.

가감법, 대입법 중 어떤 방법으로 풀지?

대개 미지수의 계수가 1이면 대입법이 편해요. 또는 계수로 식의 모든 항을 나눴을 때 정수가 되는 식도 대입법이 편리합니다. 가감법에서 계수를 맞추는 작업을 하지 않아도 되니까요.

연립방정식의 한 식이 x + y = 5라면 x = 5 - y라는 식으로 바꿔서 풀면 되겠죠.

또 연립방정식에 2x + 4y = 8이라는 식이 있다면 모든 항을 x의 계수인 2로 나눠서 x + 2y = 4로 바꾼 다음 x = 4 - 2y처럼 x에 대해서 정리할 수도 있지요.

2x + 3y = 7처럼 미지수의 계수로 모든 항을 나눴을 때 정수가 아닌 분수 형태가 되는 경우에는 가감법이 더 편리합니다.

함께 보면 좋은 글

미지수가 2개인 일차방정식
연립방정식이란
연립방정식의 풀이법 - 가감법 1
연립방정식의 풀이법 - 가감법 두 번째
복잡한 연립방정식의 풀이
해가 특수한 연립방정식
연립방정식의 활용

정리해볼까요

연립방정식의 풀이법 - 대입법: 식을 한 문자에 관해 정리한 후 다른 식에 대입하여 해를 구하는 방법. 괄호를 꼭 사용.

 
그리드형

중2 수학 목차

2012. 5. 20. 12:30

중학교 2학년 수학 목차입니다.

각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.

중1 수학 목차
중3 수학 목차

종이책 구입하기

  1. 유리수
  2. 식의 계산
  3. 연립방정식
  4. 부등식
  5. 일차함수

 

  1. 도형의 성질
  2. 도형의 닮음
  3. 피타고라스의 정리
  4. 확률
그리드형

연립방정식의 풀이법 - 가감법에 이은 연립방정식의 풀이 두 번째입니다. 첫 번째 글에서는 가감법에 대해서 알아봤는데요. 간단히 정리해볼까요?

연립방정식의 풀이에서 핵심은 바로 미지수의 개수를 줄이는 거였어요.

가감법은 두 식을 더하거나 빼서 미지수의 개수를 줄이는 방법이었죠. 없애고자 하는 미지수의 계수가 절댓값이 같고 부호가 같으면 두 식을 빼고, 미지수의 계수가 절댓값이 같고 부호가 다르면 두 식을 더하는 거였죠.

이번 글에서 공부할 내용은 미지수의 계수가 절댓값이 다를 때는 어떻게 하는가에요.

앞에서 해봤던 가감법 풀이는 미지수의 계수의 절댓값이 같아서 더해주고 빼주고만 하면 됐는데, 미지수 계수의 절댓값이 다르면 어떻게 해야 할까요?

가감법 - 미지수의 계수의 절댓값이 다를 때

가감법 첫 번째에서 했던 것처럼 위에 있는 식을 ①식, 아래에 있는 식을 ②식이라고 이름 붙이고, 두 식의 좌변끼리 우변끼리 더해보세요.

5x - y + 4x + 3y = 8 + 14

각 변을 정리해보면 9x + 2y = 22가 돼요. 미지수의 개수가 줄어들지 않았어요. 그럼 두 식을 빼볼까요?

5x - y - (4x + 3y) = 8 – 14
5x - y - 4x - 3y = -6
x - 4y = -6

두 식을 빼 봐도 마찬가지로 미지수의 개수가 줄어들지 않아요.

두 식을 더하거나 빼서 미지수를 없애려면 없애려고 하는 미지수의 계수의 절댓값이 같아야 해요. 생각해보세요. 5x와 -5x를 더해야 x가 없어지겠죠? 5x에서 5x를 빼야 없어질 거 아니에요? 5x에서 4x를 빼거나 더해서는 x가 없어지지 않아요.

우리가 할 건 뭐냐면 미지수를 없앨 수 있게, 두 식의 미지수의 계수의 절댓값을 같게 만드는 거예요.

자 여기서 선택을 해야 합니다. 무슨 선택이냐면 어떤 미지수를 없앨 것인가를 고르는 거예요. 없앨 미지수를 선택할 때는 딱 한 가지 방법만 사용하세요. 각 미지수의 계수 절댓값의 최소공배수가 작은 쪽을 선택해요. 계산을 쉽게 하려면 숫자가 작아야 하니까 최소공배수가 작은 쪽을 선택하는 거예요.

x의 계수의 절댓값은 ①식이 5, ②식이 4, 두 수의 최소공배수는 20이에요. y의 계수의 절댓값은 ①식이 1, ②식이 3, 두 수의 최소공배수는 3이네요. 그럼 절댓값의 최소공배수가 작은 y를 없애기로 하죠.

지금부터 하는 건 미지수의 계수의 절댓값을 같게 하는 거예요. 그 이후의 과정에 앞서 했던 “연립방정식의 풀이법 – 가감법”과 같아요.

①식에 3을 곱해 볼게요. 식에 3을 곱한다는 말은 ①식의 모든 항에 3을 곱해주는 겁니다.

5x – y = 8
3(5x – y) = 3 × 8

①식에 3을 곱하면 15x - 3y = 24으로 바뀌는데 이 식을 ③식이라고 하죠

②식과 ③식을 비교해보세요. y의 계수의 절댓값이 같아졌죠? 자 그럼 이제 ②식과 ③식을 더하거나 빼서 미지수 y를 없애고 x만 남길 수 있다는 뜻이에요.

②식과 ③식의 y 계수는 절댓값이 같고 부호가 반대니까 두 식을 더해야겠네요.

15x - 3y + 4x + 3y = 24 + 14
19x = 38
x = 2

x = 2라는 값을 구했어요. 이렇게 나온 x = 2를 ①식, ②식 아무 식에나 대입하세요. ①식에 넣어보죠.

5 × 2 - y = 8
10 - y = 8
-y = -2
y = 2

y값도 구했네요. 연립방정식의 해는 x = 2, y = 2군요.

함께 보면 좋은 글

미지수가 2개인 일차방정식
연립방정식이란
연립방정식의 풀이법 - 가감법 1
연립방정식의 풀이법 - 대입법
복잡한 연립방정식의 풀이
해가 특수한 연립방정식

정리해볼까요

미지수의 계수의 절댓값이 다르면

  1. 계수의 절댓값의 최소공배수가 작은 미지수를 선택하고
  2. 계수의 절댓값이 같아지도록 식에 적당한 수를 곱한 다음
  3. 두 식을 서로 더하거나 빼서 미지수를 없앤다.
 
그리드형

연립방정식이 무엇인지는 이해가 되죠? 연립방정식이란에서 살펴본 것처럼 연립방정식은 방정식을 두 개 이상 묶어놓은 걸 말해요. 그리고 간단한 예제도 풀어봤어요.

그런데 방정식의 공통 해를 찾기 위해서 일일이 숫자를 다 넣어봐야 할까요? 만약 미지수 x, y가 정수나 자연수라는 조건이 없다면 어떻게 하죠? 분수나 소수까지 일일이 넣어볼 수는 없는 노릇이잖아요.

그래서 숫자를 대입하지 않고 두 방정식을 변형해서 해를 구하는 방법을 알려줄게요.

연립방정식의 풀이 - 가감법

연립방정식을 푸는 방법은 두 가지가 있는데, 첫 번째는 가감법, 두 번째는 대입법이에요. 이 글에서는 가감법을 공부해 봐요.

연립방정식을 풀 때 가장 중요한 건 미지수의 개수를 줄이는 것입니다. 미지수가 2개이면 1개로 줄이는 거예요. 가감법과 대입법은 모두 미지수의 개수를 줄이는 방법이에요.

가감이란 말은 더하고 빼는 거죠. 그래서 가감법은 두 식을 서로 더하거나 빼서 미지수를 구하는 방법이에요. 두 식을 더한다는 게 무슨 말인지 이해가 안 되죠. 예제를 통해서 설명할게요.

미지수의 계수가 절댓값이 같고 부호가 반대일 때 - 두 식을 더한다

다음 식을 만족시키는 자연수 x, y를 구하여라.
연립방정식의 풀이 - 가감법 예제 1

위에 있는 식을 ①, 아래에 있는 식을 ②이라고 할게요. ①과 ②을 통째로 더해보죠. 두 식을 더한다는 건 등호를 기준으로 ①의 좌변과 ②의 좌변을 더하고 ①의 우변과 ②의 우변을 더하는 거예요.

① 좌변 + ② 좌변 = ① 우변 + ② 우변

x + y + x - y = 5 + 3

두 식을 더했더니 위처럼 되네요. 이제 좌변과 우변을 동류항끼리 계산해 보세요.

2x = 8

어떻게 됐나요? y가 없어지고 미지수가 x 하나뿐인 일차방정식으로 바뀌었죠? 미지수가 하나인 일차방정식은 우리가 1학년 때 공부했으니까 해를 구할 수 있죠.

x = 4

x = 4라는 값이 구해졌어요. x값을 구했으니까 y값을 구할 차례네요. y값을 구할 때는 x = 4를 이용합니다. x = 4를 ① 이나 ② 아무 식에나 넣어보죠. ①에 넣어볼까요? ①의 x 자리에 4를 대입했더니 아래 식처럼 바뀌었네요.

4 + y = 5

마찬가지로 미지수가 y 하나뿐인 일차방정식이 되었어요. 일차방정식을 풀어보면 y = 1이라는 값을 구할 수 있어요.

미지수가 x, y 2개였는데 그 미지수 값을 다 알아냈죠. x = 4, y = 1이 문제의 답이네요. (4, 1)이라고 써도 좋고요. 연립방정식이란에서 구한 해와 똑같죠?

이 문제에서는 ①과 ②에서 미지수 y의 계수의 절댓값이 1로 같고 부호가 반대지요? 이처럼 2개의 미지수 중 하나의 미지수의 절댓값이 같고 부호가 반대일 때는 두 식을 더해서 미지수의 개수를 줄여야 해요.

미지수의 계수가 절댓값이 같고 부호가 같을 때 - 두 식을 뺀다.

다른 문제를 하나 더 풀어보죠.

다음 연립방정식의 해를 구하여라.
연립방정식의 풀이 - 가감법 예제 2

위에서 했던 것처럼 위에 있는 식을 ①, 아래에 있는 식을 ②이라고 이름 붙이고, 두 식의 좌변끼리 우변끼리 더해보세요.

x + 2y + x - 3y = 6 + 1

각 변을 정리해보면 2x - y = 7가 돼요. 이상하죠? 위에서는 두 식을 더하면 미지수가 2개에서 하나로 줄었는데, 이번에는 미지수 2개가 그대로 있잖아요.

이럴 때는 두 식을 더하는 게 아니라 두 식을 빼보세요. 좌변은 좌변끼리, 우변은 우변끼리요. 두 식을 뺄 때는 ②의 좌변과 우변에 괄호를 넣는 것에 주의하세요.

① 좌변 - (② 좌변) = ① 우변 - (② 우변)

(x + 2y) - (x - 3y) = 6 - 1

위 식을 괄호를 풀어서 정리해보면
x + 2y - x + 3y = 5
5y = 5
y = 1

x가 없어지고 y만 남기 때문에 y값을 구할 수 있어요. 이 y = 1이라는 값을 ①이나 ② 아무 식에나 대입해보세요. ①에 대입해볼게요. 2y = 2 × y이니까 아래처럼 쓸 수 있어요.

x + 2 × 1 = 6
x + 2 = 6
x = 4

이제 x의 값도 구해졌네요. 그래서 위 연립방정식의 해는 x = 4, y = 1 이고요. (4, 1)이라고 써도 됩니다.

이 문제에서는 ①과 ②에서 미지수 x의 계수의 절댓값이 1로 같고 부호가 같아요 이처럼 2개의 미지수 중 하나의 미지수의 절댓값이 같고 부호가 같을 때는 두 식을 빼서 미지수의 개수를 줄여야 해요.

함께 보면 좋은 글

연립방정식이란
연립방정식의 풀이법 - 가감법 두 번째
연립방정식의 풀이법 - 대입법
복잡한 연립방정식의 풀이

정리해볼까요

연립방정식의 풀이: 미지수의 개수를 줄이는 게 포인트!!!
가감법: 좌변은 좌변끼리, 우변은 우변끼리 서로 더하거나 뺀다.

  • 계수의 절댓값이 같고 부호가 반대 → 두 식을 더하고
  • 계수의 절댓값이 같고 부호가 같으면 → 두 식을 뺀다.
 
그리드형

+ 최근글