중등수학/중2 수학
경우의 수 공식 - 대표 뽑기
여러 가지 경우의 수 공식 두 번째입니다.
이번 글에서는 다룰 내용은 뽑기인데요. 여러 물건 중에서 하나 또는 그 이상을 선택하는 거에요.
경우의 수 공식 - 한 줄 세우기에서 했던 한 줄 세우기와 다른 점은 줄 세우기는 여러 개가 있으면 그 여러 개를 다 사용하는 경우고, 뽑기는 여러 개 중에서 일부만 사용하는 거에요.
뽑기에도 공식이 있어요. 어렵지 않은 공식이니까 어떻게 유도되는지 잘 이해해보세요.
경우의 수 공식 - 순서대로 뽑기
순서대로 뽑기는 한 줄 세우기 + 뽑기에요. 그러니까 경우의 수 공식 - 한 줄 세우기에 대해서 알고 있어야 해요.
여러 개의 항목이 있는데, 그중에서 정해진 개수만큼만 뽑아요. 그런데 순서가 있어요. 첫 번째로 뽑는 것과 두 번째로 뽑는 게 서로 다른 역할을 하는 거지요.
1 ~ 5까지의 자연수가 있는데, 이 중에서 세 개를 뽑아서 세 자리 자연수를 만드는 경우의 수는 몇 가지나 되는지 알아보죠. 세 자리의 자연수니까 백의 자리까지 있는 수에요.
- 백의 자리에 올 수는 1 ~ 5중에 아무거나 하나를 사용할 수 있어요. - 경우의 수 5
- 십의 자리에 올 수 있는 수는 백의 자리에서 뽑은 숫자 하나를 제외한 4개 중 고를 수 있어요. - 경우의 수 4
- 일의 자리 숫자는 백의 자리, 십의 자리에 뽑은 숫자를 제외한 3개 중에서 고를 수 있어요. - 경우의 수 3
숫자를 뽑는데 뽑는 순서에 따라 백의 자리, 십의 자리, 일의 자리로 그 역할이 달라요. 따라서 뽑는 순서가 중요하죠.
백의 자리, 십의 자리, 일의 자리를 각각 뽑는 경우의 수를 구했어요. 이 과정은 동시에 일어나니까 곱의 법칙을 이용해야겠죠? 5 × 4 × 3 = 60가지 경우가 있네요.
이걸 공식으로 표현해보죠. 전체 n개 중에서 a개를 뽑는 경우의 수예요.
위 문제에서는 1 ~ 5까지 총 5개의 숫자 중에서 3개를 뽑는 거였어요. 5, 4, 3, 2, 1 이렇게 숫자를 하나씩 줄여가면서 곱하는데, 3개를 뽑는 거니까 앞에 있는 숫자 3개만 곱해서 5 × 4 × 3 = 60이 된 거죠.
학급 인원 30명 중에서 2학기 반장과 부반장, 회장, 부회장을 각각 한 명씩 뽑으려고 한다. 이때 반장과 부반장, 회장, 부회장을 뽑을 수 있는 경우의 수를 구하여라.
위에서 했던 방법대로 해볼까요?
- 30명 중에서 한 명을 반장으로 뽑아요. - 경우의 수는 30
- 반장으로 뽑힌 학생을 제외한 29명 중에서 부반장을 뽑아요. - 경우의 수 29
- 반장, 부반장으로 뽑힌 학생을 제외한 28명 중에서 회장을 뽑아요. - 경우의 수 28
- 반장, 부반장, 회장으로 뽑힌 학생을 제외한 27명 중에서 부회장을 뽑아요. - 경우의 수 27
반장, 부반장, 회장, 부회장을 뽑는 건 동시에 일어나는 사건이니까 곱의 법칙을 이용해요.
30 × 29 × 28 × 27 = 657,720 가지 방법이 있네요.
이번에는 공식으로 풀어보죠. 학급의 학생 수가 30명이니까 n = 30이고 반장, 부반장, 회장, 부회장 총 네 명을 뽑으니까 a = 4에요.
30에서 숫자를 하나씩 줄여서 곱하는데 앞에서부터 4개를 곱하니까 30 × 29 × 28 × 27이라는 식이 나와요.
공식을 이용하면 훨씬 쉽게 구할 수 있겠죠?
눈에 확 띄는 예를 들다 보니 숫자가 커졌는데, 대개는 암산으로 가능한 정도의 계산만 나와요. 다섯 명에서 두 명을 뽑는다던가 하는 정도의 수준이에요.
경우의 수 공식 - 순서 없이 뽑기
이번에는 순서에 상관없이 뽑는 경우예요. 뽑는 순서가 중요하지 않아요.
학급 인원 30명 중에서 주번 2명을 뽑는 경우의 수를 알아볼까요?
앞에서는 회장, 부회장이라는 역할의 차이가 있으니까 뽑는 순서에 따라 그 결과가 달라졌어요. 그런데 이번처럼 주번을 뽑을 때는, 먼저 뽑히든 나중에 뽑히든 그냥 둘 다 주번으로 역할이 같아요. 순서는 아무런 의미가 없지요.
- 30명 중에서 한 명을 주번으로 뽑아요. - 경우의 수는 30
- 앞에서 주번으로 뽑힌 학생을 제외한 29명 중에서 주번을 뽑아요. - 경우의 수 29
두 사건은 동시에 일어나는 사건이니까 곱의 법칙을 30 × 29 = 870가지 경우가 있어요.
여기서 한 가지 주의해야 할 게 있어요. 1단계 30명 중에서 뽑을 때는 영철이가, 2단계 29명 중에서 뽑을 때는 철수가 뽑혔다고 해보죠. 그런데 1단계 30명 중에서 뽑을 때 철수가 뽑히고, 2단계 29명 중에서 뽑을 때 영철이가 뽑힌 것과 다른 게 있나요? 영철이가 첫 번째에서 뽑히든 두 번째에서 뽑히든 아무 상관이 없어요. 마찬가지로 철수가 첫 번째에서 뽑히든 두 번째에서 뽑히든 어차피 똑같은 주번인 거죠.
위에서 구했던 30 × 29에는 이처럼 결과적으로 똑같은 경우가 2개씩 들어있는 거에요. 따라서 30 × 29에 ÷ 2를 해줘야 우리가 구하는 경우의 수가 됩니다.
만약에 주번을 3명 뽑는다면 그럼 3으로 나눠주면 될까요? 그것도 아니에요. 3명이 뽑히는 경우의 수는 3 × 2 × 1이기 때문에 6으로 나눠줘야 해요. 위에서는 그냥 2가 아니라 2 × 1 로 나눠준 거에요.
공식으로 표현해보지요.
전체 n개 중에서 a개를 뽑는데 순서와 상관없이 뽑는다면 분자는 n에서 1씩 줄여가면서 곱하는데 a개만큼 곱해주고, 분모는 a를 숫자를 1씩 줄여가며 곱해주는 거에요.
사과, 배, 감, 귤, 포도, 수박의 과일이 있다. 이 중에서 세 가지를 사려고 할 때 경우의 수는 얼마인가?
바로 공식에 대입해보죠.
과일의 수는 6개로 n = 6, 세 가지를 산다고 했으니까 a = 3이에요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 3개만 곱하고, 분모는 3부터 숫자를 1씩 줄여서 곱해요
만약에 과일을 네 가지를 산다고 한다면 아래처럼 구할 수 있겠네요. n = 6, 네 가지를 산다고 했으니까 a = 4예요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 4개를 곱하고, 분모는 4부터 숫자를 1씩 줄여서 곱해요.
함께 보면 좋은 글
경우의 수, 합의 법칙, 곱의 법칙
경우의 수 공식 - 한 줄 세우기
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률
경우의 수 공식 - 한 줄 세우기
경우의 수, 합의 법칙, 곱의 법칙에서 경우의 수라는 걸 알아봤어요.
이제는 여러 상황에서 경우의 수가 어떻게 되는지 알아볼 거예요.
몇 가지 패턴이 있는데, 그것만 알면 경우의 수를 쉽게 구할 수 있어요. 공식이 나옵니다. 외우면 좋겠죠?
경우의 수에서 예로 들었던 동전 던지기와 주사위 던지기를 알아볼 거고요. 여러 항목을 한 줄 세우기 할 때 경우의 수에 대해서 알아볼 거예요.
동전 던지기
동전은 앞면과 뒷면이 있어요. 그래서 동전 하나를 던지면 나올 수 있는 경우의 수는 두 개죠.
동전 두 개를 던졌을 때 나올 수 있는 경우의 수를 순서쌍으로 나타내 볼까요?
(앞, 앞), (앞, 뒤), (뒤, 앞), (뒤, 뒤) 이렇게 총 4가지 경우가 있어요.
동전 두 개를 던졌을 때 나오는 경우의 수는 각각의 동전을 동시에 던지니까 곱의 법칙을 이용해서 2 × 2 = 4로 구합니다.
동전을 세 개 던지면 어떻게 될까요? 마찬가지로 곱의 법칙을 이용해서 2 × 2 × 2 = 8이 되겠네요.
동전의 개수가 n 개라면 동전을 던졌을 때 나올 수 있는 경우의 수는 2n입니다.
주사위 던지기
주사위는 총 6개의 면이 있어요. 한 개의 주사위를 던지면 나올 수 있는 경우의 수는 6이에요.
주사위 두 개를 던지면 어떻게 될까요?
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
총 36가지의 경우가 있어요. 두 개의 주사위도 마찬가지로 동시에 일어나는 사건이니까 6 × 6 = 36이 되는 거죠.
주사위를 세 개 던지면 6 × 6 × 6 = 216의 경우의 수가 나와요.
주사위 n개를 던졌을 때 나올 수 있는 경우의 수는 6n입니다.
한 줄 세우기
줄 세우기는 여러 개의 항목이 있는 걸 차례대로 놓는 걸 말해요.
한 줄 세우기
1 ~ 4까지의 자연수가 있어요. 이 자연수를 차례대로 놓아서 네 자리 숫자를 만들 때, 경우의 수는 어떻게 될까요?
- 먼저 천의 자리 숫자에는 1 ~ 4까지 아무 수나 하나 골라요. - 경우의 수는 4
- 백의 자리 숫자를 고르는데, 천의 자리에 사용한 숫자는 사용할 수 없어요. 그래서 남은 세 수중에서 하나를 골라요. - 경우의 수는 3
- 십의 자리 숫자를 고르는데, 천, 백의 자리에 사용한 숫자는 사용할 수 없어요. 남은 두 수 중에서 하나를 골라요. - 경우의 수는 2
- 마지막 일의 자리 숫자는 천, 백, 십의 자리 숫자를 고르고 남은 하나가 됩니다. - 경우의 수 1
천의 자리, 백의 자리, 십의 자리, 일의 자리 숫자를 뽑는 건 동시에 일어나는 것으로 곱의 법칙을 이용할 수 있어요.
그래서 네 자리 숫자를 만들 수 있는 총 경우의 수는 4 × 3 × 2 × 1 = 24가 됩니다.
여러 항목을 줄 세울 때는 항목의 개수가 몇 개인지가 중요해요. 줄 세울 때 경우의 수는 아래 공식으로 구할 수 있어요.
한 줄 세우기 경우의 수
n × (n - 1) × (n - 2) × … × 2 × 1
개수를 하나씩 줄여가면서 계속 곱하는 거예요.
웬디, 아이린, 슬기, 조이, 예리 다섯 사람이 앨범 표지로 사용할 사진을 찍으려고 한다. 이 다섯 명이 한 줄로 서서 사진을 찍을 때 한 줄로 서는 경우의 수는 얼마인가?
한 줄 세우기 공식 한 번 더 써보죠. n × (n - 1) × (n - 2) × … × 2 × 1
멤버 수가 총 5명이니까 5부터 1씩 줄여가면서 계속 곱하면 돼요.
5 × 4 × 3 × 2 × 1 = 120 가지의 경우가 있네요.
이웃하여 한 줄 세우기
한 줄을 세울 때 특별한 경우가 있어요. 항목중에서 몇 개를 꼭 함께 놓는 경우가 있거든요.
과일가게에서 사과, 배, 감, 포도, 귤, 수박을 팔아요. 이 과일들을 한 줄로 진열하려고 할 때 사과와 배는 꼭 바로 옆에 놓게 진열을 한다면 몇 가지 경우의 수가 있을까요?
사과와 배를 바로 옆에 놓지 않아도 될 때의 경우의 수를 먼저 구해보죠. 과일의 종류가 사과, 배, 감, 포도, 귤, 수박 총 6가지니까 6 × 5 × 4 × 3 × 2 × 1 = 720가지의 경우의 수가 있어요.
이 중에서 사과와 배가 바로 옆에 붙어 있는 경우의 수를 구해야 하는 거잖아요. 이때는 사과와 배를 하나의 묶음으로 생각해 버려요. 하나의 묶음으로 생각해서 과일의 종류가 총 다섯 가지라고 계산하면 쉽거든요.
사과와 배를 하나의 묶음으로 생각하면 한 줄로 진열할 수 있는 경우의 수는 몇 가지일까요? 한 줄로 세우는 공식은 바로 위에서 했죠? 5 × 4 × 3 × 2 × 1 = 120이네요.
여기서 끝난 게 아니에요. 사과와 배를 묶음으로 생각했는데, 사과 - 배의 순서로 놓을 수도 있고 배 - 사과의 순서로 놓을 수도 있겠지요? 사과와 배를 줄 세우는 방법이 두 가지 경우가 있어요. 이건 다른 과일들을 놓는 것과 동시에 일어나는 사건이기라서 곱의 법칙을 이용해요.
결국, 여섯 종류의 과일을 진열할 때 사과와 배를 바로 옆에 놓도록 진열하는 방법은 120 × 2 = 240가지가 있어요.
이웃하여 한 줄 세우기는 아래의 공식으로 구할 수 있어요.
이웃하여 한 줄 세울 때 경우의 수
(이웃하는 걸 한 묶음으로 하여 한 줄 세우기 한 경우의 수) × (묶음 안에서 자리 바꾸는 경우의 수)
과일가게에서 사과, 배, 감, 포도, 귤, 수박을 한 줄로 진열하려고 한다. 배, 감, 포도가 서로 이웃하도록 진열하려고 할 때 경우의 수를 구하여라.
위 설명에서 했던 문제인데, 이번에는 배, 감, 포도 총 세 개의 과일을 이웃하게 진열한다고 했네요.
공식을 그대로 쓰면 돼요.
먼저 배, 감, 포도를 하나의 묶음으로 생각하면 과일의 종류는 4가지로 볼 수 있겠지요? 이 네 가지를 한 줄로 진열하는 경우의 수는 4 × 3 × 2 × 1이 되고요.
배, 감, 포도를 하나의 묶음으로 봤을 때 배, 감, 포도를 한 줄로 진열하는 방법은 3 × 2 × 1가지가 있어요.
위의 둘을 곱하면 답이 나옵니다.
(이웃하는 걸 한 묶음으로 하여 한 줄 세우기 한 경우의 수) × (묶음 안에서 자리 바꾸는 경우의 수)
= (4 × 3 × 2 × 1) × (3 × 2 × 1)
= 24 × 6
= 144
총 144가지의 경우의 수가 나오네요.
함께 보면 좋은 글
경우의 수, 합의 법칙, 곱의 법칙
경우의 수 공식 - 대표 뽑기
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률
경우의 수, 합의 법칙, 곱의 법칙
방학이 다 끝나고, 2학기가 시작되었어요.
2학기에는 확률과 도형에 대해서 공부해요. 1학기 때 배웠던 연립방정식이나 함수와 다른 새로운 내용이니까 "기초가 부족해" 이런 생각하지 마세요. 처음 보는 단원이다 생각하고 열심히 하시면 됩니다.
처음으로 배울 내용은 확률인데 그 중에서도 경우는 수예요. 경우의 수는 간단히 말해서 주사위를 던지거나 동전을 던졌을 때 어느 면이 나오는지 그 수를 세보는 거예요.
경우의 수는 상식적인 선에서 생각해야 해요. 동전을 던졌을 때 세로로 서 있는 경우, 침대 밑으로 굴러가서 확인할 수 없는 경우 등은 전혀 고려하지 않아요.
경우의 수
사건은 같은 조건에서 여러 번 할 수 있는 실험이나 관찰로 얻어진 결과를 말해요. "동전을 던졌더니 앞면이 나왔다." 같은 거요.
시행은 실험이나 관찰을 하는 행위를 말하고요.
경우는 수는 사건에서 일어날 수 있는 경우의 가짓수에요.
동전을 던지면 앞면이 나오는 경우가 있겠죠? 뒷면이 나오는 경우도 있을 거예요. 두 가지 경우가 있지요? 동전을 던질 때는 앞면 또는 뒷면이 나오는 두 가지 경우가 있어요. 따라서 이때의 경우의 수는 2에요.
주사위를 던지면 1, 2, 3, 4, 5, 6이 나올 수 있어요. 총 6가지죠. 따라서 이때의 경우의 수는 6이에요.
합의 법칙
경우의 수를 구하는 방법은 크게 두 가지에요. 그중에 첫 번째는 합의 법칙인데요.
한 개의 주사위를 던져서 2의 배수 또는 5의 배수가 나오는 경우의 수를 구한다고 해보죠.
주사위를 던져서 2의 배수가 나오는 경우는 2, 4, 6의 세 경우가 있어요. 경우의 수는 3이죠.
주사위를 던져서 5의 배수가 나오는 경우는 5 한 가지뿐이에요.
주사위를 던져서 2의 배수 또는 5의 배수가 나오는 경우는 3 + 1 = 4예요.
주사위를 던졌을 때 어떤 수가 나오는데, 2의 배수이면서 5의 배수인 경우가 있나요? 없죠? 그래서 각각의 경우의 수를 구해서 더해주는 거예요.
합의 법칙은 각 사건이 동시에 일어나지 않을 때 사용해요. 문제에서 " 또는 ", "~ 이거나" 하는 표현들이 나올 때죠.
사건 A가 일어나는 경우의 수가 a가지
사건 B가 일어나는 경우의 수가 b가지일 때,
사건 A 또는 B가 일어날 경우의 수 = a + b(가지)
1 ~ 30까지의 자연수가 적힌 카드가 상자에 들어있다. 이 상자에서 카드를 한 장 꺼낼 때 5의 배수인 카드 또는 7의 배수인 카드가 나올 경우의 수는 몇 가지인가?
상자에서 카드를 꺼낼 때 5의 배수인 카드가 나오는 경우는 5, 10, 15, 20, 25, 30으로 6가지에요.
7의 배수인 카드가 나오는 경우는 7, 14, 21, 28로 4가지고요.
문제에서 "5의 배수인 카드 또는 7의 배수인 카드"라고 했으니까 두 경우의 수를 더해서 6 + 4 = 10, 총 10가지 경우가 되겠네요.
1 ~ 30까지의 자연수가 적혀있는 카드가 상자에 들어있다. 이 상자에서 카드를 한 장 꺼낼 때 3의 배수인 카드 또는 4의 배수인 카드가 나올 경우의 수는 몇 가지인가?
위의 예제와 같은 문제인데 숫자만 바꿨어요. 풀이가 어떻게 달라지는지 보죠.
상자에서 카드를 꺼낼 때 3의 배수인 카드가 나오는 경우는 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 총 10가지에요.
4의 배수인 카드가 나오는 경우는 4, 8, 12, 16, 20, 24, 28 총 7가지고요.
이 문제에서도 "3의 배수인 카드 또는 4의 배수인 카드"라고 했으니까 그냥 10 + 7 = 17하면 될까요?
안됩니다. 12가 적힌 카드를 뽑았다고 해보죠. 12는 3의 배수이면서 4의 배수예요. 12를 뽑은 건 하나의 사건인데 3의 배수인 카드를 뽑은 사건과 4의 배수를 뽑은 사건 양쪽에서 각각 더해주면 두 번을 세는 거예요. 그래서 한 번은 빼줘야 해요. 24도 마찬가지고요.
10 + 7 - 2 = 15, 이때의 경우의 수는 15가 돼요.
합의 법칙은 두 사건 중 하나만 일어나도 상관없을 때 각 사건이 일어나는 경우의 수를 더해줘요. 하지만 두 사건이 모두 일어나는(중복되는) 경우가 생기면 그만큼을 빼줘요.
곱의 법칙
1, 2, 3, 4가 적힌 카드 네 장이 있어요. 이 네 장의 카드를 이용해서 두 자리 자연수를 만드는 경우의 수는 몇 가지인지 알아보죠.
두 자리 자연수를 만든다고 했으니까 십의 자리 숫자 하나, 일의 자리 숫자 하나를 뽑아야 해요.
십의 자리 숫자로 1을 놓는다고 하면, 일의 자리 숫자는 2, 3, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 2를 놓는다고 하면, 일의 자리 숫자는 1, 3, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 3을 놓는다고 하면, 일의 자리 숫자는 1, 2, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 4을 놓는다고 하면, 일의 자리 숫자는 1, 2, 3이 될 수 있어요. 경우의 수는 3가지네요.
각각의 경우를 수를 다 더하면 3 + 3 + 3 + 3 = 12가 나와요.
이 문제를 쉽게 풀어볼까요?
십의 자리 숫자에 올 수 있는 수는 1, 2, 3, 4 해서 총 4개에요. 그리고 어떤 한 수를 십의 자리에 놓았을 때 일의 자리에 올 수 있는 숫자는 나머지 3개죠?
(십의 자리를 뽑는 경우의 수 4) × (일의 자리를 뽑는 경우의 수 3) = 12 하면 쉽게 구할 수 있죠?
곱의 법칙은 합의 법칙과 달리 사건이 동시에 일어나는 경우에 사용해요. 동시라는 같은 시각을 의미하는 게 아니에요. 경우의 수를 구하는 과정에서 두 사건이 모두 일어나야 한다는 뜻이에요.
십의 자리를 뽑는 것과 일의 자리를 뽑는 두 사건이 모두 일어나야 하죠? 십의 자리를 뽑는 사건과 일의 자리를 뽑는 사건 중 하나만 일어나서는 경우의 수를 구할 수 없어요. "동시에"라는 말은 여러 사건이 모두 일어나는 경우를 말해요.
이처럼 두 개 이상의 사건이 동시에 일어나면 각각의 경우의 수를 곱해요.
사건 A가 일어나는 경우의 수가 a가지
사건 B가 일어나는 경우의 수가 b가지일 때,
사건 A와 사건 B가 동시에 일어날 경우의 수 = a × b(가지)
3종류의 티셔츠와 2종류의 바지가 있다. 티셔츠와 바지를 하나씩 골라 입을 수 있는 경우의 수를 구하여라.
여기서는 3종류의 티셔츠 중 하나를 고르는 사건과 2종류의 바지 중에서 하나씩 골라 입는 경우의 수를 구하라고 했어요. 티셔츠를 고르는 사건과 바지를 고르는 사건은 동시에 일어나야 하는 하죠?
티셔츠를 고를 수 있는 경우의 수는 3, 바지를 고를 수 있는 경우의 수는 2에요.
따라서 옷을 입을 수 있는 경우의 수는 3 × 2 = 6(가지)가 되는 거죠.
합의 법칙과 곱의 법칙의 선택
어떤 두 사건이 있을 때 두 사건 중 하나만 일어나도 상관없으면 합의 법칙, 두 사건이 모두 일어나야 하면 곱의 법칙을 사용해요.
위의 1 ~ 30까지 자연수가 적힌 카드가 들어있는 상자에서 5의 배수 또는 7의 배수가 적힌 카드를 뽑는 경우의 수 예제를 보죠. 이때는 5의 배수가 적힌 카드가 나와도 괜찮죠. 그리고 7의 배수가 적힌 카드를 뽑아도 괜찮아요. 두 사건 중 하나만 일어나도 상관없으니까 합의 법칙이에요.
3종류의 티셔츠와 2종류의 바지에서 하나를 고르는 예제를 보죠. 티셔츠를 고르는 사건만 일어나거나 바지만 고르는 사건만 일어나서는 안 돼요. 두 사건 모두가 일어나야 해요. 그래서 곱의 법칙을 이용해서 경우의 수를 구해요.
합의 법칙: 여러 사건 중 하나만 일어나도 괜찮은 경우
곱의 법칙: 여러 사건이 모두 일어나야 하는 경우
함께 보면 좋은 글
[중등수학/중2 수학] - 경우의 수 공식 - 한 줄 세우기
[중등수학/중2 수학] - 경우의 수 공식 - 대표 뽑기
[중등수학/중2 수학] - 확률, 확률의 뜻, 확률 공식
[중등수학/중2 수학] - 확률의 성질, 여사건의 확률
일차함수의 활용
이번은 일차함수의 활용에 대해서 공부할 거예요.
매 단원의 마지막에 공부하는 내용이 활용이죠. 방정식의 활용, 연립방정식의 활용, 부등식의 활용 등이요. 바꿔말하면 활용을 배우면 그 단원이 끝나는 거예요. 멀게만 보였던 일차함수 단원이 이제 끝나는군요.
매 단원의 끝에 활용이 나오는 것처럼 일차함수의 활용도 다른 단원의 활용 문제와 별로 차이가 없어요. 문제는 푸는 순서와 요령은 같은데, 식을 세우는 과정에 함수라는 게 들어가는 것뿐이에요.
1학기 마지막 단원을 시작해보죠.
일차함수의 활용
일차함수의 활용도 다른 단원의 활용에서와 같은 순서로 진행돼요.
- x, y 정하기
문제를 잘 읽고, 문제에서 구하고자 하는 것을 x, y로 놓는다.
함수는 x에 대응하는 y 값이니까 일반적으로 변화하는 값을 x, 그에 따라 결정되는 값을 y로 놓아요. - x, y의 관계식(함수식) 세우기
문제에 나온 내용을 식으로 만든다. - 해 구하기
만든 함수식을 이용하여 해를 구한다. - 확인하기
구한 해가 문제의 조건에 맞는지 확인한다.
다른 식의 활용에서도 이런 순서로 진행되었죠?
일차함수의 활용은 연립방정식의 활용이나 부등식의 활용에 나왔던 문제보다 쉽다고 할 수 있어요. 미지수가 2개인 일차방정식을 하나만 만들면 되니까요. 방정식, 부등식에서 했던 활용과 별로 다르지도 않을뿐더러 식의 개수도 줄었으니 어렵게 생각하지 마세요.
일차함수의 활용 예제
지면에서 100m 높아질 때마다 기온은 0.6℃씩 내려간다고 한다. 지면 온도가 15℃일 때, 지면에서 2,700m 떨어진 곳 기온은 몇 ℃인가?
문제를 읽어보면 온도에 영향을 주는 건 지면으로부터의 높이네요. 그러니까 온도와 높이에 대한 관계식을 만들어야 해요.
여기서는 높이가 바뀌면 온도가 따라서 바뀌니까 높이를 x, 온도를 y로 놓으면 되겠네요.
100m 높아질 때마다 기온은 0.6℃씩 내려가면 1m 높아질 때마다 0.006℃씩 내려가고 xm 높아지면 0.006x℃ 내려가겠네요. 지면에서의 온도(처음 온도)가 15℃라고 했으니까 xm에서의 온도 y = 15 - 0.006x라고 할 수 있겠군요.
2,700m일 때 온도를 구하라고 했으니 식에 대입하면
y = 15 - 0.006x
y = 15 - 0.0060 × 2700
y = 15 - 16.2
y = - 1.2
온도는 영하라는 게 있어서 음수로 나와도 괜찮죠? 따라서 구하는 답은 영하 1.2℃가 되겠네요.
20L의 물이 들어있는 물통에서 10분마다 0.5L의 물이 흘러나간다. 물이 흘러나가기 시작하여 1시간 30분 후에 물통에 남아있는 물의 양은 몇 L인가?
이 문제에서는 시간과 빠져나가는 물의 양, 남은 물의 양 사이의 관계식이 필요하죠? 시간을 x라고 하면 시간에 따라 흘러나가는 물의 양은 x항이 되고, 남은 물의 양은 y로 놓을 수 있어요.
10분마다 0.5L가 흘러나가니까 1분에는 0.05L, x분 후에는 0.05xL가 흘러나가겠네요. 남은 양은 처음 양 20L에서 흘러나간 양을 빼주면 되겠고요.
y = 20 - 0.05x
1시간 30분은 90분이니까 식에 대입하면
y = 20 - 0.05 × 90
y = 20 - 4.5
y = 15.5
1시간 30분 후에 남은 물의 양은 15.5L가 되겠습니다.
함께 보면 좋은 글
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기
연립방정식의 해와 일차함수의 그래프
연립방정식의 활용
부등식의 활용, 연립부등식의 활용
연립방정식의 해와 일차함수의 그래프
일차함수 그래프를 이용해서 연립방정식을 푸는 방법입니다.
약간 어려울 수도 있는 내용이에요. 일차함수와 직선의 방정식, 연립방정식의 개념이 섞여서 나오는 부분이라서요. 세 가지가 왔다 갔다 하니까 복잡할 수 있어요. 너무 어렵게 생각하지 마시고, 단순하게 "일차함수 = 직선의 방정식 = 연립방정식의 각 방정식"이라는 정도로 생각하고 보세요.
연립방정식이란에서 봤던 것처럼 연립방정식은 미지수가 2개인 일차방정식 두 개가 있는 걸 말하죠. 그리고 두 방정식을 모두 만족하는 (x, y)의 순서쌍을 연립방정식의 해라고 해요.
직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식은 미지수가 2개인 일차방정식이라고 했어요. 연립방정식에서의 방정식도 미지수가 2개인 일차방정식이죠?
그러니까 연립방정식은 직선의 방정식 2개가 묶인 것으로 생각해도 되겠죠?
일차함수의 그래프와 연립방정식
연립방정식의 그래프를 좌표평면 위에 그려볼까요?
연립방정식 의 그래프를 그리면 아래 그림처럼 돼요.
그래프는 직선의 방정식을 만족시키는 x, y의 순서쌍의 집합이죠. 그런데 그래프를 그렸더니 (4, 1)이라는 점에서 두 그래프가 만나요. 그래프가 만난다는 건 양쪽 모두 (4, 1)이라는 해를 가지고 있다는 뜻이네요.
실제로 연립방정식의 풀이법으로 연립방정식을 풀어보면 해가 x = 4, y = 1이 나와요.
그래프의 교점의 좌표가 연립방정식의 해와 같아요.
그래프의 교점 = 연립방정식의 해
연립방정식 의 해를 구하여라.
x + y = 2를 y에 관해서 풀면, y = -x + 2라는 일차함수가 돼요. 3x - y = -2는 y = 3x + 2가 되고요.
그래프를 그렸더니 아래처럼 됐어요.
두 그래프의 교점이 연립방정식의 해니까 교점인 (0, 2)가 해가 되겠네요. 따라서 해는 x = 0, y = 2가 되는군요.
두 직선의 위치와 연립방정식의 해
직선의 교점이 바로 연립방정식의 해에요. 따라서 교점의 개수와 해의 개수는 같아요.
두 직선이 한 점에서 만날 때 - 교점이 하나일 때
위 예제에서는 두 그래프가 한 점에서만 만났어요. 그러니까 해도 한 개만 있죠?
일차함수 그래프의 평행과 일치에서 보면 일차함수의 그래프의 기울기가 같으면 그래프가 평행이거나 일치하죠? 기울기가 다르면 한 점에서 만나요.
일차함수에서는 기울기를 바로 구할 수 있는데, 직선의 방정식에서는 기울기를 구하려면 y에 관해서 풀어야 해요.
매번 그럴 수는 없잖아요. 그래서 간단하게 기울기가 같은지 알 수 있는 방법을 이용해요. 바로 계수의 비를 비교하는 거예요. x 계수의 비와 y 계수의 비가 다르면 두 직선의 기울기가 달라요.
기울기가 다르다 = 그래프의 교점이 한 개 = 연립방정식의 해는 하나 = 연립방정식의 x 계수의 비와 y 계수의 비가 다르다
두 직선이 평행일 때 - 교점이 없을 때
그래프가 평행일 때는 어떨까요? 연립방정식의 해는 그래프의 교점인데, 그래프가 평행이니까 교점이 없어요. 그 말은 해가 없다는 뜻이겠죠?
일차함수의 그래프가 평행이려면 어떤 조건이 있어야 하죠? 기울기는 같고, y절편은 달라야 해요.
해가 특수한 연립방정식에서 해가 하나도 없을 때는 x와 y 계수의 비는 같지만 상수항의 비는 다를 때라는 걸 이미 배웠잖아요.
이 두 개를 연결해 볼까요?
기울기가 같고 y 절편이 다르다. = 그래프가 평행 = 교점이 없다 = 해가 없다 = 연립방정식의 x, y 계수의 비는 같고 상수항의 비는 다르다
두 직선이 일치할 때
그래프가 일치하면 교점의 개수는 무수히 많아요. 교점의 교수가 무수히 많다는 건 해가 무수히 많다는 거고요.
그래프가 일치하려면 어때야 하죠? 기울기가 같고 y절편도 같아야 해요.
연립방정식의 해가 무수히 많으려면 두 식의 x, y 계수의 비와 상수항의 비가 모두 같아야 해요
마찬가지로 일차함수의 그래프가 평행일 조건과 연립방정식의 해가 무수히 많을 조건을 연결해볼까요?
기울기가 같고 y 절편도 같다 = 그래프가 일치 = 교점이 무수히 많다 = 해가 무수히 많다 = 연립방정식의 계수의 비와 상수항의 비가 같다.
함께 보면 좋은 글
해가 특수한 연립방정식
직선의 방정식, 일차함수와 일차방정식
그래프를 보고 직선의 방정식 구하기
일차함수의 활용
그래프를 보고 직선의 방정식 구하기
일차함수 식 구하기, 직선의 방정식 구하기에서는 그래프의 특징을 설명해주는 내용을 보고 직선의 방정식(일차함수 식)을 구했어요.
이번에는 그런 설명 없이 그래프를 보고 일차함수 식을 구하는 내용이에요.
그래프를 보고 어떤 특징을 알아내는가가 중요한 것이지 둘 사이에는 차이가 전혀 없어요. 그래프에서 파악할 수 있는 건 모두 파악하는 것이 좋아요. 그리고 그 파악된 내용을 기본으로 어떤 방법으로 직선의 방정식을 구할까 결정하세요.
일차함수 식을 구하는 방법은 네 가지가 있어요.
- 기울기와 y절편을 알 때
- 기울기와 한 점의 좌표를 알 때
- 두 점의 좌표를 알 때
- x절편, y절편을 알 때
일반적으로 그래프만 봤을 때는 기울기를 알아내기가 어려워요. 대신 점의 좌표는 알아내기 쉽죠. 그래서 제일 많이 사용하는 방법이 3번이에요. 물론 공부를 열심히 한 학생이라면 그래프에서 두 점의 좌표만 보고도 기울기를 바로 구할 수 있을 거예요.
다음 그래프를 보고 직선의 방정식을 구하여라.
먼저 눈에 확 띄는 건 (-3, -4), (3, 2)라는 두 점의 좌표에요. 조금 더 자세히 보면 (0, -1), (1, 0)을 지나는 것도 알 수 있어요.
기울기를 구해보죠.
기울기 =
기울기가 1이니까 함수는 y = x + b라고 쓸 수 있겠네요. 여기에 (3, 2)를 대입해보죠.
2 = 3 + b
b = -1
결국 구하려는 직선의 방정식은 y = x - 1이군요.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프에서는 x절편이 –2, y절편이 2라는 걸 알 수 있어요.
두 점 (-2, 0), (0, 2)을 지나니까 이걸 이용해서 직선의 방정식을 구해보죠.
기울기 =
기울기가 1이고 y절편이 2이니까 직선의 방정식은 y = x + 2이에요.
축에 평행한 직선의 방정식
축에 평행한 직선의 방정식에서 배웠던 내용이에요.
축에 평행한 방정식에서는 기울기를 구할 필요가 없어요. 특히 y축에 평행한 직선의 방정식은 기울기라는 게 없으니까 구하려고 해도 구할 수도 없어요.
x축에 평행한 직선은 모든 y값이 하나로 일정해요. 그래서 y = n 꼴로 그냥 쓰면 돼요. 반대로 y축에 평행한 직선의 x값은 모두 일정해서 x = m이라고 쓰면 돼요.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프는 x축에 평행한 직선이고 모든 y값이 3이에요. 따라서 직선의 방정식은 y = 3입니다.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프는 y축에 평행한 직선이고 모든 x값이 2이에요. 따라서 직선의 방정식은 x = 2입니다.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기
일차함수 식 구하기, 직선의 방정식 구하기
일차함수의 식이 주어지면 그래프를 그릴 수 있나요? 거꾸로 이제는 그래프를 보고 또는 그래프의 특징만 보고 일차함수 식을 유추해내야합니다.
이제까지 공부했던 내용들을 총동원해야해요. 일차함수 그래프의 특징, x, y 절편, 기울기 등이요. 또 일차함수 그래프 그리기에서 공부했던 내용도 이해하고 있어야 해요
일차함수식을 구하는 것과 직선의 방정식을 구하는 것은 이름은 다르지만 사실상 같은 얘기라는 것도 알고 있어야하고요.
일차함수 식은 y = ax + b 꼴이므로 기울기와 y절편을 구하는 게 핵심이에요. 여러 경우에 어떻게 일차함수식을 구하는 지 알아보죠.
기울기와 y절편을 알 때 일차함수 식 구하기
y = ax + b라는 일차함수가 있을 때, a는 기울기, b는 y절편이에요.
따라서 함수를 모르더라도 기울기와 y절편을 알면 함수를 바로 구할 수 있겠죠?
기울기가 -3이고, y절편이 1인 일차함수를 구하여라.
기울기가 -3, y절편이 1인 일차함수는 y = -3x + 1입니다.
기울기와 한 점의 좌표를 알 때 일차함수 식 구하기
기울기는 함수식에 그대로 대입해보죠. y = ax + b에서 a는 알고 있으니까 b만 구하면 되겠네요.
함수의 그래프가 한 점을 지난다는 얘기는 그 점의 좌표를 함수식에 대입하면 식이 참이 된다는 뜻이죠? 점의 좌표를 y = ax + b에 대입하면 돼요. x와 y는 점의 좌표로 알고 있고, a는 기울기로 주어졌으니까 b를 구할 수 있어요.
일차함수 y = 3x + 1 그래프와 평행하고 (3, 2)를 지나는 일차함수를 구하여라.
일차함수 그래프의 평행과 일치에서 그래프가 평행이라면 기울기가 같고 y절편이 달라야 한다고 했어요. 구하고자 하는 일차함수의 그래프가 y = 3x + 1과 평행하니까 기울기는 3이에요. 따라서 구하는 식은 y = 3x + b의 식이겠네요.
y = 3x + b 식이 (3, 2)를 지나니까 점의 좌표를 식에 대입해 보죠.
2 = 3 × 3 + b
b = -7
(3, 2)를 대입해서 b를 구했어요. 결국 구하는 일차함수는 y = 3x – 7이네요.
두 점의 좌표를 알 때 직선의 방정식 구하기
두 점의 좌표만 알고 있을 때는 먼저 기울기를 구해야 해요. 기울기 구하는 방법은 일차함수와 그래프 - 기울기에 나와 있어요.
기울기는 위 방법으로 구할 수 있고, 원래 문제에서 줬던 두 점의 좌표까지 알고 있어요. 그러면 바로 앞에서 했던 기울기와 한 점의 좌표를 알 때 사용했던 방법 그대로 기울기와 점의 좌표를 이용해서 일차함수 식을 구할 수 있어요.
두 점 (1, 2), (-2, 17)을 지나는 일차함수 식을 구하여라.
먼저 두 점의 좌표를 이용해서 기울기를 구해보죠.
기울기 = (17 - 2) ÷ (-2 - 1) = 15 ÷ (-3) = -5
기울기가 -5니까 y = -5x + b 라고 놓을 수 있고, 이 그래프가 (1, 2)를 지나니까 대입해보면
2 = -5 × 1 + b
b = 7
따라서 구하고자 하는 일차함수 식은 y = -5x + 7입니다.
x절편, y절편을 알 때 직선의 방정식 구하기
x절편과 y절편을 안다는 건 x, y축과 만나는 두 점의 좌표를 안다는 뜻이고, 이건 그래프 위의 두 점의 좌표를 알려준 것과 같아요. 따라서 바로 위에서 했던 두 점의 좌표를 알 때 직선의 방정식 구하기 방법에서 했던 것처럼 기울기를 구해야 해요. 기울기를 구하고 거기에 x절편과 y절편을 알고 있으니까 첫 번째 "기울기와 y절편을 알 때 일차함수" 구하기 방법을 사용하면 되겠죠?
두 점의 좌표를 알 때 + 기울기와 y절편을 알 때를 섞어서 사용하면 돼요.
(-1, 0), (0, 2)를 지나는 직선의 방정식을 구하여라.
두 점의 좌표를 줬는데, 자세히 보니까 각각 x, y의 좌표가 0일 때로 x절편, y절편이네요. 이 내용을 먼저 알아두세요.
두 점의 좌표를 줬으니까 기울기를 구해야겠죠?
기울기 = {2 - 0} ÷ {0 - (-1)} = 2 ÷ 1 = 2
기울기가 2니까 y = 2x + b라고 할 수 있겠고 두 점 (-1, 0), (0, 2)를 지나니까 한 점의 좌표를 식에 넣어서 b를 구할 수 있어요. 하지만 그보다는 y절편이 b라는 사실을 알고 있으니까 (0, 2)를 이용해서 바로 y = 2x + 2를 구할 수 있겠죠?
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식이라는 용어에 대해서 알아봤어요. 미지수가 2개인 일차방정식 ax + by + c = 0의 순서쌍 (x, y)를 좌표평면에 표시했더니 직선이 된다. 이때 ax + by + c = 0을 직선의 방정식이라고 하고, 일차함수의 그래프와 모양이 같다는 거지요.
이번 글에서는 직선의 방정식 중에서 특이한 모양의 직선을 알아볼 거예요.
바로 x축에 평행한 직선,
x축, y축
먼저 x축을 직선의 방정식으로 표현할 수 있어요. 좌표평면에서 x축은 가로로 되어 있는데, y좌표가 모두 0이에요. x = 1일 때도 y = 0, x = 2일 때도 y = 0이죠. x가 어떤 수가 되더라도 y = 0이에요.
따라서 x축을 직선의 방정식으로 표현하면 y = 0이라는 식으로 나타낼 수 있어요.
y축은 y = 1일 때도 y = 2일 때도 무조건 x = 0이죠. 그래서 y축의 직선의 방정식은 x = 0이에요.
x축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 0, b = 1, c = -1이면 식은 어떻게 되나요?
0 × x + 1 × y - 1 = 0
y = 1
y = 1이라는 직선의 방정식이 되고, … (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1) … 라는 점을 지나요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 x축에 평행한 직선이죠. 이 그래프는 y축과 (0, 1)에서 만나고, x축과는 만나지 않아요.
그러니까 y = n (n은 상수) 꼴의 식은 (0, n)을 지나고 x축에 평행한 직선이라고 정리할 수 있겠네요.
기울기라는 건 (y의 증가량) ÷ (x의 증가량)인데 y가 일정해서 y 증가량은 0이므로 기울기는 0인 함수입니다.
y축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 1, b = 0, c = -1이면 식은 어떻게 되나요?
1 × x + 0 × y - 1 = 0
x = 1
x = 1이라는 직선이 되고, … (1, -2), (1, -1), (1, 0), (1, 1), (1, 2) … 라는 점을 지나요. x는 무조건 1이고, y값만 바뀌네요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 y축에 평행한 직선이에요. y축과는 만나지 않고, x축과는 (1, 0)에서 만나네요.
x = m (m은 상수) 의 직선은 (m, 0)을 지나고 y축에 평행한 직선이에요.
기본적으로 함수는 x 하나에 y가 하나만 대응해야해요. 그런데, x = m 꼴 직선의 방정식은 x = 1일 때 y가 무수히 많죠? 그래서 함수라고 할 수 없어요. 기울기 = (y의 증가량) ÷ (x의 증가량)인데, x = m으로 항상 일정해서 x의 증가량이 0, 즉 분모가 0이에요. 따라서 기울기라는 것이 없다는 것도 알아두세요.
주의하세요. x축에 평행한 직선은 y = n 꼴이고, y축에 평행한 직선은 x = m 꼴이에요.
함께 보면 좋은 글
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기
직선의 방정식, 일차함수와 일차방정식
이번 글에서는 직선의 방정식과 일차함수, 일차방정식의 관계에 대해서 공부합니다.
일차함수와 일차방정식, 직선의 방정식은 서로 깊은 관계가 있어요. 용어의 뜻을 제대로 이해하고 식을 자유자재로 왔다 갔다 할 수 있어야 해요.
일차함수와 일차방정식 모두 일차식이라는 공통점이 있지요. 둘 사이의 공통점을 알아보고 그 특징까지 공부해봐요. 또 직선의 방정식이라는 용어를 쓰는데, 이게 무슨 뜻인지까지 알아보죠.
일차방정식의 그래프
미지수가 2개인 일차방정식에서 공부했던 것처럼 미지수가 2개면 하나는 x, 다른 하나는 y라고 써서 ax + by + c = 0이라고 나타내죠. 이 일차방정식을 만족하는 x, y의 순서쌍이 있겠죠? 이런 순서쌍들을 좌표평면에 나타낸 것을 일차방정식의 그래프라고 해요.
직선의 방정식
특히 일차방정식의 해가 무수히 많을 때, xy 순서쌍을 좌표평면에 점으로 찍어보면 하나의 직선으로 나타나는데 이것을 직선의 방정식이라고 부릅니다.
일차방정식 ax + by + c = 0을 y에 대해서 풀어볼까요?
ax + by + c = 0
by = -ax - c
ax + by + c = 0 (a ≠ 0, b ≠ 0)
→ (a ≠ 0, b ≠ 0)
y에 대하여 풀었더니, 일차함수의 모양과 같은 모습이죠? 좌변에 y, 우변에 x항과 상수항
무슨 말이냐 하면 미지수가 2개인 일차방정식의 그래프, 즉 직선의 방정식의 그래프가 일차함수의 그래프와 같다는 거지요.
일차방정식 4x + 2y = 8의 그래프를 그리시오.
일차방정식을 일차함수 형태인 y = -2x + 4로 바꾼 다음에 일차함수 그래프 그리기에서 썼던 방법으로 그래프를 그려도 돼요. 하지만 그보다 쉬운 방법은 x절편과 y절편을 이용해서 그리는 방법인데요. x절편은 y = 0일 때의 x좌표, y절편은 x = 0일 때의 y좌표니까 각각을 일차방정식에 대입해서 풀어서 x, y축과 만나는 점의 좌표를 구한 다음 직선을 그어서 그래프를 그리면 돼요.
y = 0을 대입하면 x축과 만나는 점의 좌표는 (2, 0), x = 0을 대입하면 y축과 만나는 점의 좌표는 (0, 4)네요. x, y 절편을 그래프에 찍고 선을 그어보죠.
함께 보면 좋은 글
미지수가 2개인 일차방정식
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y = ax + b 그래프의 특징
일차함수 그래프의 평행과 일치
일차함수의 그래프에서 웬만한 건 다 다루었어요. 일차함수 y = ax + b 그래프에서 a가 무엇을 의미하는지, a의 부호에 따라서 그리고 b의 부호에 따라서 그래프의 모양이 어떻게 바뀌는 지 등이요.
일차함수를 보면 기울기와 y절편이 바로 눈에 띄죠? 두 개의 일차함수 y = ax + b, y = cx + d가 있다고 할 때, 기울기와 y절편을 비교해서 두 일차함수의 그래프가 평행한지 일치하는지 알아보죠.
일차함수 그래프의 평행
평면에서 두 직선이 서로 만나지 않는 걸 평행이라고 해요. 그러니까 일차함수 그래프가 평행하다는 말은 서로 만나지 않는다는 뜻이죠.
y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평행이동한 것이라고 했어요. 두 그래프는 서로 만나지 않아요. 그럼 두 그래프는 평행한 것이죠. 사실 평행이동을 했으니까 당연히 평행할 수밖에 없어요.
두 함수를 비교해볼게요. x, y는 변수니까 바뀔 수 있어서 비교할 수가 없어요. a, b는 상수라서 일정하죠. 두 그래프에서 기울기가 모두 a로 같아요. 그리고 y 절편이 b와 0으로 달라요. 여기서 일차함수의 그래프가 평행하려면 어떤 조건인지 알 수 있어요.
두 일차함수 그래프가 평행하려면: 기울기가 같고, y 절편은 다르다
y = ax + b와 y = cx + d에서 a = c이고 b ≠ d → 평행
일차함수 그래프의 일치
일차함수의 그래프가 일치한다는 건 그래프가 포개진다는 뜻이죠. 포개진다는 건 그래프에서 같은 점 위에 있다는 뜻이고요. 함수식이 같다는 얘기예요.
y = ax + b와 y = cx + d라는 두 일차함수가 일치하려면 a = c, b = d라는 것이죠.
두 일차함수의 그래프가 일치하려면: 기울기가 같고, y 절편이 같다.
y = ax + b와 y = cx + d 에서 a = c 이고 b = d → 일치
일차함수 y = 2x + 1의 그래프와 평행인 일차함수와 일치하는 일차함수를 각각 1개씩 적으시오.
먼저 문제에서 주어진 함수에서 기울기는 2, y절편은 1이네요. 평행한 것은 기울기가 같고 y절편이 다른 함수니까 기울기는 2일 테고, y 절편은 1만 아니면 돼요. y = 2x + 2도 될 수 있고, y = 2x - 1도 될 수 있겠네요. 그 개수가 매우 많아요.
일치하는 함수는 기울기도 같고, y 절편도 같아요. 같은 식이라는 거죠. y = 2x + 1이 되겠네요. 일치하는 일차함수는 딱 한 개예요.
함께 보면 좋은 글
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기
일차함수 y=ax+b 그래프의 특징
y = ax + b 그래프에서 a는 기울기이고, b는 y 절편이라는 사실을 알 수 있어요. 이제 이 두 가지에 따라 그래프가 어떻게 달라지는 지 알아볼 거예요.
일차함수의 그래프에서 간략하게 이야기하기는 했는데, 좀 더 자세히 알아보죠.
먼저 y = ax의 특징을 정리해보죠.
- 원점(0, 0)을 지난다.
- a의 절댓값이 커질수록 그래프는 y축에 가까워진다.
- a > 0
- x 증가 → y 증가
- 오른쪽 위로 향하는 직선
- 1, 3 사분면을 지난다.
- a < 0
- x 증가 → y 감소
- 오른쪽 아래로 향하는 직선
- 2, 4 사분면을 지난다.
y = ax와 y = ax + b의 차이는 b가 있고 없고의 차이에요. 사실은 y = ax + b에서 b = 0일 때가 y = ax이에요.
y = ax + b 그래프의 특징
y = ax와 y = ax + b의 차이는 b니까 b의 영향을 받는 부분만 다르고 나머지는 똑같아요.
원점(0, 0)을 지나는 대신 (0, b)를 지나고요.
그래프가 지나는 사분면은 y절편인 b의 부호에 따라서 달라져요.
| a > 0, b > 0 | a > 0, b < 0 |
| a < 0, b > 0 | a < 0, b < 0 |
| a > 0 | a < 0 | |
|---|---|---|
| 같은 점 | (0, b)를 지난다 a의 절댓값(|a|)의 절댓값이 커질수록 y축에 가까워진다. |
|
| 다른 점 | x 증가 → y 증가 오른쪽 위로 향하는 직선 b > 0이면 제 1, 2, 3 사분면 b < 0이면 제 1, 3, 4 사분면 |
x 증가 → y 감소 오른쪽 아래로 향하는 직선 b > 0이면 제 1, 2, 4 사분면 b < 0이면 제 2, 3, 4 사분면 |
다음 y = ax + b의 그래프를 보고, a와 b의 부호를 구하여라.
a는 그래프의 기울기인데, 그래프가 오른쪽 아래로 향하는 직선이니까 a < 0이겠네요. 그리고 b는 y 절편이니까 y축과 그래프가 만나는 곳의 부호를 보면 되겠죠. x 축보다 윗부분 즉, 양수인 곳에서 만나니까 b > 0이 되는군요.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 그래프 그리기
이제 일차함수의 그래프를 직접 그려볼까요?
일차함수의 그래프를 그리는 방법은 이미 1학년 때 배워봤어요. 함수식이 주어지면 그 식에, x = 1, 2, 3, …을 넣어서 그때의 y값을 구했죠. 그리고 순서쌍을 이용해서 좌표평면에 점을 찍은 다음 그 점들을 이어서 그래프를 그려요. 함수 그래프, 함수의 그래프 특징 비교
기본 원리는 점들의 좌표를 구해서 점을 찍고, 선으로 연결하는 겁니다. 그런데 사실 점의 좌표가 많이 필요하지 않아요. 그냥 두 개만 있으면 직선을 그을 수 있거든요.
두 점을 이용해서 일차함수 그래프 그리기
직선이라는 게 점을 여러 개 연결해도 되지만 두 점을 연결해도 직선이 돼요. 따라서 1학년 때처럼 점들의 좌표를 여러 개 구할 필요 없이 딱 두 개만 구해서 직선으로 연결하면 돼요.
두 점의 좌표가 주어졌다면 점을 찍어서 직선을 그으면 되고, 점이 주어지지 않고, 함수식만 주어졌다면 x = 1, 2처럼 임의의 값을 두 개 넣어서 좌표를 구해서 점을 찍고, 선을 그어주면 돼요.
두 점 (1, 1)과 (3, 2)를 지나는 함수의 그래프를 그려라.
좌표평면 위에 두 점을 찍고 그냥 이어서 연결하세요.
x절편, y절편을 이용해서 일차함수 그래프 그리기
마찬가지로 두 점의 좌표를 이용해서 그래프를 그리는 방법이에요.
두 개의 점의 좌표를 구할 때 아무 점이나 상관없지만 x절편, y절편을 구하는 방법도 좋아요. y 절편은 y = ax + b라는 함수식에서 b라는 걸 바로 알 수 있지요? 한 점의 좌표(0, b)를 금방 알아낼 수 있잖아요. 그럼 나머지 한 점의 좌표만 구하면 되는데, y = 0을 넣어서 구하면 x 절편이 나오죠.
문제에서 x, y 절편을 미리 알려주면 좋은 거고, 알려주지 않아도 다른 점의 좌표에 비해서 구하기가 쉬워서 많이 이용하는 방법이에요.
y = x + 2의 그래프를 그려라. (x절편과 y절편을 이용)
y = x + 2의 y 절편이 2이므로 y축과 만나는 점은 (0, 2), x 절편이 –2이므로 x축과 만나는 점은 (-2, 0)이네요. 두 점의 좌표를 구했으니 그래프를 그려보죠.
y절편과 기울기를 이용해서 일차함수 그래프 그리기
y 절편은 함수식에서 바로 구할 수 있지요?
일차함수와 그래프에서 기울기가 나타내는 게 뭐죠?
y = ax + b에서 y 절편이 b이므로 이 그래프는 (0, b)를 지나요. 기울기 a가 나태나는 건 x가 1 증가할 때, y는 a만큼 증가한다는 뜻이잖아요. 그래서 x가 0 → 1로 될 때, b → b + a 가 된다는 뜻이지요? 따라서 (0, b)와 (1, b + a)라는 점의 좌표를 구할 수 있다는 거예요. 물론 (1, b + a)가 아니라 (2, b + 2a), (3, b + 3a)라는 좌표를 구할 수도 있는 거지요. 어차피 두 점의 좌표만 있으면 되니까 아무거나 구해도 상관없어요.
두 점을 구했으니 좌표평면에 점을 찍고, 직선으로 연결하면 되겠지요?
y = 2x + 2의 그래프를 그려라. (기울기와 y절편을 이용)
y절편이 2이므로 이 그래프는 (0, 2)를 지나고 기울기가 2니까 x가 1 증가하면 y는 2 증가한다는 뜻이에요. x가 0 → 1이 되면, y는 2만큼 증가하니까 2 → 4가 되겠지요. 그래프가 지나는 두 점 (0, 2)와 (1, 4)를 구할 수 있어요.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
함수 그래프, 함수의 그래프 특징 비교
일차함수와 그래프 - 기울기
일차함수의 그래프에서 또 한가지 알아야 할 내용이 기울기에요.
일차함수 y = ax 그래프에서 a의 부호에 따라 그래프가 어떤 특징을 가졌는지 알아봤지요? 바로 a가 기울기입니다. 그래프의 특징에 아주 큰 영향을 미치니까 기울기에 대해서 꼭 알고 있어야겠죠?
함수식이 주어진 경우라면 a를 바로 구할 수 있지만, 식이 주어지지 않았다면 어떻게 a를 구하는지 알아볼까요.
일차함수의 기울기
기울기는 말 그대로 그래프가 기울어진 정도를 나타내는 용어에요. 그런데 얼마나 기울어졌는지를 각도로 표현하지 않고 숫자로 표현해요.
이 숫자를 구하는 방법이에요.
그럼 x, y값의 증가량은 어떻게 구하느냐? 그래프에서 임의의 두 점 A(x1, y1), B(x2, y2)를 고르세요. 직선 위에 있는 점이면 아무 점이나 괜찮아요. 두 점의 (B점의 x 좌표 - A점의 x 좌표) 가 x의 증가량 (B점의 y 좌표 - A점의 y 좌표)가 y의 증가량입니다.
x, y의 증가량을 구할 때 주의해아 할 것은 x의 증가량을 구할 때 B에서 A를 뺐다면 y의 증가량을 구할 때도 B에서 A를 빼야 한다는 거예요. 큰 수에서 작은 수를 빼는 게 아니에요. 증가량이라고 표현했지만 실제로는 x, y이 변한 정도를 나타내는 말로 감소량을 포함하고 있는 거예요. 따라서 x, y의 증가량은 부호가 (-)일 수도 있고 둘의 부호가 다를 수도 있다는 점을 알아두세요.
다음 일차함수의 그래프를 보고 기울기를 구하여라.
위 그래프에는 기울기가 표시되어 있지만 직접 구해보죠. 그래프가 x축과 만나는 점, y축과 만나는 점의 좌표를 구할 수 있죠? (2, 0)과 (0, 2)입니다.
두 점의 좌표를 이용해서 구한 기울기가 문제에서 주어진 함수식에서의 기울기와 같죠?
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수와 그래프 - x절편, y절편
일차함수 y = ax의 그래프의 특징에 대해서 이해했나요?
- 원점 (0, 0)을 지난다.
- 기울기의 절댓값이 커질수록 y축에 가깝다.
- a > 0 이면
- 오른쪽 위로 향하는 직선
- x 증가 → y 증가
- 1, 3 사분면
- a < 0이면
- 오른쪽 아래로 향하는 직선
- x 증가 → y 감소
- 2, 4 사분면
y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평형이동한 그래프라는 것까지는 알고 있어야 해요.
오늘은 그래프를 읽는 법을 공부할 겁니다. 그래프는 통해서 무엇을 알 수 있는지요. 나중에는 반대로 특정한 정보를 주고, 그래프를 그리는 법도 공부할 거예요.
x절편
함수의 그래프에서 절편은 함수의 그래프가 x축, y축과 만나는 점의 좌표를 말해요. x축과 만나는 점의 x좌표를 x 절편, y축과 만나는 점의 y좌표를 y절편이라고 하지요.
x축의 y좌표는 0이니까 그래프가 x축과 만나는 점의 y 좌표도 0이죠. 이거는 그래프를 통해서 확인할 수 있어요. 그래서 x 절편을 다른 말로 y = 0일 때의 x값이라고도 해요. 어차피 같은 얘기예요. 중요한 건 x축과 만나는 점의 x좌표인데 이 점의 y 좌표가 0이니까 함수식에 y = 0을 대입해서 그때의 x값을 구하면 돼요
y = 2x + 2라는 함수가 있고 이 함수 그래프의 x절편을 구해보죠. y = 0을 대입하면,
0 = 2x + 2
2x = -2
x = -1
y = 0일 때의 x값이 -1이죠? 이 -1을 x 절편이라고 해요.
y절편
x절편이 그래프가 x축과 만나는 점의 x좌표라면 그래프가 y축과 만나는 점의 y좌표가 y 절편이에요. 그래프가 y축과 만나니까 x 좌표가 0이겠죠. 그래서 다른 말로 x = 0일 때의 y좌표라고도 해요.
함수식에 x = 0을 넣어서 y절편을 구해요.
y = 2x + 2
y = 2
x = 0을 대입했더니, y = 2라는 값이 나왔네요. 이 함수의 y절편은 2입니다.
다음 그래프를 보고, x절편과 y절편을 구하여라.
그래프가 x축과 만나는 점의 좌표는 (2, 0)이고, y축과 만나는 점의 좌표는 (0, 2)이네요. 따라서 x절편은 2, y절편은 2입니다.
그래프를 통해서 구할 수도 있고, 아니면 앞에서 했던 방법처럼 x = 0, y = 0을 대입해서 값을 구할 수도 있어요.
y = ax+b의 x절편, y절편
일차함수 y = ax + b (a ≠ 0, a, b는 상수)에서의 x절편, y절편을 구해볼까요?
x절편을 구할 때는 y = 0을 대입한다고 했어요. 대입해 볼게요.
y = ax + b
0 = ax + b
-ax = b
x =
x 절편은 네요. 그래서 그래프가 x축과 만나는 점의 좌표는 (
, 0)이고요.
y절편은 x = 0을 대입해서 구해요.
y = ax + b
y = a × 0 + b
y = b
y 절편은 b고, 그때 점의 좌표는 (0, b)예요. 사실 y 절편은 굳이 x = 0을 대입할 필요가 없어요. 왜냐하면 y = ax + b에서 b니까요. 식만 봐도 바로 알 수 있어요.
- x 절편
- 그래프가 x축과 만나는 점의 x좌표
- y = 0일 때의 x 값
- y = ax + b에서는 x =
- 그래프가 x축과 만나는 점의 좌표: (
, 0)
- y절편
- 그래프가 y축과 만나는 점의 y좌표
- x = 0일 때의 y 값
- y = ax + b에서는 b
- 그래프가 y축과 만나는 점의 좌표: (0, b)
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수의 그래프
함수를 공부했으니까 그래프에 대해서 알아보죠.
함수 그래프를 그릴 때, x에 1, 2, 3, …을 넣어서 y를 구한 다음 좌표평면에 점을 찍고 그 점들을 이어서 그래프를 그렸어요. 여기까지가 1학년 때 했던 내용이에요.
이제는 그래프도 그려보고, 그래프가 어떤 특징이 있는지, 그래프와 함수식 사이에는 어떤 관계가 있는지 알아볼 거예요.
일차함수 y = ax의 그래프
일차함수 그래프에서 가장 기본이 되는 y = ax의 그래프부터 살펴보죠.
x = 0이면 y = 0이죠. 이 그래프는 (0, 0) 즉 원점을 지나요.
a 값에 따라 그래프가 어떻게 될까요? 아래 y = x와 y = 2x, y = 3x의 그래프를 보세요.
x의 앞의 숫자인 a가 커질수록 그래프는 y축에 더 가까워지죠?
아래는 y = -x, y = -2x, y = -3x의 그래프에요. 여기는 a가 작아질수록 y축에 더 가까워져요.
위 두 그림에서 알 수 있는 것, a > 0일 때는 a가 커질수록 그래프가 y축에 가까워지고, a < 0일 때는 a가 작아질수록 y축에 가까워지죠. 이거를 하나로 묶어서 표현해볼게요. a의 절댓값이 커질수록 그래프는 y축에 가까워진다.
a >0일 때는 x가 증가하면 y도 증가해요. 따라서 그래프의 모양은 오른쪽 위로 향하는 직선이죠. 그래프는 1, 3 사분면을 지나고요.
a < 0일 때는 x가 증가하면 y는 감소해요. 그래프의 모양은 오른쪽 아래로 향하는 직선이요. 2, 4 사분면을 지나네요.
| a > 0 | a < 0 | |
|---|---|---|
| 같은 점 | 원점 (0, 0)을 지난다 a의 절댓값(|a|)의 절댓값이 커질수록 y축에 가까워진다. |
|
| 다른 점 | x 증가 → y 증가 오른쪽 위로 향하는 직선 제 1, 3 사분면 |
x 증가 → y 감소 오른쪽 아래로 향하는 직선 제 2, 4 사분면 |
일차함수 y = ax + b의 그래프
y = ax + b는 y = ax의 그래프를 b만큼 평행이동한 그래프에요. 평행이동은 그래프를 일정한 값만큼 그 모양 그대로 옮기는 걸 말해요.
위 그림에서 보듯이 y = ax 그래프를 b만큼 평행이동했는데요, 어디로 이동했느냐면 y축 방향으로 이동했어요. ax였던 y에 b만큼 더해줬잖아요.
이 그래프는 원점이 아니라 (0, b)를 지나요. b의 값에 따라 지나가는 사분면이 달라지는 것을 빼면 y = ax 그래프와 특징이 같아요.
함께 보면 좋은 글
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징