직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식이라는 용어에 대해서 알아봤어요. 미지수가 2개인 일차방정식 ax + by + c = 0의 순서쌍 (x, y)를 좌표평면에 표시했더니 직선이 된다. 이때 ax + by + c = 0을 직선의 방정식이라고 하고, 일차함수의 그래프와 모양이 같다는 거지요.
이번 글에서는 직선의 방정식 중에서 특이한 모양의 직선을 알아볼 거예요.
바로 x축에 평행한 직선,
x축, y축
먼저 x축을 직선의 방정식으로 표현할 수 있어요. 좌표평면에서 x축은 가로로 되어 있는데, y좌표가 모두 0이에요. x = 1일 때도 y = 0, x = 2일 때도 y = 0이죠. x가 어떤 수가 되더라도 y = 0이에요.
따라서 x축을 직선의 방정식으로 표현하면 y = 0이라는 식으로 나타낼 수 있어요.
y축은 y = 1일 때도 y = 2일 때도 무조건 x = 0이죠. 그래서 y축의 직선의 방정식은 x = 0이에요.
x축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 0, b = 1, c = -1이면 식은 어떻게 되나요?
0 × x + 1 × y - 1 = 0
y = 1
y = 1이라는 직선의 방정식이 되고, … (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1) … 라는 점을 지나요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 x축에 평행한 직선이죠. 이 그래프는 y축과 (0, 1)에서 만나고, x축과는 만나지 않아요.
그러니까 y = n (n은 상수) 꼴의 식은 (0, n)을 지나고 x축에 평행한 직선이라고 정리할 수 있겠네요.
기울기라는 건 (y의 증가량) ÷ (x의 증가량)인데 y가 일정해서 y 증가량은 0이므로 기울기는 0인 함수입니다.
y축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 1, b = 0, c = -1이면 식은 어떻게 되나요?
1 × x + 0 × y - 1 = 0
x = 1
x = 1이라는 직선이 되고, … (1, -2), (1, -1), (1, 0), (1, 1), (1, 2) … 라는 점을 지나요. x는 무조건 1이고, y값만 바뀌네요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 y축에 평행한 직선이에요. y축과는 만나지 않고, x축과는 (1, 0)에서 만나네요.
x = m (m은 상수) 의 직선은 (m, 0)을 지나고 y축에 평행한 직선이에요.
기본적으로 함수는 x 하나에 y가 하나만 대응해야해요. 그런데, x = m 꼴 직선의 방정식은 x = 1일 때 y가 무수히 많죠? 그래서 함수라고 할 수 없어요. 기울기 = (y의 증가량) ÷ (x의 증가량)인데, x = m으로 항상 일정해서 x의 증가량이 0, 즉 분모가 0이에요. 따라서 기울기라는 것이 없다는 것도 알아두세요.
주의하세요. x축에 평행한 직선은 y = n 꼴이고, y축에 평행한 직선은 x = m 꼴이에요.
함께 보면 좋은 글
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기
복 많이 받으세요! 질문이 있어서요~ x,y에 평행한 직선의 방정식 설명에서 먼저 x축에 평행한 직선에 방정식을 보면 y=1이라는 방정식이 되고 이렇게해서 나온
(-2,1) , (-1,1) 이러한 순서쌍들을 연결하면 y축에 평행한 직선이 된다 설명이 나와있다가 바로 세 줄 정도 밑에는 x축에 평행한 직선이라고 설명이 돼 있는데 그래프로 보면 x축에 평행한 직선이 맞는거 아닌가요 쌤? 몇 번 봐도 다른 설명 같아보이지가 않는데 하나는 y축에 평행 하난 x축에 평행 이렇게 돼 있네요. 설명 좀 부탁드릴게요 ! ^^
오타네요. 수정할께요.
좋은글 잘보고가요 진짜상세하면서 이해안가는 해심을 정리해주셨네요
그냥 이런거 저런거 다 빼고 필요한 내용만 설명을 하려고 했어요. 잘 봐주셔서 고맙습니다.
비밀댓글입니다
어색하네요. ㅎㅎ
다 -> 가
축에 평행한 방정식은 일차함수가 아닌가요?
지금 일차함수 단원이고, 그 중에 축에 평행한 방정식이에요. 그러니 당연히 일차함수죠.
비밀댓글입니다
그래프를 그려보면, 옆으로 누운 사다리꼴 이에요.
넓이 16이나오도록 윗변과 아랫변의 길이를 잘 구해보세요.
비밀댓글입니다
비밀댓글입니다
비밀댓글입니다
이게 저도 할 줄 몰라서 개인 개발자분께 의뢰해서 만든 거예요. 이제 이 일 안하시는지 개발자 홈페이지가 닫혀서 AS가 되지 않아요. ㅠㅠ