사각형

일차방정식의 활용 2

2012. 12. 21. 16:00

일차방정식의 활용 두 번째는 일차방정식의 활용 첫 번째보다 조금 더 어려운 유형이에요. 공식을 알아야 풀 수 있거든요.

이 공식들은 수학, 과학 등의 과목에서 계속해서 보게 될 공식이니까 반드시 외워야 해요. 공식을 외우지 못했다는 건 일차방정식의 활용을 포기하는 것과 같아요. 물론 2, 3학년 수학도 일정 부분 포기한다는 뜻이고요.

원래는 하나의 공식인데, 모양만 바뀌는 거라서 외우기 헷갈릴 수 있어요. 그러면 그림으로 외우는 것도 좋은 방법이에요.

일차방정식의 활용

과부족

과부족 문제는 개수의 많고 적음을 이용한 문제에요. 문제에서는 물건의 개수를 구하라고 하는데, 식에서는 물건의 개수가 아닌 사람 수를 x라고 놓으면 돼요.

과부족 문제는 x가 들어있는 식을 두 개 만들고 그 둘이 같다고 놓고 푸는 문제입니다.

학급 학생들에게 공책을 나눠주려고 한다. 한 학생에게 공책을 5권씩 나눠주면 3권이 남고, 6권씩 나눠주면 4권이 부족하다고 한다. 공책은 총 몇 권인가?

공책의 개수를 구하라고 했다고 해서 이걸 x로 놓으면 문제가 복잡해져요. 이 문제에서는 학생 수를 x라고 놓으세요.

학생 수가 x명일 때, 한 사람에게 5권씩 주면 3권이 남는다고 했으니까 공책의 수는 5x + 3이에요. 6권씩 나눠주면 4권이 부족하다고 했으니까 공책 수는 6x - 4죠. 공책 수는 두 경우 모두에 같으니까 둘을 같게 놓고 문제를 풀면 돼요.

5x + 3 = 6x - 4
5x - 6x = - 4 - 3
-x = -7
x = 7

여기서 x는 공책의 수가 아니라 학생 수에요. x = 7을 5x + 3에 대입하면 공책의 수는 38권이 되네요.

도형

사각형의 넓이 = (가로) × (세로), 사각형의 둘레 = {(가로) + (세로)} × 2에요. 이것만 잘 기억하면 풀 수 있어요.

둘레가 50cm인 사각형이 있다. 가로의 길이가 세로 길이보다 3cm 더 길 때, 가로, 세로의 길이를 구하여라.

가로의 길이를 x라고 하면 세로의 길이는 x - 3이에요. 이때 사각형의 둘레는 {x + (x - 3)} × 2죠.

{x + (x - 3)} × 2 = 50
2(2x - 3) = 50
2x - 3 = 25
2x = 25 + 3
2x = 28
x = 14

가로 길이는 14cm이므로 세로 길이는 11cm네요.

거리, 속력, 시간

문자와 식, 문자를 포함한 식에서 봤던 공식이 또 나왔네요. 그만큼 중요하니까 또 나오는 거예요.

거리, 속력. 시간문제에서는 단위도 중요해요. 문제에서 사용하는 단위와 답에서 요구하는 단위를 잘 봐야 해요.

거리, 속력, 시간 공식

설리는 집에서 서점을 왕복하는데, 갈 때는 시속 4km의 속력으로 걸어가고, 올 때는 6km의 속력으로 뛰어서 총 40분이 걸렸다고 한다. 설리네 집에서 서점까지의 거리를 구하여라.

거리를 구하라고 했는데, 거리 = 속력 × 시간이에요. 올 때, 갈 때의 속력은 알고 있어요. 그런데 시간은 올 때와 갈 때는 둘을 합한 것만 알려줬죠? 그래서 하나를 우리가 임의로 x라고 정하는 거예요. 가는 데 걸린 시간을 x분라고 하면, 오는 데 걸린 시간은 (40 - x)분이 되겠죠.

집에서 서점까지의 거리는 올 때나 갈 때나 똑같아요. 그래서 (갈 때의 거리) = (올 때의 거리)라고 할 수 있어요.

4 × x = 6(40 - x)
4x = 240 - 6x
4x + 6x = 240
10x = 240
x = 24

x는 집에서 서점까지 가는 데 걸린 시간이고, 문제에서 구하는 건 거리죠. x = 24를 대입해서 거리를 구해야 해요.

거리 = 속력 × 시간 = 4 × 24 = 96(km)가 될 것 같죠? 이러면 절대로 안 돼요. 단위를 조심해야 해요.

집에서 서점에 갈 때 시속 4km라고 했고, 실제 걸린 시간은 24분이에요. 하나는 시고 하나는 분이라 단위가 달라요. 이 두 단위를 하나로 맞춰줘야 해요.

소금물의 농도

농도 공식도 문자와 식, 문자를 포함한 식에서 본 공식이에요. 앞으로 계속 나올 겁니다.

소금물에 소금물을 넣으면 소금의 양과 소금물의 양이 모두 변해요. 하지만 그냥 물만 넣거나 가열하는 경우에는 소금의 양은 바뀌지 않고 소금물의 양만 바뀌는 걸 주의하세요.

두 소금물 A, B를 하나로 섞었을 때

  • (A + B)의 소금의 양 = A 소금의 양 + B 소금의 양
  • (A + B)의 소금물의 양 = A 소금물의 양 + B 소금물의 양
  • (A + B)의 농도 = (A + B)의 소금의 양 / (A + B) 소금물의 양 * 100

어떤 경우에도 농도는 +/-로 구할 수 없어요. 두 소금물을 더했다고 해서 각각의 농도를 더해서 구하면 안 된다는 얘기예요. 위 농도 공식에 있는 방법으로만 농도를 구해야 해요.

소금물 A을 가열했을 때(증발시켰을 때)

  • 가열한 후의 소금양 = 가열전 의 소금양
  • 가열한 후의 소금물의 양 = 가열전 소금물의 양 - 증발한 물의 양

소금물 A에 물만 넣었을 때

  • 물을 넣은 후의 소금양 = 물을 넣기 전의 소금양
  • 물을 넣은 후의 소금물의 양 = 물을 넣기 전의 소금물의 양 + 넣은 물의 양

5% 소금물 200g을 가열하였더니 8% 소금물이 되었다. 가열한 후의 소금물의 양은 얼마인가?

소금물을 가열했을 때는 소금의 양은 바뀌지 않고, 소금물의 양만 줄어들어요. 따라서 가열 전과 가열 후의 소금의 양이 같다는 걸 이용해서 식을 세워보죠.

가열한 후의 소금물의 양을 구하라고 했으니 이걸 x라고 놓죠.

가열 전 5% 소금물 200g에 들어있는 소금의 양 =
가열 후 8% 소금물 xg에 들어있는 소금의 양 =

함께 보면 좋은 글

방정식과 항등식, 등식의 뜻
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이
일차방정식의 활용 첫번째

 
그리드형

이제는 삼각비를 이용해서 사각형의 넓이를 구하는 방법을 알아볼 거예요

평행사변형의 넓이는 (밑변) × (높이)에요. 여기서는 밑변의 길이와 높이를 알져주지 않고 다른 조건들을 알려준 평행사변형의 넓이를 구하는 걸 해볼 거예요. 물론 삼각비를 이용해서요.

삼각비를 이용해서 사각형의 넓이를 구할 때는 평행사변형의 성질을 이용합니다. 따라서 2학년 때 공부했던 평행사변형의 성질, 평행사변형과 넓이에 대해서 미리 읽어보세요.

사각형의 넓이는 삼각형의 넓이 공식 유도 방법과 비슷하니까 하나만 잘 해놓으면 두 개를 다 이해할 수 있어요.

평행사변형의 넓이

평행사변형의 넓이를 구할 때는 두 변의 길이와 그 끼인각의 크기를 알려줍니다. 삼각형의 넓이를 구할 때도 이 두 가지를 알려줬었죠?

높이를 구하여 평행사변형의 넓이 구하기

평행사변형의 넓이 구하기 - 삼각비의 활용

삼각형의 넓이를 구할 때 크기를 알려준 한 각과 길이를 알려준 한 변이 하나의 직각삼각형에 포함되도록 수선을 내린다고 했어요. 여기서도 마찬가지로 수선을 내려요. 점 A에서 변 BC에 수선을 내렸다고 해볼게요.

평행사변형의 넓이 구하기 2 - 삼각비의 활용

평행사변형 ABCD의 높이는 △ABH의 높이 즉, 와 같아요. 는△ABH에서 삼각비를 이용해서 구할 수 있죠.

평행사변형의 높이를 알아냈으니 넓이를 구할 수 있겠죠?

그런데 ∠B가 아니라 ∠A를 가르쳐줬다면 어떻게 할까요? ∠A는 둔각이에요. 둔각의 삼각비는 모르니까 예각으로 바꿔야겠죠? 2학년 때 공부한 건데, 평행사변형의 성질에서 이웃하는 두 내각의 합은 180°라는 성질을 이용해요. 이 성질을 이용하면 ∠B = 180° - ∠A가 되니까 예각인 ∠B를 알 수 있어요.

평행사변형의 대변은 길이가 같으니까 중 두 변의 길이를 고르고, 예각인 B를 끼인각으로 하면 평행사변형의 넓이를 구할 수 있어요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

삼각형의 넓이를 이용하여 평행사변형의 넓이 구하기 

높이를 구하지 않고 다른 방법으로 평행사변형의 넓이를 구해볼까요?

평행사변형에 대각선을 그어보세요. 삼각형 두 개로 나누어져요. 평행사변형과 넓이에서 대각선으로 나누어진 두 삼각형은 넓이가 같다는 걸 공부했어요. 그러니까 삼각형의 넓이를 구해서 두 배 해주면 되겠죠?

삼각비의 활용 - 삼각형의 넓이에서 두 변의 길이가 a, b이고 끼인각의 크기가 x°인 삼각형의 넓이는 라고 했지요? x°가 둔각일 때는 였고요.

똑같은 삼각형이 두 개 있으니까 두 배 해주면 돼요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

결국, 어떤 방법을 이용하던 결과는 같아요. 평행사변형의 넓이 공식은 삼각형의 넓이 공식에 2를 곱해주면 됩니다.

다음 그림에서 a = 4cm, b = 6cm, ∠A = 120°일 때 평행사변형 ABCD의 넓이를 구하여라.
평행사변형의 넓이 구하기 - 삼각비의 활용

두 변의 길이와 한 각의 크기를 알려줬는데, 그 각이 둔각이에요. 둔각일 때는 180°에서 빼서 예각을 만들어서 사용하면 돼요.

사각형의 넓이

이번에는 평행사변형이 아니라 그냥 막 생긴 사각형의 넓이에요. 여기서는 어떤 조건을 알려 주냐면 두 대각선의 길이와 대각선의 교각의 크기를 알려줘요.

삼각비의 활용 - 사각형의 넓이 1

이 사각형의 넓이를 구할 때는 그냥 구할 수 없어요. 우리가 알고 있는 사각형으로 변신을 시켜야 해요. 어떤 사각형이냐면 바로 위에서 했던 평행사변형으로 변신시키는 거죠.

위 사각형에서 대각선 와 평행하고 점 A를 지나는 평행선을 그어요. 또, 와 평행하고 점 C를 지나는 평행선도 긋고요. 이번에는 와 평행하고, 점 B를 지나는 평행선과 점 D를 지나는 평행선을 그어요.

삼각비의 활용 - 사각형의 넓이 2

총 네 개의 평행선을 긋는데, 이 평행선들이 만나서 사각형이 생기죠? 이 사각형을 □EFGH라고 할게요. 이 □EFGH은 와 에 평행한 선들로 이루어졌죠? 따라서 에요. 평행사변형이라는 얘기죠.

□AEFC는 평행사변형 →
□HEBD도 평행사변형 →
그 속의 작은 사각형들도 모두 평행사변형 → ∠AEB = x°

작은 평행사변형 네 개가 생기는데, 모두 대각선으로 나누어져 있죠? 각각의 작은 평행사변형을 둘로 나눈 삼각형 네 개를 붙여놓은 게 처음에 넓이를 구하려고 했던 □ABCD에요. 작은 삼각형은 작은 평행사변형의 넓이의 절반이므로(평행사변형과 넓이) □ABCD의 넓이는 □EFGH의 넓이의 절반인 걸 알 수 있어요.

□EFGH는 두 변의 길이와 끼인각의 크기를 알고 있으니까 공식으로 구할 수 있고, 이걸 2로 나눈 게 □ABCD의 넓이에요. 

여기서도 마찬가지로 두 대각선의 교각이 둔각이면 180° - x°를 해서 예각을 만들어야 해요. 

두 대각선의 길이가 a, b이고 교각의 크기가 x°인 사각형의 넓이

다음 그림에서 a = 4cm, b = 6cm, x° = 60°일 때 □ABCD의 넓이를 구하여라.
삼각비의 활용 - 사각형의 넓이 1

두 대각선의 길이와 교각의 크기를 알려줬어요. 이 교각이 예각이죠. 따라서 공식에 대입해보면

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용
삼각비의 활용 - 삼각형의 넓이
[중등수학/중2 수학] - 평행사변형의 성질, 평행사변형의 특징
[중등수학/중2 수학] - 평행사변형과 넓이

정리해볼까요
  • 평행사변형의 넓이: 두 변의 길이가 a, b이고 끼인각의 크기가 x°일 때
  • 사각형의 넓이: 두 대각선의 길이가 a, b이고 교각의 크기가 x°일 때
 
그리드형

사각형 시리즈(?) 마지막입니다.

평행사변형, 직사각형, 마름모, 정사각형의 각 변의 중점을 연결해서 그려지는 사각형이 어떤 사각형인지 알아볼 거예요. 중점이 뭔지는 다 알고 있죠? 중점은 두 점 사이의 거리를 이등분하는 점이에요.

이 글에서 다룰 내용은 각 사각형의 기본적인 정의만 잘 알고 있어도 쉽게 이해할 수 있어요. 일반적인 사각형과 사다리꼴의 중점을 연결한 사각형은 이 글에서 다루지 않고, 나중에 다른 단원에서 추가하도록 할게요.

사각형의 중점을 연결하여 만든 사각형

평행사변형의 중점을 연결해서 만든 사각형 - 평행사변형

먼저 평행사변형의 각 변의 중점을 연결해서 만든 사각형부터 알아보죠.

평행사변형 ABCD의 각 변의 중점을 잡아서 연결한 사각형을 □EFGH라고 해보죠.

평행사변형의 중점을 연결해서 만든 사각형 - 평행사변형

평행사변형의 두 쌍의 대변의 길이는 같아요. 그래서 변의 중점에서 꼭짓점까지의 거리도 대변에서는 같아요.

평행사변형의 두 쌍의 대각의 크기는 같죠? ∠A = ∠C, ∠B = ∠D

△AEF와 △CGH는 SAS 합동이에요. 따라서 대응변인 이에요. 또 △BFG와 △DHE도 SAS 합동이에요. 따라서 대응변인 이죠

결국 □EFGH는 두 쌍의 대변의 길이가 같으니까 평행사변형이에요.

직사각형의 중점을 연결해서 만든 사각형 - 마름모

이번에는 직사각형 ABCD의 각 변의 중점을 연결해서 그린 사각형을 □EFGH라고 해보죠.

직사각형의 중점을 연결해서 만든 사각형 - 마름모

직사각형도 평행사변형의 한 종류이므로 각 대변의 중점에서 꼭짓점까지의 거리는 같아요.

그리고 직사각형의 네 내각의 크기는 모두 90°죠. ∠A = ∠B = ∠C = ∠D = 90°

△AEF와 △CGH, △BGF, △DEH 네 개의 삼각형은 모두 SAS합동이에요. 따라서  = 이므로 네 변의 길이가 모두 같죠.

결국 □EFGH는 네 변의 길이가 같은 마름모입니다.

마름모의 중점을 연결해서 만든 사각형 - 직사각형

마름모 ABCD의 각 변의 중점을 연결해서 그린 사각형 □EFGH입니다.

마름모의 중점을 연결해서 만든 사각형 - 직사각형

마름모는 네 변의 길이가 같으므로 중점에서 꼭짓점까지의 거리도 모두 같아요.

마름모도 평행사변형의 한 종류로 두 쌍의 대각의 크기가 같으므로 ∠A = ∠C, ∠B = ∠D예요.

SAS 합동에 의해서 △AEF와 △CGH가 합동이고, △BFG와 △DHE가 합동이에요. 죠. □EFGH는 일단 평행사변형이네요.

그런데 이 네 삼각형은 이등변삼각형이므로 밑각의 크기가 같아요.

∠AFE = ∠AEF
∠BGF = ∠BFG
∠CGH = ∠CHG
∠DEH = ∠DHE

삼각형이 합동이므로 크기가 같은 각끼리 모으면
∠AFE = ∠AEF = ∠CGH = ∠CHG
∠BGF = ∠BFG = ∠DEH = ∠DHE죠.

평각인 ∠AFB와 ∠BGC의 크기를 삼각형의 내각 두 개와 사각형의 내각 한 개로 표시할 수 있죠?

∠AFB = 180° = ∠AFE + ∠BFG + ∠EFG
∠BGC = 180° = ∠BGF + ∠CGH + ∠FGH

연립방정식의 가감법처럼 두 식을 변변 빼보면
0° = (∠AFE - ∠CGH) + (∠BFG - ∠BGF) + (∠EFG - ∠FGH)
0° = ∠EFG - ∠FGH    (∵ ∠AEF = ∠CGH, ∠BFG = ∠BGF)
∠EFG = ∠FGH

□EFGH의 이웃한 두 각의 크기가 같다는 걸 알 수 있어요.

결국 □EFGH는 이웃한 두 각의 크기가 같은 평행사변형으로 직사각형이라는 걸 알 수 있지요.

그림으로 설명하면 쉬운데 말로 설명하려니 정말 어렵네요. 아래는 다른 설명이니까 위의 내용이 이해하기 어려우면 아래 내용을 보세요.

점 E와 점 G를 연결해서 를 그려보세요. □ABGE가 생기죠? 이므로 □ABGE는 평행사변형이에요. 따라서 와 평행이고 길이가 같아요.

이번에는 점 F와 점 H를 연결해서 를 그리세요. □AFHD가 생기는데, 이므로 □AFHD 역시 평행사변형이에요. 따라서 와 평행이고 길이가 같아요.

□ABCD는 마름모이므로 네 변의 길이가 같아요.  = 죠. 결국  = 예요. □EFGH에서 두 대각선의 길이가 같아요.

□EFGH은 두 대각선의 길이가 같은 평행사변형이므로 직사각형이에요.

정사각형의 중점을 연결해서 만든 사각형 - 정사각형

정사각형 ABCD의 각 변의 중점을 연결해서 □EFGH를 그려보죠.

정사각형의 중점을 연결해서 만든 사각형 - 정사각형

정사각형은 네 변의 길이가 같으므로 중점에서 꼭짓점까지의 거리도 모두 같아요. 

정사각형이라서 □ABCD의 네 내각의 크기도 같지요. ∠A = ∠B = ∠C = ∠D = 90°

위 조건에 따라 네 삼각형 △AEF, △BFG, △CGH, △DHE는 SAS 합동이므로 □EFGH의 네 변의 길이는 모두 같아요. 일단 마름모에요.

그리고 네 개의 삼각형은 직각이등변삼각형이니까 한 내각의 크기는 90°고, 다른 두 내각의 크기는 45°죠. (이등변삼각형의 성질)

평각인 ∠AED의 크기를 삼각형의 내각 두 개와 사각형의 내각 한 개로 표시할 수 있죠?

∠AED = 180° = ∠AEF + ∠DEH + ∠FEH
∠FEH = 90°     (∵ ∠AEF = ∠DEH = 45°)

□EFGH는 네 변의 길이가 같고, 한 내각의 크기가 90°이므로 정사각형입니다.

등변사다리꼴의 중점을 연결하여 만든 사각형 - 마름모

사다리꼴의 중점 연결 정리에서 자세히 다루니까 이쪽으로 오세요. ㅎㅎ

사각형의 각 변의 중점을 연결해서 그린 사각형
평행사변형 → 평행사변형
직사각형 → 마름모
마름모 → 직사각형
정사각형 → 정사각형
평행사변형, 정사각형은 그대로, 직사각형, 마름모는 서로 반대로
등변사다리꼴 → 마름모

평행사변형 ABCD의 각 변의 중점을 연결하여 그린 사각형을 □EFGH라고 할 때, □EFGH의 성질이 아닌 것을 모두 고르시오.
(1) 두 쌍의 대변의 길이가 같다.
(2) 두 쌍의 대각의 크기가 같다.
(3) 두 대각선이 서로 이등분한다.
(4) 두 대각선은 서로 수직이다.
(5) 네 내각의 크기가 모두 같다.
(6) 네 변의 길이가 모두 같다.

평행사변형의 중점을 연결해서 그린 사각형은 평행사변형이에요. 따라서 보기 중에 평행사변형의 성질이 아닌 것을 고르면 되겠지요.

(1), (2), (3)은 평행사변형의 성질이 맞아요.

(4) 번은 마름모, 정사각형의 성질이고, (5) 번은 직사각형, 정사각형의 성질이죠. (6) 번은 마름모, 정사각형의 성질이네요. 따라서 답은 (4), (5), (6)이 되겠습니다.

함께 보면 좋은 글

평행사변형의 성질, 평행사변형의 특징
직사각형의 성질, 직사각형이 되는 조건
마름모의 성질, 마름모가 되는 조건
정사각형의 성질, 정사각형이 되는 조건
사다리꼴의 정의, 등변사다리꼴의 정의와 등변사다리꼴의 성질
사각형의 정의와 성질, 조건
여러 가지 사각형 사이의 관계
사다리꼴의 중점 연결 정리, 등변사다리꼴의 중점 연결 정리

정리해볼까요

사각형의 각 변의 중점을 연결해서 만든 사각형

  • 평행사변형 → 평행사변형
  • 직사각형 → 마름모
  • 마름모 → 직사각형
  • 정사각형 → 정사각형
  • 등변사다리꼴 → 마름모
 
그리드형

지금까지 사각형을 배워왔어요. 사각형별로 정의와 성질, 조건을 알아봤죠. 또 이러한 내용을 표로 정리도 해봤고요. 사각형의 정의와 성질, 조건

이 글에서는 이 사각형들의 다른 점을 비교하는 게 아니라 서로의 관련성을 알아볼 거예요. 서로 어떤 관계가 있는지 어떻게 하면 다른 사각형이 되는지요.

그리고 각 사각형의 특징을 가장 잘 알 수 있는 대각선에 대해서도 알아볼 거예요.

이미 배웠던 사각형의 정의와 성질, 조건을 잘 이해하고 있어야 해요.

여러 가지 사각형의 포함관계

그냥 사각형이 있어요.
이 사각형의 한 쌍의 대변이 평행하면 사다리꼴이에요.
사다리꼴에서 나머지 한 쌍의 대변도 평행하다면 모두 두 쌍의 대변이 평행하니까 평행사변형이 돼요.
평행사변형에서 내각의 크기가 모두 같으면 직사각형이죠? 또 평행사변형의 네 변의 길이가 모두 같으면 마름모에요.
직사각형의 네 변의 길이가 같거나 마름모의 네 각의 크기가 모두 같으면 정사각형이 되지요.

이걸 집합으로 표시해보면

{사각형} {사다리꼴} {평행사변형} {직사각형} {정사각형}
{마름모}

⊃의 방향 잘 보세요. ⊃의 닫힌 쪽이 부분집합이에요. 또 {정사각형} = {직사각형} ∩ {마름모}이고요.

조건이 하나씩 추가될 때마다 사각형의 범위가 줄어들어요. 사각형들의 포함관계를 이해할 수 있겠죠? 아래는 벤다이어그램으로 표시한 거예요.

여러가지 사각형의 포함 관계

여러 가지 사각형의 조건

자 이제는 하나의 사각형이 어떤 조건을 갖추면 다른 형태의 사각형이 되는지 알아볼 거예요. 각 사각형의 정의와 조건에 대해서 잘 이해하고 있어야 하는 내용입니다.

여러가지 사각형의 조건

위 그림에서 사각형의 포함관계도 엿볼 수 있는데요. 화살표를 받는 쪽이 화살표를 받는 쪽에 포함되는 사각형이에요.

화살표 옆에 숫자가 보이죠? 그 숫자에는 사각형이 되려면 갖추어야 할 조건을 적어볼까요?

①번은 그냥 사각형이 사다리꼴이 되는 조건이에요. 사다리꼴은 한 쌍의 대변이 평행한 사각형이죠? 따라서 ①번에는 "한 쌍의 대변이 평행"이라는 조건이 들어가야 해요. 사다리꼴의 정의

②번은 사다리꼴이 등변사다리꼴이 되는 조건이에요. 등변사다리꼴은 밑변의 양 끝각의 크기가 같은 사다리꼴이니까 ②번에는 "밑변의 양 끝각이 같다."라는 조건이 들어가면 되겠고요. 등변사다리꼴의 정의와 등변사다리꼴의 성질

③번은 사다리꼴이 평행사변형이 되는 조건이에요. 평행사변형이 되는 조건에서 총 다섯 가지의 조건을 알아봤어요. 그런데 사다리꼴이라는 전제가 주어져 있으니 다 쓰지는 않고, 이걸 이용하는 조건만 적어보죠. 사다리꼴은 이미 한 쌍의 대변이 평행하니까 나머지 한 쌍의 대변이 평행하면 두 쌍의 대변이 평행해지겠죠? 그래서 ③번에는 "다른 한 쌍의 대변도 평행"이라는 조건이 들어가면 되겠네요. 또 한 쌍의 대변이 평행하고 길이가 같으면 평행사변형이 될 수 있어요. 그래서 사다리꼴에서 "평행한 대변의 길이가 같다"가 되어도 괜찮습니다.

원래 조건이 5가지인데, 이건 그냥 사각형이나 사다리꼴이나 다 상관없이 적용되는 조건이니까 일반적인 사각형과 사다리꼴과 굳이 분리해서 생각할 필요는 없어요.

④번은 평행사변형이 직사각형이 되는 조건이에요. 직사각형은 네 내각의 크기가 모두 같은 사각형이에요. 따라서 평행사변형의 한 내각이 90°가 되면 직사각형이 되죠. ④번에는 한 내각의 크기가 90°라는 조건이 맞겠네요. 이걸 다르게 표현하면 이웃한 두 내각의 크기가 같다고도 할 수 있죠. 또는 직사각형의 두 대각선의 길이는 같으므로 이 조건을 써도 되고요. 직사각형이 되는 조건

⑤번은 평행사변형이 마름모가 되는 조건이에요. 마름모는 네 변의 길이가 모두 같은 사각형이에요. 평행사변형의 이웃한 두 변의 길이가 같으면 마름모가 되죠. 따라서 ⑤번에는 이웃한 두 변의 길이가 같다고 쓰면 되겠네요. 또 마름모는 두 대각선이 서로를 수직이등분하지요? 평행사변형의 두 대각선이 서로 직교하면 마름모가 되니까 이걸 ⑤번에 써도 상관없어요. 마름모가 되는 조건

직사각형이 정사각형이 되는 조건은 ⑤번이고, 마름모가 정사각형이 되는 조건은 ④번이에요. 번호가 같다는 건 그 조건도 같다는 거니까 위에 있는 걸 그대로 쓰면 되지요.

정리해보죠.

  1. 사각형 → 사다리꼴
    • 한 쌍의 대변이 평행
  2. 사다리꼴 → 등변사다리꼴
    • 밑변의 양 끝각의 크기가 같다.
  3. 사다리꼴 → 평행사변형
    • 다른 한 쌍의 대변이 평행
    • 평행한 한 쌍의 대변의 길이가 같다.
    • 참고. 사각형 → 평행사변형의 조건은 총 5개
  4. (평행사변형 → 직사각형) = (마름모 → 정사각형)
    • 한 내각의 크기 = 90°
    • 이웃한 두 내각의 크기가 같다.
    • 두 대각선의 길이가 같다.
  5. (평행사변형 → 마름모) = (직사각형 → 정사각형)
    • 이웃한 두 변의 길이가 같다.
    • 두 대각선이 서로 직교

여러가지 사각형의 대각선

사각형의 특징을 가장 잘 나타내는 것 한 가지를 고르라고 하면 대각선이에요. 각 사각형별로 대각선이 어떤 특징을 나타내고 어떤 차이가 있는 지를 표로 나타내봤어요. 같은 성질을 지닌 게 하나도 없죠? 따라서 대각선만 잘 봐도 그 사각형이 어떤 사각형인지 알 수 있어요.

사각형의 대각선 성질 비교
서로 다른 것을 이등분 길이가 같다 직교
평행사변형 O X X
직사각형 O O X
마름모 O X O
정사각형 O O O
등변사다리꼴 X O X

예를 들어 문제를 푸는데 사각형의 대각선이 서로 직교해요. 대각선의 길이도 같으면 그 사각형은 정사각형이고, 길이가 같지 않으면 마름모가 되는 거죠.

함께 보면 좋은 글

평행사변형의 성질, 평행사변형의 특징
평행사변형이 되는 조건
직사각형의 성질, 직사각형이 되는 조건
마름모의 성질, 마름모가 되는 조건
정사각형의 성질, 정사각형이 되는 조건
사다리꼴의 정의, 등변사다리꼴의 정의와 등변사다리꼴의 성질
사각형의 정의와 성질, 조건

 
그리드형

사각형에 대해서 쭉 알아봤어요,

평행사변형, 직사각형, 마름모, 정사각형, 사다리꼴정의, 성질, 조건에 알아봤지요.

이 글에서는 이제까지 배웠던 사각형들의 내용을 합치고 정리해볼게요. 비슷한 것도 있고, 같은 것도 있고, 다른 것도 있으니까 잘 비교하고 구별해서 헷갈리지 않도록 하세요.

여기서는 각 사각형의 핵심적인 내용만 추릴 거니까, 자세한 내용이나 증명은 해당 글을 읽으세요.

아래에 표를 보면서 글자로 외우는 것도 좋지만 그림을 보면서 직접 펜으로 찍어가면서 외우세요. 예를 들면 펜으로 그림의 윗변과 아랫변을 가리키면서 "여기랑 여기랑 같고………" 뭐 이런 식으로 말이죠. 도형이니까 실제 도형을 보면서 그림에 맞게 외우는 것이 훨씬 더 좋은 방법이거든요.

여러 사각형의 정의와 성질, 조건

사각형의 정의와 성질, 조건
사각형 [정의]와 성질 조건
평행사변형
평행사변형
[두 쌍의 대변이 각각 평행한 사각형]
  • 두 쌍의 대각의 크기가 각각 같다.
    이웃한 두 내각의 크기의 합은 180°
  • 두 쌍의 대변의 길이가 각각 같다.
  • 두 대각선은 서로 다른 대각선을 이등분한다.
  • 두 쌍의 대변이 평행한 사각형
  • 두 쌍의 대변의 길이가 각각 같은 사각형
  • 두 쌍의 대각의 크기가 각각 같은 사각형
  • 두 대각선이 서로를 이등분하는 사각형
  • 한 쌍의 대변이 평행하고, 그 길이가 같은 사각형
평행사변형의 성질 평행사변형이 되는 조건
직사각형
직사각형의 정의
[모든 내각의 크기가 같은 사각형 또는 한 내각의 크기가 90°인 평행사변형]
  • (평행사변형의 성질)
  • 두 대각선의 길이가 같다.
  • 한 내각의 크기가 90° 또는 이웃하는 두 내각의 크기가 같은 평행사변형
  • 두 대각선의 길이가 같은 평행사변형
직사각형의 성질, 직사각형이 되는 조건
마름모
마름모의 정의
[네 변의 길이가 모두 같은 사각형]
  • (평행사변형의 성질)
  • 두 대각선이 서로를 수직이등분
  • 이웃하는 두 변의 길이가 같은 평행사변형
  • 두 대각선이 서로 직교하는 평행사변형
마름모의 성질, 마름모가 되는 조건
정사각형
정사각형의 정의
[네 각의 크기가 모두 같고, 네 변의 길이가 모두 같은 사각형]
  • (평행사변형의 성질)
  • (직사각형의 성질)
  • (마름모의 성질)
  • 이웃하는 두 변의 길이가 같은 직사각형
  • 두 대각선이 서로 직교하는 직사각형
  • 한 내각이 90° 또는 이웃하는 두 내각의 크기가 같은 마름모
  • 두 대각선의 길이가 같은 마름모
정사각형의 성질, 정사각형이 되는 조건
등변사다리꼴
등변사다리꼴
[한 쌍의 대변이 평행하고 밑변의 양 끝각의 크기가 같은 사각형]
  • 평행하지 않은 한 쌍의 대변의 길이가 같다.
  • 대각선의 길이가 같다.
등변사다리꼴의 정의와 성질

함께 보면 좋은 글

평행사변형의 성질, 평행사변형의 특징
평행사변형이 되는 조건
직사각형의 성질, 직사각형이 되는 조건
마름모의 성질, 마름모가 되는 조건
정사각형의 성질, 정사각형이 되는 조건
사다리꼴의 정의, 등변사다리꼴의 정의와 등변사다리꼴의 성질

<<    중2 수학 목차    >>
 
그리드형

피타고라스의 정리를 배웠으니까 이 정리를 여러 도형에서 활용해봐야겠죠?

피타고라스의 정리라고 해서 꼭 직각삼각형에서만 사용하는 건 아니에요. 사각형에서도 활용할 수 있어요. 직각삼각형이 보이지 않는다면 선분을 잘 그어서 피타고라스의 정리를 활용할 수 있도록 그림을 변형시킬 수 있거든요.

이 글에서는 사각형과 관련된 공식이 나오는데, 공식으로 외우기보다는 그림을 외우는 것이 훨씬 이해하기 쉽고, 외우기도 쉬워서 머릿속에 오래 남아요. 그림으로 이해하고 외우세요.

피타고라스 정리의 활용

사각형에서 두 대각선이 직교할 때

다음 그림처럼 사각형에서 두 대각선이 직교할 때 네 변 길이의 상관관계를 알아보죠.

피타고라스의 정리 활용 - 사각형 1

대각선이 수직으로 만나는 점을 점 O라고 하죠. 그러면 △OAB, △OBC, △OCD, △ODA라는 네 개의 직각삼각형이 생겨요. 점 O에서 각 꼭짓점에 이르는 거리를 각각 a, b, c, d,라고 해보죠. 그리고 네 개의 직각삼각형에 피타고라스의 정리를 적용해보면,

= a2 + c2 …… ①
= b2 + c2 …… ②
= b2 + d2 …… ③
= d2 + a2 …… ④

위 식에서 ① + ③ = ② + ④ = a2 + b2 + c2 + d2의 관계가 성립해요.

사각형의 두 대각선이 직교할 때
⇒ 마주보는 두 대변의 길이의 제곱의 합이 같다.
 +  =  +

다음 사각형의 두 대각선이 직교할 때, x를 구하여라.
피타고라스 정리의 활용 - 사각형 1 예제

마주보는 두 대변의 길이의 제곱의 합이 같으므로 82 + x2 = 122 + 62
64 + x2 = 144 + 36
x2 = 116
x = (cm, x > 0)

직사각형 안의 한 점에서 꼭짓점에 이르는 거리

피타고라스 정리의 활용 - 사각형 2

이번에는 직사각형에서 알아볼까요? 직사각형 안에 임의의 점 P를 잡아요. 그런 다음 점 P를 지나고 변 AB에 평행인 선을 긋습니다. 이 선이 변 AD와 만나는 점을 E, 변 BC와 만나는 점을 F라고 하죠. 이번에는 점 P를 지나고 변 BC에 평행인 선을 그어서 이 선이 변 AB와 만나는 점을 점 G, 이 선이 변 CD와 만나는 점을 점 H라고 해보죠. 직각삼각형이 생겼네요.

라고 할께요.

점 P에서 네 꼭짓점 A, B, C, D에 이르는 거리에 피타고라스의 정리를 적용해보면

= a2 + c2 …… ①
= b2 + c2 …… ②
= b2 + d2 …… ③
= d2 + a2 …… ④

위 식에서 ① + ③ = ② + ④ = a2 + b2 + c2 + d2의 관계가 성립해요.

직사각형 안의 임의의 한 점 P
⇒ P에서 마주 보는 꼭짓점사이의 길이의 제곱의 합이 같다.
 +  +

다음은 직사각형 안의 한 점에서 꼭짓점에 이르는 거리를 나타낸 것이다. x를 구하여라.
피타고라스 정리의 활용 - 사각형 2 예제

직사각형 안의 한 점에서 마주보는 꼭짓점 사이의 거리의 제곱의 합이 서로 같으므로 82 + x2 = 62 + 72
64 + x2 = 49 + 36
x2 = 21
x = (cm, x > 0)

함께 보면 좋은 글

피타고라스의 정리, 피타고라스의 정리 증명
유클리드의 증명, 가필드의 증명 - 피타고라스의 정리 증명
삼각형 세 변의 길이와 각의 크기
히포크라테스의 초승달, 직각삼각형과 피타고라스의 정리
대각선의 길이 구하는 공식 - 피타고라스 정리의 활용 - 평면도형 1

정리해볼까요

피타고라스 정리의 활용

  • 사각형의 두 대각선이 직교할 때: 마주보는 두 변의 길이의 제곱의 합이 서로 같다.
  • 직사각형 안의 한 점에서 마주보는 꼭짓점사이의 길이의 제곱의 합이 서로 같다.
 
그리드형

중2 수학 목차

2012. 5. 20. 12:30

중학교 2학년 수학 목차입니다.

각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.

중1 수학 목차
중3 수학 목차

종이책 구입하기

  1. 유리수
  2. 식의 계산
  3. 연립방정식
  4. 부등식
  5. 일차함수

 

  1. 도형의 성질
  2. 도형의 닮음
  3. 피타고라스의 정리
  4. 확률
그리드형

+ 최근글