삼각비

삼각함수 그래프 세 번째 tan의 그래프예요. tan의 그래프는 앞서 했던 sin, cos의 그래프와 많이 다릅니다. 그래서 주의해서 봐야 해요. 다른 함수의 그래프와 헷갈릴 일은 없으니까 어쩌면 다행이기도 하죠.

tan의 그래프를 그릴 때 조금 어렵다면 삼각함수의 사촌 격인 삼각비의 tan를 생각하세요. 그때 공부했던 내용을 참고하면 tan 그래프를 그리고 이해하는 데 도움이 많이 될 거예요.

각 그래프의 특징을 보고 실제로 그래프를 종이에 예쁘게 그리는 연습을 하세요. 종이에 여러 번 그리는 게 그래프의 특징을 좀 더 빨리 파악하고 외우는 데 많은 도움이 됩니다.

삼각함수의 그래프 - tan 그래프

[중등수학/중3 수학] - 예각의 삼각비, 0°와 90°의 삼각비 구했던 거 기억나죠? 그것과 비슷해요. 삼각비와 삼각함수는 한 끗 차이니까요.

좌표평면 위의 단위원과 동경 가 만나는 점을 점 P(x, y)라고 하고 점 P에서 x축에 내린 수선의 발을 H라고 해보죠. 의 연장선과 x = 1이 만나는 점을 P'(x', y')이라고 하고요. 그리고 이때 동경 가 나타내는 각을 θ라고 해보죠.

△OPH ∽ △OP'H'이므로  (∵ x' = 1)

tanθ는 동경 의 연장선과 x = 1의 교점 P'의 y좌표, 높이라는 걸 알 수 있어요. 이를 이용해서 tanθ의 그래프를 그려보죠.

θ = 0일 때 P'의 y좌표는 0이므로 tanθ = 0이에요.

θ가 1사분면의 각일 때 θ가 커지면 높이도 커지므로 tanθ도 커져요.

θ = 90° = 이면 직각이라서 그 값을 알 수가 없어요. [중등수학/중3 수학] - 0°와 90°의 삼각비에서 tan90°는 그 값을 정할 수 없다고 했잖아요.

θ가 2사분면의 각일 때 x = 1과 교점이 아니라 x = -1과의 교점의 높이로 구해야겠죠?
  (∵ x' = -1)

그래서 tanθ의 부호가 (-)예요. θ가 커지면 높이가 줄어들지만, 부호가 (-)이므로 tanθ는 커져요.

θ = 180° = π이면 높이 = 0이므로 tanθ = 0이지요.

θ가 3사분면의 각이면 θ가 커질수록 tanθ도 커져요. 이때 x' = -1, y' < 0이므로 tanθ > 0이지요.

θ = 270° = 이면 역시 tanθ는 값을 정할 수 없어요.

θ가 4사분면의 각이면 x' = 1로 tanθ = y' < 0이므로 θ가 커질수록 높이는 작아지지만 tanθ는 커져요.

θ가 360° = 2π보다 커지면 위와 같은 내용이 반복돼요. 주기를 2π라고 생각할 수 있어요. 그런데 이 내용을 잘 보면 1사분면의 각일 때와 3사분면의 각일 때, 2 사분면의 각일 때와 4사분면의 각일 때의 변화가 같아요. 즉 주기가 π라는 걸 알 수 있죠. 삼각함수 각의 변환 2 - π ± θ, π/2 ± θ에서 tan(π + θ) = tanθ였어요.

tan 그래프의 가장 큰 특징은 sin 그래프, cos 그래프와 달리 물결 모양이 아니라는 거예요. 그리고 모든 영역에서 값이 커져요. 전부 다 오른쪽 위로 향하고 있어요.

그리고 , …… 처럼 nπ + (n은 정수)일 때, 값을 정할 수 없다는 거죠. 그래서 정의역은 nπ + (n은 정수)가 아닌 모든 실수고 치역은 모든 실수예요.

tan(-x) = -tanx이므로 원점에 대하여 대칭이에요.

nπ + (n은 정수)일 때 값을 정할 수는 없지만, 그때의 값에 계속 가까워지고 있어요. 무리함수의 그래프에서 점점 가까워지는 선을 점근선이라고 했죠? x = nπ + (n은 정수)가 바로 점근선이에요.

y = tanx 그래프의 특징
정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
원점에 대하여 대칭
주기는 π
점근선은 x = nπ + (n은 정수)

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 총정리

정리해볼까요

y = tanx 그래프의 특징

  • 정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
  • 원점에 대하여 대칭
  • 주기는 π
  • 점근선은 x = nπ + (n은 정수)
<<     고1 수학 목차     >>
 
그리드형

삼각함수표의 사용

2013. 11. 12. 16:00

제곱근표, 삼각비표에 이은 세 번째 표 삼각함수표예요. 삼각함수표는 제곱근표와 삼각비표가 그랬던 것처럼 교과서나 문제집의 제일 끝 부분에 있어요.

삼각함수표는 정말 정말 쉬워요. 삼각비표와 99% 같으니까요. 사실 삼각함수표를 이용하는 경우는 별로 많지는 않지만 그래도 내용은 알고 있어야 해요.

그리고 삼각비표보다 더 중요한 건 특수각의 삼각함수 그러니까 특수한 각의 삼각비, 30°, 45°, 60°에요. 꼭 외우세요.

삼각함수표의 사용

삼각비 표는 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 거죠.

삼각함수의 sin, cos, tan를 구하는 방법은 삼각비 sin, cos, tan를 구하는 방법과 거의 같아요. 따라서 삼각함수표는 삼각비표와 거의 같지요. 딱 하나 다른 점이 있는데, 바로 호도법이 추가되었다는 거지요. 육십분법의 ° 단위 뿐 아니라 호도법의 라디안 단위도 표에 나와요.

즉, 삼각함수표는 1° ~ 90° 사이의 각을 1° 간격으로 나누어 삼각함수의 근삿값을 표로 나타낸 것으로 °단위 뿐 아니라 라디안 단위의 각도 포함하고 있는 거죠

삼각비표
각도 라디안 sin cos tan
45° 0.7854 0.7071 0.7071 1.0000
46° 0.8029 0.7193 0.6947 1.0355
47° 0.8203 0.7314 0.6820 1.0724
48° 0.8378 0.7431 0.6691 1.1106
49° 0.8552 0.7547 0.6561 1.1504
50° 0.8727 0.7660 0.6428 1.1918

이제까지 라디안을 공부할 때는 π를 이용한 라디안을 썼는데, 삼각함수표에는 π가 아니라 소수로 나오죠. 그래서 사실 삼각함수표에서 라디안을 이용할 일은 거의 없어요.

그냥 이런 게 있다 정도로만 알고 있으면 돼요. 표를 읽는 방법은 어렵지 않죠?

이 삼각함수표에는 90°까지밖에 나오지 않아요. 90°보다 더 큰 각의 삼각함수를 구할 때는 삼각함수 각의 변환 총정리에서 했던 방법처럼 문제에 나오는 각을 90° × n + θ (n은 정수, 0° < θ < 90°)로 바꿔서 구해야 합니다.

위 삼각함수표를 이용하여 다음을 구하여라.
sin135° + cos226° + tan407°

삼각함수 각의 변환 총정리에서 했던 방법을 이용해서 풀어보죠.

sin135° = sin(90° × 1 + 45°) = cos45° = 0.7071
(∵ n = 1로 홀수이므로 sin → cos, 135°는 제 2 사분면의 각이므로 sin135°는 +)

cos226° = cos(90° × 2 + 46°) = -cos46° = -0.6947
(∵ n = 2로 짝수이므로 cos → cos, 226°는 제 3 사분면의 각이므로 cos226°는 -)

tan407° = tan(90° × 4 + 47°) = tan47° = 1.0724
(∵ n = 4로 짝수이므로 tan → tan, 407°는 제 1 사분면의 각이므로 tan407°는 +)

sin135° + cos226° + tan407° = 0.7071 - 0.6947 + 1.0724 = 1.0848

함께 보면 좋은 글

삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리
호도법, 라디안(radian)
[중등수학/중3 수학] - 삼각비표, 삼각비표 보는 법

정리해볼까요

삼각함수표: 0° ~ 90° 사이의 각에 대한 삼각함수를 표로 나타낸 것

  • 호도법인 라디안 단위도 포함
 
그리드형

삼각함수라는 새로운 함수를 공부할 거예요. 삼각함수는 쉽게 말해서 삼각비호도법 + 함수예요. 삼각비에서 직각삼각형 세 변의 길이의 비는 각에 대한 일정한 관계가 있었죠? 이 일정한 관계를 함수로 나타낸 것이 삼각함수예요. 삼각비에서는 직각삼각형에서 세 변의 길이의 비를 이용했다면 삼각함수에서는 좌표평면 위의 좌표를 이용하는 차이가 있어요. 또 삼각비에서는 육십분법으로 나타낸 각을 이용했다면 삼각함수에서는 호도법으로 나타낸 각을 이용하죠.

그러니까 삼각함수를 잘하려면 삼각비와 호도법에 대해서 정확히 이해하고 있어야 해요.

삼각함수의 뜻, 삼각함수의 정의

xy좌표평면에 반지름의 길이가 r인 원을 그리고 원 위의 임의의 점을 P라고 해보죠. x축 양의 방향을 시초선으로 하고 동경 가 이루는 각을 θ라고 할 때, ,  , ,θ의 크기에 따라 한 가지로 정해져요.

삼각함수

r ≠ 0일 때, θ, θ, θ는 각각 θ에 대한 함수가 돼요. 이 함수를 차례로 사인함수, 코사인함수, 탄젠트함수라고 하고 기호로 sinθ = , cosθ = , tanθ = 로 나타냅니다. 그리고 이 세 가지를 묶어서 삼각함수라고 해요.

마치 삼각비, sin, cos, tan에서 빗변과 밑변, 높이 사이의 비를 구했던 것처럼 말이죠. 반지름 r을 빗변의 길이, x를 밑변의 길이, y를 높이라고 생각하면 쉬워요. 대신 삼각비에서는 길이의 비여서 사용하는 숫자가 모두 양수였지만 삼각함수에서는 좌표를 이용하므로 음수도 사용한다는 차이가 있어요.

  • sinθ =
  • cosθ =
  • tanθ =

좌표평면 위에서 원점 O와 점 P(-3, -4)를 이은 선분 OP를 동경으로 하는 각을 θ라고 할 때 sinθ, cosθ, tanθ를 구하여라.

삼각함수 예제

= 5네요.

sinθ =
cosθ =
tanθ =

삼각함수 값의 부호

삼각함수 값의 부호는 θ가 나타내는 동경의 위치에 따라 달라져요. θ가 몇 사분면 위의 각인지에 따라 부호가 달라지죠. 이때, r은 반지름이니까 무조건 양수예요. 따라서 삼각함수의 부호에 영향을 주는 요소는 좌표평면에서 x, y의 부호입니다.

삼각함수 값의 부호
제 1 사분면 제 2 사분면 제 3 사분면 제 4 사분면
x, y 부호 x > 0, y > 0 x < 0, y > 0 x < 0, y < 0 x > 0, y < 0
sinθ = + + - -
cosθ = + - - +
tanθ = + - + -

제 1 사분면에서는 세 가지 모두 양수, 제 2 사분면에서는 sinθ만 양수, 제 3 사분면에서는 tanθ만 양수, 제 4 사분면에서는 cosθ만 양수네요. 1, 2, 3, 4 사분면 순서대로 양수인 것들만 뽑아서 올 - 싸 - 탄 - 코 (all - sin - tan - cos)라고 외워요.

각 함수별로 보면 양수가 되는 사분면이 2개, 음수인 사분면이 2개씩 있어요. 사인함수는 제 1, 2, 사분면이 양수이고, 코사인함수는 제 1, 4 사분면이 양수, 탄젠트함수는 제 1, 3 사분면이 양수예요.

함께 보면 좋은 글

호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
부채꼴 호의 길이와 넓이, 호도법이용
[중등수학/중3 수학] - 삼각비, sin, cos, tan

정리해볼까요

삼각함수: 사인함수, 코사인함수, 탄젠트함수

  • sinθ =
  • cosθ =
  • tanθ =

삼각함수 값의 부호: 사분면 순서대로 올 - 싸 - 탄 - 코 (all - sin - tan - cos)

 
그리드형

이제는 삼각비를 이용해서 사각형의 넓이를 구하는 방법을 알아볼 거예요

평행사변형의 넓이는 (밑변) × (높이)에요. 여기서는 밑변의 길이와 높이를 알져주지 않고 다른 조건들을 알려준 평행사변형의 넓이를 구하는 걸 해볼 거예요. 물론 삼각비를 이용해서요.

삼각비를 이용해서 사각형의 넓이를 구할 때는 평행사변형의 성질을 이용합니다. 따라서 2학년 때 공부했던 평행사변형의 성질, 평행사변형과 넓이에 대해서 미리 읽어보세요.

사각형의 넓이는 삼각형의 넓이 공식 유도 방법과 비슷하니까 하나만 잘 해놓으면 두 개를 다 이해할 수 있어요.

평행사변형의 넓이

평행사변형의 넓이를 구할 때는 두 변의 길이와 그 끼인각의 크기를 알려줍니다. 삼각형의 넓이를 구할 때도 이 두 가지를 알려줬었죠?

높이를 구하여 평행사변형의 넓이 구하기

평행사변형의 넓이 구하기 - 삼각비의 활용

삼각형의 넓이를 구할 때 크기를 알려준 한 각과 길이를 알려준 한 변이 하나의 직각삼각형에 포함되도록 수선을 내린다고 했어요. 여기서도 마찬가지로 수선을 내려요. 점 A에서 변 BC에 수선을 내렸다고 해볼게요.

평행사변형의 넓이 구하기 2 - 삼각비의 활용

평행사변형 ABCD의 높이는 △ABH의 높이 즉, 와 같아요. 는△ABH에서 삼각비를 이용해서 구할 수 있죠.

평행사변형의 높이를 알아냈으니 넓이를 구할 수 있겠죠?

그런데 ∠B가 아니라 ∠A를 가르쳐줬다면 어떻게 할까요? ∠A는 둔각이에요. 둔각의 삼각비는 모르니까 예각으로 바꿔야겠죠? 2학년 때 공부한 건데, 평행사변형의 성질에서 이웃하는 두 내각의 합은 180°라는 성질을 이용해요. 이 성질을 이용하면 ∠B = 180° - ∠A가 되니까 예각인 ∠B를 알 수 있어요.

평행사변형의 대변은 길이가 같으니까 중 두 변의 길이를 고르고, 예각인 B를 끼인각으로 하면 평행사변형의 넓이를 구할 수 있어요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

삼각형의 넓이를 이용하여 평행사변형의 넓이 구하기 

높이를 구하지 않고 다른 방법으로 평행사변형의 넓이를 구해볼까요?

평행사변형에 대각선을 그어보세요. 삼각형 두 개로 나누어져요. 평행사변형과 넓이에서 대각선으로 나누어진 두 삼각형은 넓이가 같다는 걸 공부했어요. 그러니까 삼각형의 넓이를 구해서 두 배 해주면 되겠죠?

삼각비의 활용 - 삼각형의 넓이에서 두 변의 길이가 a, b이고 끼인각의 크기가 x°인 삼각형의 넓이는 라고 했지요? x°가 둔각일 때는 였고요.

똑같은 삼각형이 두 개 있으니까 두 배 해주면 돼요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

결국, 어떤 방법을 이용하던 결과는 같아요. 평행사변형의 넓이 공식은 삼각형의 넓이 공식에 2를 곱해주면 됩니다.

다음 그림에서 a = 4cm, b = 6cm, ∠A = 120°일 때 평행사변형 ABCD의 넓이를 구하여라.
평행사변형의 넓이 구하기 - 삼각비의 활용

두 변의 길이와 한 각의 크기를 알려줬는데, 그 각이 둔각이에요. 둔각일 때는 180°에서 빼서 예각을 만들어서 사용하면 돼요.

사각형의 넓이

이번에는 평행사변형이 아니라 그냥 막 생긴 사각형의 넓이에요. 여기서는 어떤 조건을 알려 주냐면 두 대각선의 길이와 대각선의 교각의 크기를 알려줘요.

삼각비의 활용 - 사각형의 넓이 1

이 사각형의 넓이를 구할 때는 그냥 구할 수 없어요. 우리가 알고 있는 사각형으로 변신을 시켜야 해요. 어떤 사각형이냐면 바로 위에서 했던 평행사변형으로 변신시키는 거죠.

위 사각형에서 대각선 와 평행하고 점 A를 지나는 평행선을 그어요. 또, 와 평행하고 점 C를 지나는 평행선도 긋고요. 이번에는 와 평행하고, 점 B를 지나는 평행선과 점 D를 지나는 평행선을 그어요.

삼각비의 활용 - 사각형의 넓이 2

총 네 개의 평행선을 긋는데, 이 평행선들이 만나서 사각형이 생기죠? 이 사각형을 □EFGH라고 할게요. 이 □EFGH은 와 에 평행한 선들로 이루어졌죠? 따라서 에요. 평행사변형이라는 얘기죠.

□AEFC는 평행사변형 →
□HEBD도 평행사변형 →
그 속의 작은 사각형들도 모두 평행사변형 → ∠AEB = x°

작은 평행사변형 네 개가 생기는데, 모두 대각선으로 나누어져 있죠? 각각의 작은 평행사변형을 둘로 나눈 삼각형 네 개를 붙여놓은 게 처음에 넓이를 구하려고 했던 □ABCD에요. 작은 삼각형은 작은 평행사변형의 넓이의 절반이므로(평행사변형과 넓이) □ABCD의 넓이는 □EFGH의 넓이의 절반인 걸 알 수 있어요.

□EFGH는 두 변의 길이와 끼인각의 크기를 알고 있으니까 공식으로 구할 수 있고, 이걸 2로 나눈 게 □ABCD의 넓이에요. 

여기서도 마찬가지로 두 대각선의 교각이 둔각이면 180° - x°를 해서 예각을 만들어야 해요. 

두 대각선의 길이가 a, b이고 교각의 크기가 x°인 사각형의 넓이

다음 그림에서 a = 4cm, b = 6cm, x° = 60°일 때 □ABCD의 넓이를 구하여라.
삼각비의 활용 - 사각형의 넓이 1

두 대각선의 길이와 교각의 크기를 알려줬어요. 이 교각이 예각이죠. 따라서 공식에 대입해보면

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용
삼각비의 활용 - 삼각형의 넓이
[중등수학/중2 수학] - 평행사변형의 성질, 평행사변형의 특징
[중등수학/중2 수학] - 평행사변형과 넓이

정리해볼까요
  • 평행사변형의 넓이: 두 변의 길이가 a, b이고 끼인각의 크기가 x°일 때
  • 사각형의 넓이: 두 대각선의 길이가 a, b이고 교각의 크기가 x°일 때
 
그리드형

삼각비를 이용해서 삼각형의 넓이를 구하는 방법이에요.

삼각형의 넓이 공식 모르는 사람 없죠? ½ × (밑변) × (높이)에요.

물론 이건 높이를 알고 있을 때 쓰는 공식이에요. 예각삼각형의 높이, 둔각삼각형의 높이에서도 해봤지만, 삼각비에는 변의 길이와 내각의 크기를 알려주지, 삼각형의 높이는 알려주지 않거든요. 주어진 내용을 가지고 삼각형의 높이를 구해서 위 공식에 대입해야 합니다.

두 변의 길이와 끼인각을 알려줬을 때 높이를 구하는 것부터 넓이를 구하는 것까지 해보고 공식으로 정리해보죠.

예각삼각형의 넓이

아래 △ABC에서 b, c와 ∠A의 크기를 알려줬다고 해보죠. 넓이를 구하려면 높이 h를 구해야 해요.

예각삼각형의 높이에서 예각삼각형의 높이를 구할 때는 길이를 알고 있는 한 변과 크기를 알고 있는 각이 같은 직각삼각형에 포함되도록 수선을 내린다고 했어요.

예각삼각형의 넓이

△ACH에서

높이 h를 구했으니까 삼각형 넓이 공식에 대입해보죠.

문제에서 알려준 걸 다 곱하면 되는 겁니다. 두 변의 길이를 곱하고, 거기에 크기를 알려준 각의 sin값을 곱해요. 삼각형의 넓이니까 그 절반으로 하는 거죠.

다음 그림에서 △ABC의 넓이를 구하여라.
예각삼각형의 넓이 예제

두 변의 길이가 b, c이고 끼인각의 크기가 A인 예각삼각형의 넓이는 에요.

둔각삼각형의 넓이

아래 △ABC에서 b, c와 ∠A의 크기를 알려줬다고 해보죠. 넓이를 구하려면 높이 h를 구해야 해요

둔각삼각형의 높이에서는 크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서 높이를 구한다고 했어요.

둔각삼각형의 넓이

△ACH만 보세요. sin을 이용해서 높이를 구해야 하는데, 기준각인 CAH는 180° - ∠A에요. 따라서 높이는 아래처럼 구할 수 있어요.

높이 h를 구했으니까 삼각형 넓이 공식에 대입해보죠.

예각삼각형의 넓이 구하는 공식과 같아요. 차이가 있다면 A가 아니라 180° - ∠A라는 거지요.

삼각형의 넓이는 알려준 길이 두 개와 각을 곱해요. 각은 그대로 곱하지 않고 sin값을 곱하죠. 그런데 우리는 0° ~ 90°까지의 삼각비밖에 안 배웠어요. 그러니까 sin을 구할 각의 크기는 예각이어야 해요. 예각이 아니라면(둔각이면) 180°에서 각을 빼서 예각을 만들어서 공식에 넣으면 돼요.

다음 그림에서 △ABC의 넓이를 구하여라.

두 변의 길이가 b, c이고 끼인각의 크기가 A인 둔각삼각형의 넓이는 에요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용
사각형의 넓이 공식 - 삼각비의 활용

정리해볼까요

두 변의 길이가 b, c이고, 끼인각이 A인 삼각형의 넓이

  • A < 90°일 때:
  • A > 90°일 때:
 
그리드형

삼각비의 활용 - 예각삼각형의 높이에 이어 둔각삼각형의 높이 구하기입니다.

둔각삼각형의 높이 구하기도 예각삼각형의 높이 구하기와 크게 차이는 없어요. 높이를 구할 수 있는 조건도 같아요. 두 변의 길이와 끼인각을 알 때와 한 변의 길이와 양 끝각을 알 때지요.

특히, 두 변의 길이와 끼인각의 크기를 알 때는 수선이 삼각형의 바깥쪽에 그려지는 것만 빼면 예각삼각형의 높이를 구하는 방법과 완전히 같아요.

이 글에서는 한 변의 길이와 양 끝각을 알 때에 주의해서 보시면 됩니다.

둔각삼각형의 높이

두 변의 길이와 그 끼인각을 알 때

두 변의 길이와 끼인각의 크기를 알 때는 수선을 내리는데, 수선은 삼각형의 바깥쪽에 그어지게 됩니다. 크기를 모르는 각 중 하나에서 길이를 아는 변의 연장선에 수선을 내리면 돼요. 이때 생기는 작은 직각삼각형을 이용해서 삼각형의 높이를 구할 거예요.

둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

둔각삼각형의 두 변의 길이와 그 끼인각을 알 때에요. 각의 크기를 모르는 점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 

둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

가 △ABC의 높이에요.

를 구하려면, 원래 있던 △ABC는 볼 필요 없고요. 새로 그은 수선 때문에 생긴 △ABH만 보면 돼요. △ABH에서는 c와 h가 들어있는 삼각비를 이용하면 되겠죠?

대신 기준각이 원래 있던 각이 아니라 새로 생긴 각이에요. ∠ABH죠. ∠CBH가 평각이므로 ∠ABH = 180° - ∠B로 구할 수 있어요.

다음 그림에서 a = 5cm, c = 6cm, ∠B = 120°일 때, △ABC의 높이를 구하여라.
둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 위 그림을 보세요. 가 높이에요. ∠ABH = 180° - 120° = 60° 고요.

△ABH에서

한 변의 길이와 양 끝각을 알 때

여기서도 마찬가지로 보조선을 그어야 해요. 수선을 그어야하는데 어디에 그어야 하나면 각의 크기를 모르는 꼭짓점에서 길이를 아는 변의 연장선으로 수선을 내려요. 그러면 작은 직각삼각형 한 개와 큰 직각삼각형 한 개가 만들어져요. 이 두 직각삼각형의 내각의 크기를 구해서 tan를 이용하면 높이를 구할 수 있어요.

한 변의 길이와 양 끝각을 알려줬네요. 점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 직각삼각형 두 개가 보이죠? 새로 생긴 큰 직각삼각형의 밑변에서 새로 생긴 작은 직각삼각형의 밑변을 빼면 원래 삼각형의 한 변의 길이가 되는 걸 알 수 있어요.  이걸 이용합니다.

둔각삼각형의 높이 - 한 변의 길이와 양 끝각을 알 때

이제부터 원래 있던 △ABC는 생각하지 마세요. 큰 직각삼각형 △ACH와 작은 직각삼각형 △ABH만 생각하면 됩니다.

먼저 큰 직각삼각형 △ACH를 보세요. 삼각형 내각의 합에 의해서 ∠CAH = 180° - 90° - ∠C = 90° - ∠C에요.

이제 작은 직각삼각형 △ABH를 보세요. ∠ABH = 180° - ∠B에요. 그리고 ∠BAH = 180° - 90° - (180° - ∠B) = ∠B - 90°죠.

에 위에서 구한 와 처음에 알려준 의 값을 대입하면 높이 를 구할 수 있어요.

아래 그림에서  = 4cm, ∠B = 120°, ∠C = 45°일 때 ABC의 높이를 구하여라.

점 A에서 의 연장선에 수선을 내리고 수선의 발을 H라고 하지요. (위 그림 참조.)

△ACH에서 ∠CAH = 180° - 90° - 45° = 45°이므로

△ABH를 보세요. ∠ABH = 180° - 120° = 60°, ∠BAH = 90° - 60° = 30° 이므로 

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
삼각비의 활용 - 삼각형의 넓이

정리해볼까요

둔각삼각형의 높이

  • 두 변의 길이와 끼인각의 크기를 알 때
    크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서 만들어진 작은 직각삼각형에 삼각비 적용
  • 한 변의 길이와 양 끝각의 크기를 알 때
    크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서, 만들어진 작은 직각삼각형과 큰 직각삼각형에 삼각비를 적용하여 밑변의 길이의 차를 이용
 
그리드형

삼각형의 바깥쪽 세 변의 길이를 구하는 방법을 알아봤으니 이제 삼각형 높이를 알아볼 차례네요. 직각삼각형이라면 직각이 생기는 곳의 변의 길이가 높이니까 쉽게 구할 수 있어요.

이 글에서 다룰 내용은 직각삼각형이 아니라 일반삼각형, 그중에서도 예각삼각형에서 높이를 구하는 방법이에요. 여기서도 일반 삼각형 변의 길이 구하기에서와 마찬가지로 수선을 긋는 게 중요해요.

예각삼각형에서 높이를 구하는 방법을 잘 알아야 둔각삼각형의 높이도 구할 수 있어요.

예각삼각형의 높이 구하기

예각삼각형은 세 각의 크기가 모두 예각인 삼각형이에요. 예각삼각형의 높이를 구할 때도 삼각형의 합동조건과 같은 조건이 필요해요. 단 삼각비를 이용할 거니까 각을 알려줘야겠죠?

따라서 예각삼각형의 높이를 구할 수 있는 조건은 두 변의 길이와 그 끼인각을 알 때와 한 변의 길이와 양 끝각을 알 때 두 가지예요.

두 변의 길이와 그 끼인각의 크기를 알 때

예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

△ABC에서 두 변의 길이와 그 끼인각을 알려줬네요.

높이를 구하기 위해서 수선을 내려야하는데요. 일반 삼각형 변의 길이 구하기에서 수선을 내릴 때 어떻게 했나요? 크기를 알려준 각과 길이를 알려준 변이 한 직각삼각형에 포함되도록 수선을 내린다고 했어요. 여기서도 마찬가지에요.

점 A에서 대변으로 수선을 내리고 수선의 발을 H라고 해보죠.

예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

△ABH만 보세요. 직각삼각형이에요. 삼각비의 정의에서 봤던 그 삼각형이죠? 직각삼각형 변의 길이 구하기에서 이미 해봤던 거예요.

△ABC에서 a = 5cm, c = 4cm, ∠B = 60° 일 때 높이 h를 구하여라.
예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

점 A에서 변 BC로 수선을 내리고 수선의 발을 H라고 해보죠. △ABC의 높이는 △ABH에서 변 AH의 길이와 같아요.

한 변의 길이와 양 끝각의 크기를 알 때

예각삼각형의 높이 - 한 변의 길이와 양 끝각의 크기를 알 때

한 변의 길이와 양 끝각을 알려줬네요.

이 경우에 수선을 긋는 방법은 다른 경우와 달라요. 이때는 길이를 알려준 변이 밑변이 되도록 수선을 그어요. 즉 길이를 알려준 변이 둘로 나뉘도록 하는 거죠. 양 끝각이 아닌 다른 각에서 수선을 내린다고 말해도 되겠네요.

각각의 직각삼각형에서 원래 알려준 각이 아닌 새롭게 만들어진 각을 기준각으로 정하는 것이 핵심이에요.

예각삼각형의 높이 - 한 변의 길이와 양 끝각의 크기를 알 때 2

△ABH에서 삼각형 세 내각의 합에 의해 90° + ∠BAH + ∠B = 180°이므로 ∠BAH = 90° - ∠B가 돼요. △ABH에서 삼각비를 구하는 기준각을 이 ∠BAH로 하면 변 AH는 밑변이 돼요. 여기서는 높이가 변 BH가 되죠.

△ACH에서 삼각형 세 내각의 합에 의해 90° + ∠CAH + ∠C = 180° 이므로 ∠CAH = 90° - ∠C가 돼요. △ACH에서 삼각비를 구하는 기준각을 이 ∠CAH로 하면 변 AH는 밑변이 돼요. 여기서는 높이가 변 CH가 되죠.

이제는 원래의 큰 삼각형으로 돌아와서요. △ABC에서 밑변 BC의 길이는 변 BH + 변 CH죠.

이 식을 정리하면 h를 구할 수 있어요.

다음 그림을 보고 △ACH의 높이 h를 구하여라.

△ABH에서에서 ∠BAH = 30°이므로 이 각을 기준각으로 하면
 

또 △ACH에서에서 ∠CAH = 45°이므로 이 각을 기준각으로 하면

함께 보면 좋은 글

특수한 각의 삼각비, 30°, 45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
둔각삼각형의 높이 - 삼각비의 활용
삼각비의 활용 - 삼각형의 넓이
사각형의 넓이 공식 - 삼각비의 활용

정리해볼까요

예각삼각형의 높이

  • 두 변의 길이와 끼인 각을 알 때
    길이를 알려준 변과 크기를 알고 있는 각이 한 직각삼각형이 되도록 수선을 내린 후 삼각비의 정의를 이용
  • 한 변의 길이와 양 끝각을 알 때
    양 끝각이 아닌 각에서 수선을 내려 작은 직각삼각형 두 개로 나누어 각각의 삼각형에서 삼각비를 적용
    새로 만들어진 각을 기준각으로
 
그리드형

일반삼각형에서 세 변의 길이를 구하는 방법을 알아보죠.

그런데 아무 삼각형이나 세 변의 길이를 구할 수 있는 게 아니에요. 몇 가지 조건이 있어야 해요. 삼각형의 세 가지 합동조건 알고 있죠?. 세 변의 길이가 같을 때, 두 변과 그 끼인 각이 같을 때, 한 변의 길이와 양 끝각이 같을 때지요.

일반삼각형에서 세 변의 길이를 구할 수 있는 조건도 같아요. 그중 하나인 세 변의 길이를 알 때는 문제의 목적에 맞지 않으니까 나머지 두 개의 조건만 있으면 되겠죠? 두 변의 길이와 끼인 각을 알 때, 한 변의 길이와 양 끝각을 알 때요.

직각삼각형 변의 길이를 구할 때와 마찬가지로 각의 크기를 안다는 건 그 각의 삼각비를 안다는 거에요.

두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이를 알고 있으니까 나머지 의 길이만 구하면 되겠네요.

삼각형의 높이와 넓이에서 했던 방법과 비슷해요. 제일 먼저 삼각형의 한 점에서 수선을 내려서 두 개의 직각삼각형으로 나누어야 해요.

이때 어떤 점에서 수선을 내릴 것인지가 중요한데요. 여러 가지로 표현할 수 있겠지만, 길이를 아는 한 변과 크기를 아는 각이 하나의 직각삼각형에 포함되도록 수선을 내리면 돼요. 여기서는 점 A와 점 C 둘 중 아무 데서나 대변으로 수선을 내려도 되는 거지요.

점 A에서 수선을 내리고 수선의 발을 H라고 할게요. ∠B와 가 한 삼각형 안에 포함되었죠?

두 변의 길이와 그 끼인각의 크기를 알 때 삼각형의 변 길이 구하기

△ABH와 △ACH가 생겼어요.

△ABH에서

△ACH에서
 가 됩니다.

△ACH에서 높이와 밑변의 길이를 구했으므로 빗변인 의 길이는 피타고라스의 정리로 구할 수 있어요.

이거는 공식 아니에요. 외울 필요가 없어요. 구하는 과정만 잘 이해하면 됩니다.

  1. 길이를 아는 한 변과 크기를 아는 각이 하나의 직각삼각형에 포함되도록 보조선을 그어 두 개의 직각삼각형으로 나눈다.
  2. 삼각비를 이용하여 작은 직각삼각형의 높이와 밑변의 길이를 구한다.
  3. 다른 작은 직각삼각형에서 피타고라스의 정리를 이용하여 빗변의 길이를 구한다.

다음 △ABC에서 a = 8cm, c = 5cm, ∠B = 60°일 때 의 길이를 구하여라.
두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이와 그 사이의 끼인각의 크기를 알려줬네요.

길이를 알려준 변과 크기를 알려준 각이 한 직각삼각형이 되도록 수선을 그어보죠. 점 A에서 대변으로 그었더니 아래 그림처럼 되었어요.

△ABH에서
 

의 길이를 구했으니까 △ACH에 피타고라스의 정리를 적용해보죠.

한 변의 길이와 그 양 끝각의 크기를 알 때

한 변의 길이와 그 양 끝각의 크기를 알 때

한 변의 길이와 양 끝각의 크기를 알 때에요. 길이를 구해야하는 변이 두 개네요.

여기서 제일 먼저 해야 할 게 있어요. 두 개의 각의 크기를 알려줬어요. 삼각형 내각의 합은 180°에요. 이 걸 이용하면 다른 한 내각의 크기도 알 수 있겠죠? ∠A = 180° - (∠B + ∠C)이죠. 결국, 두 개의 각의 크기를 알려줬다는 건 세 개 모두 알려준 거나 마찬가지에요.

이번에도 마찬가지로 보조선을 그어서 두 개의 직각삼각형으로 나눠야해요. 방법은 위와 같아요. 길이를 아는 변과 크기를 아는 한 각이 직각삼각형에 포함되도록 보조선을 그으면 됩니다.

점 C에서 대변으로 수선을 내리고 수선의 발을 점 H라고 해보죠. ∠B와 가 한 직각삼각형안에 포함되었네요.

한 변의 길이와 그 양 끝각의 크기를 알 때 삼각형의 변 길이 구하기

△BCH와 △ACH가 생겼어요.

△BCH에서

△ACH에서
 

일단, 한 변의 길이를 구했어요.

이제 점 C가 아닌 점 B에서 대변으로 수선을 내려서 위와 같은 방법으로 구하면 다른 한 변의 길이도 구할 수 있어요.

  1. 삼각형 내각의 합을 이용하여 알려주지 않는 한 내각의 크기를 계산한다.
  2. 길이를 아는 변과 크기를 아는 한 각이 하나의 직각삼각형에 포함되도록 보조선을 그어 두 개의 직각삼각형으로 나눈다.
  3. 삼각비를 이용하여 삼각형에서 높이를 구한다.
  4. 다른 작은 직각삼각형에서 삼각비를 적용하고 3에서 구한 높이를 대입하여 빗변의 길이를 구한다.
  5. 2 ~ 4의 과정을 다시 반복

다음 △ABC에서 의 길이를 구하여라.

한 변의 길이와 양 끝각의 크기를 알려줬네요. 삼각형의 내각의 합을 이용해서 다른 한 각의 크기도 알 수 있죠? 180° - (75° + 45°) = 60°에요.

크기를 알려준 한 각과 길이를 알려준 한 변이 직각삼각형에 포함되도록 수선을 내려보죠. 점 A에서 수선을 내려볼게요.

△ACH에서

△ABH에서

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
직각삼각형 변의 길이 - 삼각비 이용
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용

정리해볼까요

일반 삼각형 변의 길이 구하기

  • 두 변의 길이와 그 사이의 끼인각의 크기를 알 때
  • 한 변의 길이와 양 끝각의 크기를 알 때
  • 크기를 아는 한 각과 길이를 아는 한 변이 같은 직각삼각형에 포함되도록 수선을 내려서 두 개의 직각삼각형을 만드는 것이 핵심
  • 각각의 직각삼각형에서 삼각비와 피타고라스의 정리를 이용해서 변의 길이를 구함
 
그리드형

특수한 각의 삼각비, 30°, 45°, 60°에서 했던 내용 기억하죠? 특수한 각의 삼각비를 공부했고요. 삼각형을 그려놓고 각을 알려준 다음에 삼각형 변의 길이를 구하는 예제를 풀어봤어요.

이 글에서도 직각삼각형에서 삼각형의 변의 길이를 구하는 걸 할 거예요. 대신 특수한 각이 아니라는 게 다를 뿐이죠. 전에는 sin30°의 값을 외워서 했다면 이제는 30° 대신 다른 예각이 들어가고, 해당하는 삼각비 값을 알려줘요. sin30° 자리에 다른 예각의 sin 값을 넣으면 되는 거예요.

방법은 똑같고 각의 크기만 달라지는 거니까 어렵지 않아요. 삼각비의 정의를 잘 이용하면 됩니다.

직각삼각형 변의 길이

△ABC에서 ∠C = 90°이고, 세 변의 길이를 a, b, c라고 할 때 한 변의 길이와 직각이 아닌 한 각의 크기를 알면 다른 두 변의 길이를 구할 수 있어요.

직각삼각형 변의 길이

물론 각을 안다는 건 그 각의 삼각비를 안다는 뜻이에요. 각만 알고 삼각비를 모르면 삼각비표를 보면 돼요.

크기를 알고 있는 각이 ∠A라고 해보죠.

한 각의 크기와 한 변의 길이를 알고 있을 때 다른 두 변의 길이를 알 수 있다고 했지요? 한 각은 알고 있으니 어떤 변의 길이를 알고 있는지에 따라 길이를 구해야 하는 다른 두 변이 달라지겠죠?

∠A와 빗변의 길이(c)를 알고 있을 때

높이(a)와 밑변(b)의 길이를 구해야겠죠? 빗변을 알고 있으니까 높이와 빗변의 식인 sinA와 밑변과 빗변의 식인 cosA를 사용해서 길이를 구해요.

높이 a 밑변 b

∠A와 높이(a)를 알고 있을 때

빗변(c)과 밑변(b)의 길이를 구해야겠죠? 높이를 알고 있으니까 높이와 빗변의 식인 sinA와 높이와 밑변의 식인 tanA를 사용해서 길이를 구해요.

빗변 c 밑변 b

∠A와 밑변의 길이(b)를 알고 있을 때

빗변(c)과 높이(a)를 구해야겠죠? 밑변을 알고 있으니까 빗변과 밑변의 식인 cosA와 밑변과 높이의 식인 tanA를 사용해서 길이를 구해요.

빗변 c 높이 a

위에 총 여섯 개의 공식이 나왔는데, 이걸 외울 수는 없어요. 그러니까 공식을 외우지 말고, 공식의 첫 줄에 나와 있는 것처럼 이런 식으로 쓴 다음에 문자를 이항하고 값을 대입해서 그냥 푸세요.

다음 직각삼각형에서 한 각이 40°이고, 그 대변의 길이가 6cm일 때, 다른 두 변의 길이를 소수 둘째 자리까지 구하여라. (단, sin40° = 0.64, tan40° = 0.83이고 소수 셋째자리에서 반올림할 것)

한 각의 크기와 높이를 줬네요. 구해야 하는 길이는 빗변과 밑변의 길이고요.

빗변과 높이의 식인 sin과 밑변과 높이의 식인 tan를 이용해서 구해야겠군요.

빗변 밑변

빗변은 9.38cm, 밑변은 7.23cm네요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
삼각비표, 삼각비표 보는 법
일반 삼각형 변의 길이 구하기

정리해볼까요

직각삼각형에서 한 각의 크기와 한 변의 길이를 알면 다른 두 변의 길이를 알 수 있다.

  • 삼각비 구하는 공식을 쓰고, 해당 문자에 대해서 정리 후 값을 대입
 
그리드형

3학년 1학기 때는 모든 교과서, 참고서의 가장 뒷부분에 표가 하나 있었어요. 제곱근표였죠?

2학기에도 모든 책 뒤에 표가 하나 있어요. 그 표가 바로 삼각비표에요. 제곱근표보다 훨씬 간결하죠.

이 글에서는 삼각비표가 무엇인지와 삼각비표에서 삼각비와 각도를 구하는 방법을 알아볼 거에요.

삼각비표는 일반적으로 보는 표와 크게 다르지 않으니까 금방 이해할 수 있어요.

삼각비표

삼각비 표는 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 거에요. 근삿값이 아닌 것도 있지만, 대부분이 근삿값이에요. 가로줄에는 각도의 크기가 세로줄에는 sin, cos, tan가 쓰여 있어요.

그냥 설명 없이 표만 봐도 금방 알 수 있겠죠?

삼각비표
각도 sin cos tan
45° 0.7071 0.7071 1
46° 0.7193 0.6947 1.0355
47° 0.7314 0.6820 1.0724
48° 0.7431 0.6691 1.1106
49° 0.7547 0.6561 1.1504
50° 0.7660 0.6428 1.1918

삼각비 표를 이용해서 삼각비 구하기

삼각비표는 제곱근표 보는 방법보다 훨씬 쉬워요. 가로줄에서 원하는 각도를 찾고, 세로줄에서는 sin, cos, tan를 선택해서 둘이 서로 만나는 칸의 값이 해당 각도의 삼각비에요.

예를 들면 sin48°는 가로줄의 48°와 세로줄의 sin이 만나는 칸에 쓰여 있는 값을 찾으면 되죠. 0.7431이네요. cos46°는 0.6947이고, tan50°는 1.1918이고요.

제곱근표에서 값을 구해서 나타낼 때는 ≒ 기호를 썼어요. 예를 들면 처럼요. 하지만 삼각비에서는 ≒ 기호를 쓰지 않고 =를 써요. 실제로 삼각비표에 나와 있는 값들 대부분이 근삿값이지만 =를 씁니다. sin45° ≒ 0.7071이 아니라 sin45° = 0.7071이라고 말이죠. 좀 달라요.

삼각비표를 이용하여 다음을 구하여라.
(1) sin45° + cos46° + tan47° 

sin45° = 0.7071, cos46° = 0.6947, tan47° = 1.0724이므로
sin45° + cos46° + tan47° = 0.7071 + 0.6947 + 1.0724 = 2.4742

삼각비 표를 이용해서 각도 구하기

이번에는 반대로 특정한 삼각비 값을 주고 그 각이 몇 °인지 구하는 거에요. 위 과정을 거꾸로 하면 되겠죠?

0.7547이라는 sin값을 갖는 각은 몇 °일까요? 먼저 표의 sin줄에서 0.7547이라는 값을 찾아요. 그리고 왼쪽으로 바로 가면 49°가 보이네요.

다음을 만족하는 x, y를 구하여라.
(1) sinx° = 0.7314
(2) sinx° + cosy° = 1.3742

(1) 삼각비표의 sin줄에서 0.7314를 찾으면 x = 47가 되는군요.

(2)에서 sinx° = 0.7314라고 했으니까 이걸 식에 대입하면 0.7314 + cosy° = 1.3742가 돼요.
cosy° = 0.6428이 되죠. cos 줄에서 0.6428을 찾으면 y° = 50°가 되네요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
제곱근의 근삿값, 제곱근표 보는 방법

정리해볼까요

삼각비표

  • 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 것
  • 가로줄: 각도, 세로줄: sin, cos, tan
  • 각도와 sin, cos, tan가 만나는 칸의 값을 찾는다.
 
그리드형

30°, 45°, 60°의 삼각비를 알아봤어요. 특수한 각의 삼각비, 30°,45°, 60°

이제는 위 세 각이 아닌 다른 각의 삼각비를 알아볼꺼에요. 0° ~ 90°까지의 각이요. 그 이상의 각은 여기서 다루지 않아요.

예각의 삼각비는 외울 필요도 없고 외울 수도 없지만 구하는 방법은 알고 있어야해요. 예각의 삼각비를 구하는 방법을 살짝 응용해서 0°와 90°의 삼각비를 구하거든요.

그리고, 0°와 90°의 삼각비값은 외워야 해요. 이해가 되지 않으면 외울 수도 없겠죠? 설명을 잘 보세요.

예각의 삼각비

예각의 삼각비를 구할 때 제일 중요한 건 바로 반지름의 길이가 1인 원을 그려서 생각하는 거에요.

예각의 삼각비

반지름이 1인 원의 중심과 원 위의 한 점, x축을 연결해서 삼각형을 만들었어요.

위 그림에서 ∠x를 기준각으로 하고 삼각비를 구해보죠. sin, cos은 △OAB에서 구하고 tan는 △OCD에서 구해요. 크기가 다른 직각삼각형이라도 기준각의 크기가 같으면 삼각비는 같잖아요.

그러니까 예각의 삼각비를 구할 때는 분모가 되는 변의 길이가 1인 삼각형을 찾고 그 삼각형에서 삼각비를 찾으면 돼요. sin과 cos인 빗변이 분모가 되니까 빗변의 길이가 1인 △OAB에서 구했어요. tan는 밑변이 분모가 되므로 밑변의 길이가 1인 △OCD에서 구했고요.

0°와 90°의 삼각비

0°와 90°의 삼각비도 예각의 삼각비와 마찬가지로 반지름이 1인 원을 그려서 확인할 수 있어요.

0°의 삼각비 - sin0°, cos0°, tan0°

0°의 삼각비 - sin0°, cos0°, tan0°

왼쪽 그림의 △OAB에서 ∠BOA에 대한 sin값은 에요. 그런데 점 B가 원을 따라서 x축으로 가까이 가면 어떻게 될까요? 는 점점 짧아질 거에요. 그러다가 점 B가 x축과 만나게 되면  = 0이 되겠죠. 이때 ∠BOA = 0°이고요.

즉 sin0° = 0이 되는 걸 알 수 있어요.

△OAB에서 ∠BOA에 대한 cos값은 에요. 위와 마찬가지로 점 B를 원을 따라 x축으로 가까이 옮겨볼까요? 그럼 는 점점 길어져요. 점 B가 x축과 만나면  = 1이 되고, ∠BOA = 0°이 돼요.

cos0° = 1이 되는 걸 알 수 있지요.

이번에는 오른쪽 그림의 △OCD를 보세요. ∠DOC의 tan값은 죠. 그런데 ∠DOC가 점점 작아지면 도 계속 작아져요. 그러다가 가 x축과 만나면 ∠DOC는 0°가 돼요.  = 0이 돼죠.

즉, tan0° = 0이 되는 걸 알 수 있어요. 

90°의 삼각비 - sin90°, cos90°, tan90°

90°의 삼각비 - sin90°, cos90°, tan90°

왼쪽 그림의 △OAB에서 ∠BOA에 대한 sin값은 에요. 그런데, 점 B가 원을 따라서 y축으로 가까이 가면 어떻게 될까요? 는 점점 길어질 거예요. 그러다가 점 B가 y축과 만나게 되면  = 1이 되겠죠. 이때 ∠BOA = 90°이고요.

즉 sin90° = 1이 되는 걸 알 수 있어요.

△OAB에서 ∠BOA에 대한 cos값은 에요. 위와 마찬가지로 점 B를 원을 따라 y축으로 가까이 옮겨볼까요? 그럼 는 점점 줄어들어요. 점 B가 y축과 만나면  = 0이 되고, ∠BOA = 90°이 돼요.

cos90° = 0이 되는 걸 알 수 있지요.

이번에는 오른쪽 그림의 △OCD를 보세요. ∠DOC의 tan값은 죠. 그런데 ∠DOC가 점점 커지면 도 계속 커져요. 그러다가 가 y축과 만나면 ∠DOC는 90°가 돼요. 이때의 tan는 너무 커져서 그 크기를 알 수 없어요. 이때를 정할 수 없다고 표현합니다.

다음을 계산하여라.
(1) sin0° + cos0° + tan0°
(2) (sin0° + cos90°) × (sin90° + cos0°)

sin0° = 0, cos0° = 1, tan0° = 0, sin90° = 1, cos90° = 1을 위 식에 대입해서 풀면 돼요.

(1) sin0° + cos0° + tan0° = 0 + 1 + 0 = 1

(2) (sin0° + cos90°) × (sin90° + cos0°) = (0 + 0) × (1 + 1) = 0 × 2 = 0

0° ~ 90°의 삼각비

0°에서 90°까지 각의 크기가 변화할 때, 삼각비는 어떻게 되는지 알아볼까요?

sin은 0°에서 90°로 갈수록 값이 커져요. sin0° = 0으로 가장 작고, sin90° = 1로 가장 큽니다.
cos은 0°에서 90°로 각이 커질수록 값이 작아지고요. cos0° = 1으로 가장 크고, cos90° = 0으로 가장 작아요.
tan은 0°에서 90°로 각이 커질수록 값이 커져요. tan0° = 0으로 가장 작고, 계속 커져서 그 끝은 정할 수 없어요.

각의 크기 변화에 따른 삼각비의 변화
~ 90°
sin 0 ↗ (증가)
1
cos 1 ↘ (감소) 0
tan 0 ↗ (증가) 정의할 수 없다.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
삼각비표, 삼각비표 보는 법

정리해볼까요

예각의 삼각비: 삼각비에서 분모가 되는 변의 길이가 1이 되는 삼각형을 찾는다.

 
그리드형

삼각비 중에서도 특수한 각의 삼각비를 구할 거예요.

피타고라스의 정리에서 특수한 직각삼각형 세 변의 길이의 비라는 걸 배웠지요? 특별한 삼각형에서 세 변의 길이에는 일정한 비가 성립한다는 내용이었어요.

삼각비는 삼각형 세 변의 길이의 비예요. 특수한 직각삼각형 세 변의 길이의 비도 길이의 비이므로 삼각비에서 하나도 바꾸지 않고 그대로 사용할 수 있어요.

특수한 삼각형의 세 변의 길이를 삼각비로 바꾸면 어떻게 되는지 알아보죠.

sin45°, cos45°, tan45°

직각이등변삼각형의 내각은 45°, 45° 90°에요. 직각이등변삼각형을 이용해서 45°의 sin, cos, tan 값을 구해볼까요?

먼저 직각이등변삼각형을 그려볼게요. 세 변의 길이의 비가 1 : 1 : 니까 이걸 길이로 써보면 아래 그림처럼 돼요. 

특수한 각의 삼각비 - 45°

sin45° = cos45° = 이고, tan45° = 1이에요. 분모에 무리수가 있으면 유리화해서 사용해야 하는 건 기본이죠?

sin30°, cos30°, tan30°

직각삼각형 한 내각의 크기가 30°이면 다른 각은 60°, 90°가 돼요. 이 삼각형의 세 변의 길이의 비는  1 : : 2이지요. 이 길이의 비를 이용해서 삼각형을 그려보죠. 

특수한 각의 삼각비 - 30°

삼각비를 쉽게 구할 수 있게 각의 위치를 잡았어요. 삼각비를 구해보죠.

sin60°, cos60°, tan60°

직각삼각형의 한 각이 60°면 다른 한 각은 30°가 되겠죠? 즉, 위 30°에 대한 삼각비를 구했던 삼각형과 같은 삼각형이에요. 같은 삼각형인데 삼각비를 쉽게 구할 수 있게 방향을 돌려서 그리는 게 좋겠죠? 

특수한 각의 삼각비 - 60°

30°에 대한 삼각비와 60°에 대한 삼각비는 같은 삼각형에서 구해요. 차이가 있다면 기준각에 따라 밑변과 높이를 나타내는 변이 달라지는 거지요.

빗변은 기준각이 30°일 때와 60°일 때 모두 똑같아요. 기준각이 30°일 때 밑변이었던 것이 기준각이 60°일 때는 높이로 바뀌죠. 또 30°일 때 높이였던 게 60°일 때는 밑변이 되는 거고요.

이런 이유로 30°의 삼각비와 60°의 삼각비는 관계가 깊어요.

sin30° = cos60°, cos30° = sin60°가 됩니다. 또 tan30° = 가 됩니다. 서로 역수인 거죠.

특수한 각의 삼각비

특수한 각의 삼각비
30° 45° 60°
sin
cos
tan

표로 정리했더니 특징이 더 잘 보이죠? 45°에서는 sin과 cos이 같아요.

sin30°와 cos60°가 같고, cos30°와 sin60°가 같고, tan30°와 tan60°는 서로 역수이죠.

위 표에 나온 삼각비는 아주 중요합니다. 삼각비 중에 가장 많이 나오는 거거든요. 그러면 외워야 하는 데 값이 비슷해서 외우기가 힘들어요.

처음부터 외우려고 하지 말고, 이 글에 있는 것처럼 삼각형을 그리고, 세 변의 길이의 비를 이용해서 변의 길이를 쓴 다음에, sin, cos, tan를 구하는 게 좋아요. 이렇게 자주 하다 보면 자기도 모르게 그 값들이 외워지게 되어 있어요.

다음 그림을 보고 x, y의 값을 구하여라.
특수한 각의 삼각비 예제

기준각을 60°로 잡으면 sin60° =  = 이므로 y =

cos60° =  = 이므로 x = 2가 되네요.

함께 보면 좋은 글

특수한 직각삼각형 세 변의 길이의 비
예각의 삼각비, 0°와 90°의 삼각비
직각삼각형 변의 길이 - 삼각비 이용

정리해볼까요

특수한 각의 삼각비

  • sin45° = cos45° = , tan45° = 1
  • sin30° = , cos30° = , tan30° =
  • sin60° = , cos60° = , tan60° =
 
그리드형

삼각비, sin, cos, tan

2012. 10. 2. 17:00

피타고라스의 정리에 이어 이번에는 삼각비입니다.

피타고라스의 정리는 직각삼각형에서 세 변의 길이 사이의 관계였어요. 삼각비도 직각삼각형에서 변의 길이에 관한 내용입니다. 단순히 변의 길이가 아니라 변의 길이 사이의 비율에요.

피타고라스의 정리에서는 길이의 관계만 따졌는데, 삼각비는 각도에 관한 내용이 추가되었어요.

삼각비도 직각삼각형에서 구하는 거라서 피타고라스의 정리와 비슷한 부분이 조금 있지만 조금 더 어려운 내용이 나옵니다. 하지만 그 비율이라는 게 일정한 값을 가지고 있기때문에 복잡한 계산을 요구하지는 않으니 너무 걱정하지는 마세요.

삼각비

삼각비는 직각삼각형에서 두 길이의 비를 얘기해요. 꼭 직각삼각형이어야만 합니다. 직각삼각형이 아니면 안 돼요.

삼각비를 구할 때는 기준각이라는 게 있어요. 어떤 각을 하나 주고 그 각에 대한 삼각비를 구하는 거지요. 삼각비는 이 기준각의 크기에 따라 달라집니다. 변의 길이나 삼각형의 크기와 상관없이 기준각이 같으면 서로 다른 직각삼각형이라도 삼각비는 같아요. 이건 설명이 너무 길어져서 생략합니다. 그냥 이렇게만 알고 계시면 돼요.

직각삼각형에서 직각의 대변은 빗변이에요. 그리고 기준각의 대변을 높이로 남은 한 변을 밑변으로 부르기로 약속을 했어요. + 기호 양쪽에 있는 값을 서로 더한다고 약속한 것처럼 그냥 그렇게 딱 정했어요.

삼각비

sin

sin이에요. 원래는 sine인데, 앞의 세 자만 따서 sin이라고 써요. 한글로 쓰면 사인인데, 읽을 때는 싸인이라고 읽습니다.

sin은 직각삼각형 두 변의 길이 중 빗변과 높이의 길이의 비예요.

기준각을 A라고 하면 로 구합니다.

cos

cos이에요. 원래는 cosine인데, 앞의 세 자만 따서 cos이라고 써요. 한글로 쓰면 코사인인데, 읽을 때는 코싸인이라고 읽습니다.

cos은 직각삼각형 두 변의 길이 중 빗변과 밑변의 길이의 비예요.

기준각을 A라고 하면 으로 구합니다.

tan

tan에요. 원래는 tangent인데, 앞의 세 자만 따서 tan이라고 써요. 탄젠트라고 쓰고 읽어요.

tan은 직각삼각형 두 변의 길이 중 밑변과 높이의 길이의 비예요.

기준각을 A라고 하면 로 구합니다.

각의 기호로 썼는데요. 각의 크기로 쓰기도 합니다. 기준각의 크기가 60°이면 sin60°라고 쓰기도 해요. 그럼 그림에서 각의 크기가 60°인 각을 찾아서 그 각을 기준각으로 삼으면 되죠. cos60°, tan60°도 마찬가지고요.

삼각비: 직각삼각형에서 두 변의 길이의 비
sin = , cos = , tan  =

삼각비를 쉽게 구하는 방법

삼각비를 쉽게 구하려면 삼각형을 원하는 모양으로 그려야 해요. 기준각이 왼쪽 아래에, 직각은 오른쪽 아래에 오게 삼각형을 그려요.

삼각비 구하기

그리고 영어 s, c, t의 필기체를 쓰는 거지요. 영어 소문자 필기체 쓸 줄 알죠?

영어 소문자 필기체

s는 sin, c는 cos, t는 tan를 구할 때 써요. s와 t는 1, 2번만 있으면 돼요.

sin, cos, tan

삼각형을 위 그림처럼 돌려놓은 다음에 필기체를 쓰면 먼저 써지는 게 분모, 나중에 써지는 게 분자가 되는 거예요. sin의 s는 빗변에서 출발해서 높이로 이어지지요. 그래서 sin은 가 되는 거예요. cos의 c는 빗변에서 출발해서 밑변으로 이어지니까 cos은 , tan의 t는 밑변에서 시작해서 높이로 이어지니까 가 되는 거고요.

다음 직각삼각형 ABC에서 각 A에 대한 삼각비를 구하여라.

삼각비를 구하려면 빗변의 길이를 알아야 해요. 직각삼각형이니까 빗변의 길이는 피타고라스의 정리를 이용해서 구할 수 있어요. 피타고라스의 수 3, 4, 5니까 빗변의 길이는 5에요.

함께 보면 좋은 글

특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
삼각비표, 삼각비표 보는 법
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기

정리해볼까요

삼각비

  • 직각삼각형에서 두 변의 길이의 비
  • sin =
  • cos =
  • tan =
 
그리드형

중3 수학 목차

2012. 5. 27. 12:30

중학교 3학년 수학 목차입니다.

각 목차의 순서에 맞게 따라서 공부하시면 진도 걱정없이 학습할 수 있어요. 혹시 빠진 내용이 있거나 추가하고 싶은 내용이 있으면 언제든 댓글 남겨주세요.

중1 수학 목차
중2 수학 목차

  1. 실수와 식의 계산
  2. 인수분해
  3. 이차방정식
  4. 이차함수
  1. 통계
  2. 삼각비
  3. 원의 성질
그리드형

+ 최근글