중등수학
-
이차함수 그래프의 평행이동, y = ax² + q2012.06.30
이차함수 식 구하기
이제 이차함수의 그래프와 그래프의 평행이동에 대해서 알아봤으니까 식 구하는 걸 한 번 해보죠. 일차함수 식 구하는 것도 기억이 나나요?
일차함수 식 구하기, 직선의 방정식 구하기, 그래프를 보고 직선의 방정식 구하기
일차함수에서 처럼 여러가지 특징을 가지고 또는 그래프에서 특징들을 알아낸 다음에 이차함수를 구하는 방법에 대해서 알아볼까요.
이차함수는 y = a(x-p)² + q도 쓰고, y = ax² + bx + c로도 써요. 이차함수 식을 구한다는 얘기는 a, p, q를 구하거나 a, b, c를 구한다는 얘기가 되겠죠.
점의 좌표를 주고 이차함수를 구하라고 하는데요. 이차함수가 특정한 점을 지난다는 얘기는 점의 좌료를 식의 x, y에 대입하면 식이 참이 된다는 뜻이에요. 그래서 점의 좌표를 식에 넣어서 미지수를 구하게 돼요.
꼭짓점의 좌표와 다른 한 점의 좌표를 알 때
이차함수의 표준형 y = a(x-p)² + q에서 꼭짓점은 (p, q)에요. 이걸 거꾸로 하면 꼭짓점이 (p, q)이면 그 함수식은 y = a(x-p)² + q가 된다는 얘기죠.
우리가 알고 싶은 건 a, p, q인데, p, q는 꼭짓점의 좌표에서 알았으니 이제 a만 알면 되겠죠? 이 a를 구하려면 꼭짓점과 함께 주어진 점의 좌표를 위 식에 대입하세요. 문자는 a만 남게되니까 일차방정식으로 풀 수 있어요.
꼭짓점의 좌표가 (1, 2)이고 (2, 4)를 지나는 포물선을 구하여라.
꼭짓점의 좌표가 (1, 2)면 이차함수 표준형은 y = a(x-1)² + 2가 돼요. 여기에 x = 2, y = 4를 대입해볼까요?
4 = a(2-1)² + 2
4 = a + 2
a = 2
a를 구했어요. 따라서 구하는 이차함수 식은 y = 2(x-1)² + 2가 됩니다.
축의 방정식 x = p와 다른 두 점의 좌표를 알 때
축의 방정식은 바로 꼭짓점의 x 좌표와 같아요. 꼭짓점의 x좌표가 1이라면 축의 방정식은 x = 1이 돼요. 꼭짓점의 x좌표가 10이라면 축의 방정식은 x = 10이 되고요. 꼭짓점의 x좌표를 알려준 것과 축의 방정식을 알려준 것은 결국 같은 정보를 준 겁니다.
y = a(x-p)² + q에서 꼭짓점의 x좌표인 p를 구했으니 이제 a와 q만 구하면 되겠죠? 이 함수식에 서로 다른 두 점의 좌표를 각각 대입하세요. 그러면 미지수가 a와 q가 있는 연립방정식이 돼요. 연립방정식을 가감법과 대입법을 이용해서 풀면 a, q를 구할 수 있겠죠?
연립방정식의 풀이법 - 가감법 1, 연립방정식의 풀이법 - 가감법 두 번째, 연립방정식의 풀이법 - 대입법
축의 방정식이 x = -1이고 (-1, 2), (1, -2)를 지나는 이차함수를 구하여라.
축의 방정식이 x = -1이니까 함수식은 y = a(x+1)² + q가 돼요. 여기에 두 점의 좌표를 대입해보죠.
2 = a(-1+1)² + q, -2 = a(1+1)² + q라는 두 식이 나오네요.
첫번째 식에서 q = 2가 되고, 이 걸 두번째 식에 대입하면 a = -1이 나와요.따라서 구하는 이차함수는 y = -(x+1)² + 2가 됩니다.
서로 다른 세 점의 좌표를 알 때
세 점의 좌표를 알 때는 이차함수의 표준형이 아닌 일반형 y = ax² + bx + c를 사용해요. 표준형 y = a(x-p)² + q을 사용하면 p가 제곱이 되어서 구하기가 귀찮거든요.
여기에서는 a, b, c 세 개의 미지수 값을 구해야합니다.
두 점의 좌표를 넣으면 식이 두 개인 연립방정식이 돼죠? 그럼 세 점의 좌표를 넣으면 어떻게 될까요? 식이 세 개인 연립방정식이 돼요. 하지만 미지수가 세개이고 식이 세개인 연립방정식을 푸는 방법을 배우지 않았어요. 그래서 점의 좌표를 줄 때 형식상으로는 세 점의 좌표인 것처럼 보이지만 실제로는 두 점의 좌표만 줍니다.
바로 y 절편을 주기 때문이죠. y = ax² + bx + c에서 c는 y절편이라는 걸 알아요. 그래서 점의 좌표를 줄 때 c를 바로 알 수 있도록 (0, c)라는 점을 줍니다. 제일 먼저 y절편을 이용해서 c를 구해요. 그럼 식에서 모르는 문자는 a, b 두 개죠? 다음에 다른 두 점의 좌표를 식에 넣으세요. 그러면 연립방정식이 돼요.
뭐라고요? x = 0인 점의 좌표를 먼저 찾는 게 중요하다고요.
이해하셨나요? 예제를 볼까요?
세 점 (0, 0), (1, 2), (-1, 4)를 지나는 이차함수를 구하여라.
세 점을 줬는데요. 그중에 주목해야할 점은 바로 (0, 0)이에요. 주의하세요. 원점이 주어졌다고 해서 그게 꼭짓점은 아니에요.
(0, 0)만 먼저 y = ax² + bx + c에 대입해보죠.
0 = a × 0² + b × 0 + c
c = 0
c = 0이므로 식은 y = ax² + bx가 돼요. 이제 미지수는 a, b 두 개만 남았잖아요. 두 점의 좌표를 대입해보죠.
2 = a + b, 4 = a - b 라는 연립방정식이 됐어요. 연립해서 풀어보면 a = 3, b = -1이 돼요.
따라서 구하는 이차함수 식은 y = 3x² - x입니다.
x축과의 두 교점과 다른 한 점을 알 때
x축과의 교점의 좌표를 두 개를 알려줘요. 그게 무슨 의미인지 알아보죠. x 축과의 교점이라는 말은 y = 0이라는 뜻이에요. 이걸 식으로 써보면 0 = ax² + bx + c가 되는 거죠. 이게 뭐죠? 이차방정식이잖아요. 즉 이차방정식의 두 근을 알려주고 식을 구하라는 문제가 같은 형식인 거죠.
합과 곱이 주어졌을 때 이차방정식 구하기에서 공부했던 내용인데, 다시 정리해보죠.
우변의 0을 y로 바꾸면 돼요.
두 근은 바로 x축과의 교점의 좌표이니까 모르는 건 a만 남겠죠? 이 a는 교점이 아닌 다른 한 점의 좌표를 대입해서 구할 수 있어요.
다만 문제에서 x축과의 교점이라고 얘기해주지 않아요. 그냥 세 점의 좌표만 주는데, 세 점의 좌표 중에서 y = 0인 좌표가 두 개있으면 이 유형의 문제인 것이죠.
세 점 (0, 6), (3, 0), (-2, 0)을 지나는 이차함수를 구하여라.
세 점의 좌표 중 y = 0인 좌표 (3, 0), (-2, 0)을 찾아내야 해요. 이 점을 찾아냈으면 식으로 써봐야겠죠? y = a(x-3)(x+2)라고 놓을 수 있겠군요.
그 다음에 위 식에 (0, 6)을 대입하세요. 6 = a(0-3)(0+2)에서 a = -1인 걸 알 수 있어요.
식으로 쓰면 y = -(x-3)(x+2)인데, 이차함수는 표준형 또는 일반형으로 표현하기때문에 식을 전개해보죠. y = -x² + x + 6이 되는 군요.
그런데, 위 세 점을 자세히 보면 (0, 6)이라는 x = 0인 점의 좌표가 주어졌어요. 따라서 위에서 했던 y = ax² + bx + c에 c = 6으로 놓고 다른 두 점의 좌표를 대입해서 연립방정식으로 풀어도 돼요.
y = ax² + bx + c의 그래프, 이차함수 일반형
이차함수의 그래프에 대해서 공부하고 있는데, y = a(x - p)2 + q꼴 이었어요. 이런 형태를 이차함수의 표준형이라고 해요.
이차방정식에서는 ax2 + bx + c = 0 꼴을 이차방정식의 일반형이라고 하는데, 이차함수에도 일반형이 있어요. 이차함수의 일반형은 이차방정식 우변의 0을 y로 바꾸고, 좌우변을 바꾼 y = ax2 + bx + c이에요.
이차함수의 일반형 y = ax2 + bx + c
y = ax2 + bx + c의 특징을 먼저 알아볼까요?
이차함수 y = a(x - p)2 + q의 그래프에서 그래프의 모양과 폭을 결정하는 건 뭐죠? 이차항의 계수인 a죠. 일반형에서도 이차항의 계수가 그래프의 폭과 모양을 결정합니다.
y = ax2+ bx + c에서 이차항의 계수는 a이고 a > 0이면 그래프는 아래로 볼록, a < 0이면 위로 볼록이에요. 또 |a|가 클수록 그래프의 폭은 좁아집니다.
x절편은 y = 0일 때의 x좌표죠? y = 0을 넣어볼까요? 0 = ax2 + bx + c가 되어서 이차방정식의 해가 x절편이 되는 걸 알 수 있어요.
y절편은 x = 0일 때의 y좌표죠? x = 0을 넣어보면 y = c가 나와요.
일반형은 표준형보다 x, y 절편 찾기가 쉬워요.
표준형은 꼭짓점이나 축의 방정식, y값의 범위를 알아보기가 쉽죠. y = a(x - p)2 + q에서 꼭짓점은 (p, q)라는 걸 알 수 있잖아요.
그러니까 꼭짓점을 찾을 때는 표준형, y절편을 찾을 때는 일반형이 편하겠죠. 그래프의 모양이나 폭은 어떤 것이든 상관없고요.
그런데 함수식을 두 가지 형태로 다 주는 건 아니잖아요. 식이 표준형이면 x = 0, y = 0을 대입해서 x, y 절편을 찾을 수 있어요. 하지만 일반형일 때는 그 상태 그대로 꼭짓점이나 y값의 범위를 찾을 방법이 없죠.
그래서 일반형을 표준형으로 바꿔야 해요.
완전제곱식을 이용한 이차방정식의 풀이
일반형은 x에 관해 내림차순으로 쓰인 식이고, 표준형은 완전제곱식을 포함하고 있는 식이에요. 그러니까 완전제곱식 + 상수항의 꼴이죠.
일반형을 완전제곱식으로 바꾸는 걸 우리는 이미 해봤어요. 바로 “완전제곱식을 이용한 이차방정식의 풀이”에서요.
완전제곱식을 이용한 이차방정식의 풀이에서 어떻게 했는지 보죠.
- 이차항의 계수로 양변을 나눈다.
- 상수항을 우변으로 이항
을 양변에 더해준다.
- 좌변을 완전제곱식으로 인수분해: (x + p)2 = k
- 제곱근을 이용하여 해를 구한다.
x2 - 2x - 6 = 0
기억나죠? 정말 많이 해봤던 문제잖아요.
y = ax2 + bx + c를 y = a(x-p)2 + q로 바꾸기 (일반형을 표준형으로)
이차방정식에서 완전제곱식을 만들었던 것과 이차함수의 일반형을 표준형으로 바꾸는 건 80% 비슷해요.
다른 건 두 가지. 위의 순서에서 2번에 있는 상수항을 우변으로 이항하는 게 없어요. 그리고 해를 구하는 게 아니니까 5번 단계가 필요 없어요. 두 단계가 줄었으니까 더 편하겠죠?
그다음에는 이차항의 계수로 양변을 나눈다고 했는데, 이걸 “이차항의 계수로 이차항과 일차항을 묶는다.”로 바꾸면 돼요. 인수분해한다는 얘기예요. 을 양변에 더해주는 건 좌변에만 한 번 더해주고 빼주는 걸로 바꿔요. 그 외 나머지는 다 똑같아요.
연습을 한번 해보죠.
y = 2x2 + 4x + 5의 꼭짓점의 좌표과 축의 방정식을 구하여라.
먼저 이차항의 계수로 이차항과 일차항을 묶어요.
y = 2(x2 + 2x) + 5
을 더해줘야 하는데 어디에 더하냐면 괄호로 묶인 부분 안에 더해줘요. 그리고 원래 식에 없던 값을 더해줬으니까 한 번 빼줘야 원래 식과 같은 식이 되겠죠? 빼주는 것도 괄호 안에 빼줘요. 문제에서는 (2 / 2)2 = 1을 더해주고 빼줘야겠네요.
y = 2(x2 + 2x + 1 - 1) + 5
괄호 안에 있는 부분 중 앞의 세 항(x2 + 2x + 1)을 완전제곱식으로 바꿔요.
y = 2{(x + 1)2 - 1} + 5
괄호 안에는 완전제곱식과 상수항이 남아있는데, 이 상수항을 괄호 밖으로 빼네요. 이때 주의해야할 건 괄호 앞에 이차항의 계수였던 2가 있으니까 분배법칙을 이용해서 빼내야 한다는 거예요.
y = 2(x + 1)2 - 2 + 5
y = 2(x + 1)2 + 3
완전제곱식을 이용한 이차방정식의 풀이와 거의 비슷하죠? 이렇게 표준형으로 바꿨더니 꼭짓점의 좌표와 축의 방정식을 구할 수 있겠네요. 꼭짓점은 (-1, 3), 축의 방정식은 x = -1이군요.
한 문제 더 해보죠.
y = -x2 + 4x -2의 꼭짓점과 y절편을 구하여라.
꼭짓점은 표준형에서 y절편은 일반형에서 구하는 게 편해요.
문제의 식이 일반형이니까 y절편부터 구해보죠. 이차함수 y = ax2 + bx + c에서 x = 0일 때 y 좌표가 y절편이니까 –2네요.
꼭짓점을 구하기 위해서 일반형을 표준형으로 바꿔보죠.
꼭짓점의 좌표는 (2, 2)이고 y 절편은 -2네요.
이차함수 그래프, y = (x - p)² + q
이차함수 그래프의 평행이동 마지막입니다. 뭐 거창한 건 아니고요. 앞에서 공부했던 내용들을 한꺼번에 공부하는 거예요.
이차함수그래프를 x축으로도 평행이동 해봤고, y축으로도 평행이동 해봤어요. 이제는 x, y 축 평행이동을 동시에 하는 거예요.
y = ax2 그래프를 x축으로 p만큼, y축으로 q만큼 이동한 그래프에 대해서 공부할 거예요. 어렵게 생각하지 마세요. 이 그래프는 y = ax2 + q와 y = a(x - p)2의 특징을 모두 갖고 있거든요.
이차함수 y = a(x - p)2 + q의 그래프
y = ax2 그래프를 y축 방향으로 먼저 q만큼 평행이동한 y = ax2 + q 그래프를 다시 x축 방향으로 p만큼 평행이동한 그래프예요. 순서를 바꿔도 상관없어요.
그래프를 x축으로 평행이동하면 x와 관련된 모든 항목이 바뀌고, y축으로 평행이동하면 y와 관련된 항목이 모두 바꿔요. 그럼 x, y로 평행이동한 그래프는 당연히 x와 y에 관련된 모든 것들이 다 바뀌겠죠π x와 관련된 항목은 p로 y와 관련된 항목은 q로 바꿔보죠.
꼭짓점은 원점 (0, 0) 이었어요. 평행이동하면 어떻게 될까요π (p, q)로 바뀌겠죠π
축의 방정식은요. x하고만 관련이 있잖아요. x = 0 에서 x = p로 바뀌고요.
y값의 범위는 y하고만 관련이 있죠π a < 0이면 y ≤ q가 될 거고, a > 0 이면 y ≥ q가 될 거예요.
이차함수 그래프의 평행이동
a > 0일 때 이차함수 그래프를 평행이동한 그래프에 관한 내용을 정리해볼까요π
| 그래프 | ||||
| y = ax2 | y = ax2 + q | y = a(x - p)2 | y = a(x - p)2 + q | |
| 꼭짓점 | (0, 0) | (0, q) | (p, 0) | (p, q) |
| 축의 방정식 | x = 0 | x = 0 | x = p | x = p |
| 증가, 감소 기준 | x > 0 x < 0 |
x > 0 x < 0 |
x > p x < p |
x > p x < p |
| y의 범위 | y ≥ 0 | y ≥ q | y ≥ 0 | y ≥ q |
이차함수 그래프의 평행이동, y = a(x-p)²
이차함수 그래프가 y축으로 평행이동한 것을 공부했어요. 이 글에서는 이차함수 그래프가 x축으로 평행이동한 경우를 생각해보죠.
이차함수 그래프 y = ax2가 y축으로 q만큼 평행이동하면 y에 관련된 값인 꼭짓점의 y좌표, y의 범위 등이 바뀌죠. 그리고 y와 상관없는 꼭짓점의 x좌표, 축의 방정식 등은 그대로예요.
이차함수의 그래프가 x축 방향으로 평행이동 했을 때는 이차함수 그래프의 특징에서 어떤 값들이 어떻게 바뀌는 지 알아보죠.
이차함수 y = a(x - p)2의 그래프
일차함수든 이차함수든 x, y축 어느 방향으로 평행이동을 하더라도 그래프의 모양은 바뀌지 않아요. 일차함수의 그래프에서 기울기나 직선인 모양은 그대로이고요. 이차함수에서도 포물선 모양과 위/아래로 볼록인 것도 그대로예요. 그래프의 폭도 바뀌지 않아요.
특히 이번에는 x축으로 p만큼 평행이동 했을 때를 볼 건데, 이때는 x에 관련된 내용이 모조리 p로 바뀝니다.
y = ax2의 그래프의 꼭짓점은 원점 (0, 0)이었어요. x 관련된 것만 바뀌니까 꼭짓점의 x좌표가 바뀌겠죠? (p, 0)이 돼요.
축의 방정식은 x = 0이었죠? x와 관련된 식이네요. 역시 x = p로 바뀝니다.
x > 0이면 x가 증가할 때 y가 증가하고, x < 0이면 x가 증가할 때 y는 감소하죠. 여기서 x의 범위도 x > p일 때 x가 증가하면 y가 증가하고 , x < p일 때 x가 증가하면 y가 감소하는 것으로 바뀌죠.
y값의 범위는 x랑 상관없죠? 그래서 바뀌지 않아요.
아래 그래프는 y = x2과 y = (x - 3)2의 그래프에요.
그래프에서 꼭짓점은 (3, 0)이고, 축의 방정식은 x = 3이네요. x > 3이면 x가 증가할 때 y가 증가하고, x < 3이면 x가 증가할 때 y는 감소하는군요. 찾을 수 있겠죠?
파란색 그래프 위의 점들이 x축 방향으로 3만큼 이동하면 오른쪽 그래프 위의 점들과 일치하죠? 양의 방향으로 3만큼 이동했으니까 x + 3을 해줘야 할 것 같은데, 식은 x - 3이 됐어요. 여기를 주의하세요. 이동한 만큼 빼주는 거예요.
x축으로 p만큼 평행이동한 이차함수 그래프는 x 대신 x - p, y축으로 q만큼 평행이동한 그래프는 y 대신 y - q를 넣어주세요.
만약 x축 방향으로 -3만큼 이동하면 y = {x - (-3)}2 = (x+3)2가 돼요.
y축으로 q만큼 이동한 그래프는 원래는 y - q = ax2인데, q를 이항해서 우리가 아는 y = ax2 + + q로 바꾼 거예요.
함께 보면 좋은 글
이차함수 그래프의 특징
이차함수 그래프의 평행이동, y = ax2 + q
이차함수 그래프, y = (x - p)2 + q
이차함수 그래프의 대칭이동
이차함수 그래프의 평행이동, y = ax² + q
일차함수에서 우리는 제일 처음에 y = ax 에 대해서 공부했어요. 그리고 y = ax 그래프를 y축으로 b만큼 평행이동 시킨 y = ax + b 그래프를 공부했고요.
이차함수에서 y = ax2 그래프를 공부했으니 y축으로 평행이동한 그래프를 공부해야겠죠? 그게 바로 y = ax2 + q예요.
그래프를 평행이동 하면 그래프의 모양은 바뀌지 않아요. 그러니까 폭도 그대로이고, 위로/아래로 볼록한 것도 그대로에요.
일차함수의 그래프에서도 그래프의 기울기나 모양이 바뀌지는 않았어요.
이차함수 y = ax2 + q의 그래프
y = ax2 + q 그래프는 y = ax2 를 y축으로 q만큼 이동한 그래프에요.
y축에 대해서 q만큼 평행이동 했으니까 y와 관련된 항목들만 바꿔요.
y축 대칭이어서 축의 방정식은 x = 0이었어요. 축의 방정식은 x만 있고 y와 상관없죠? 그래서 축의 방정식은 x = 0 그대로예요.
x가 증가할 때 y가 증가/감소하는 구간도 역시 x > 0 일 때와 x < 0 일 때, 즉 x의 범위에 따라 달라지는 거니까 y와는 상관없어요. 그대로예요.
꼭짓점은 원점(0, 0)에서 (0, q)로 바뀝니다. y축으로 이동했으니 꼭짓점의 y좌표도 이동해야겠죠?
y축으로 평행이동 하면 y값의 범위도 바뀌어야 해요. a > 0이라면 y ≥ q가 될 거고, a <0이라면 y ≤ q가 돼요.
기억하세요. y = ax2가 y축 방향으로 q만큼 이동한 y = ax2 + q는 y 관련된 항목, 꼭짓점의 y좌표, y값의 범위만 바뀌고, 다른 것은 그대로라는 걸요.
이차함수 그래프의 특징
이번에는 이차함수 그래프의 특징에 대해서 알아볼 거예요. 이차함수 그래프 그리기에서 잠깐 봤지만 이차함수 그래프는 직선이 아니라 곡선, 정확히는 포물선이에요. 가운데 뾰족한 부분이 있고 그 양쪽은 서로 대칭인 모양이죠.
일차함수 y = ax에서 a를 기울기라고 했는데, 이차함수에서는 기울기라는 표현을 쓰지 않아요. 대신 이차항의 계수라고 그냥 편하게 부르면 돼요.
y = x²의 그래프를 그려보았는데요, 이번에는 x²의 계수가 1이 아닌 2, 3…… 일 때 그래프의 특징에 대해서 알아보죠. 또 a의 부호에 따라 그래프가 어떻게 달라지는 지도 알아봐요.
y = ax² 그래프의 성질 (a > 0일 때)
이차함수니까 당연히 a≠0이에요.
아래는 y = x²의 그래프예요. 그래프를 보면서 특징을 하나씩 적어볼게요. a = 1이긴 하지만 a가 2, 3, 4, …여도 특징은 같아요.
그래프를 보면 알겠지만, 그래프는 아래로 튀어나온 모양이죠? 이걸 아래로 볼록한 모양이라고 표현해요.
그리고 원점 (0, 0)을 지나요. 원점을 기준으로 양쪽이 서로 대칭이에요. 이렇게 뾰족한 점을 꼭짓점이라고 해요.
꼭짓점 양쪽의 그래프를 잘 살펴보면 서로 대칭인 것을 알 수 있어요. 선대칭인데, 이 대칭이 되는 선을 대칭축이라고 불러요. 대칭축은 y축이네요. y축을 식으로 나타내면 x = 0이죠. 이 x = 0을 축의 방정식이라고 불러요. 대칭축을 방정식으로 표현했다는 얘기예요.
대칭축을 기준으로 해서 오른쪽 부분은 x가 증가하면 y도 증가하죠. 그런데 축의 왼쪽 부분은 x가 증가하면 y가 감소해요.
x와 y의 범위는 따로 얘기하지 않는다면 실수 전체를 말합니다. 그런데 실제로 y 값들이 실수 전체인가요? 아니죠. y는 원점에서 가장 작고 그 외에는 0보다 커요. 따라서 y값의 범위는 y ≥ 0이에요.
아래는 y = x²와 y = 2x² 그래프를 함께 그린 건데, 계수가 커질수록 그래프는 y축에 가까워지죠? 일차함수 y = ax + b (a > 0)에서도 a가 커지면 그래프는 y축에 점점 가까워졌어요. 이차함수에서는 이걸 폭이 좁아진다고 표현합니다. 즉, a가 커질수록 그래프의 폭이 좁아진다고 하죠.
y = ax² 그래프의 성질 (a < 0일 때)
이번에는 a < 0인 y = -x² 그래프를 보고 특징을 알아보죠.
y = x2의 그래프와 마찬가지로 원점을 지나고, 이 원점을 꼭짓점으로 해요.
y = -x2그래프는 위쪽에 뾰족한 부분이 있죠? 그래서 위로 볼록이라고 해요.
y = x2와 마찬가지로 y축에 대해서 대칭이죠. 그러니까 축의 방정식도 x = 0으로 같아요.
그래프를 보면 가장 큰 y값이 0이고 나머지는 0보다 작죠? 그래서 y값의 범위는 y ≤ 0이에요.
아래는 y = -x2와 y = -2x2 그래프를 함께 그린 건데, 계수가 작아질수록 그래프는 y축에 가까워지죠? 폭이 좁아져요.
계수인 a 가 0보다 클 때는 a가 커지면 폭이 좁아진다고 했는데, a < 0일 때는 계수가 작아져야 폭이 좁아져요. 이걸 한 번에 표현하면 a의 절댓값이 커지면 그래프의 폭이 좁아진다고 할 수 있어요. 일차함수에서도 y = ax + b에서 a의 절댓값이 커지면 그래프는 y축에 가까워지는 걸 알 수 있었어요
y = ax² 그래프의 특징
| a > 0 | a < 0 | |
| 꼭짓점 | 원점(0, 0) | |
| 축의 방정식 | y축 (x = 0) | |
| 그래프의 폭 | |a|가 커질수록 폭은 좁아진다. | |
| 볼록한 방향 | 아래로 볼록 | 위로 볼록 |
| x < 0 일 때 | x 증가 → y 감소 | x 증가 → y 증가 |
| x > 0 일 때 | x 증가 → y 증가 | x 증가 → y 감소 |
y의 범위 |
{y|y ≥ 0} | {y|y ≤ 0} |
이차함수 y = 2x²에 대한 설명으로 틀린 것은?
① 원점을 꼭짓점으로 한다.
② x > 0일 때 x가 증가하면 y도 증가한다.
③ y축에 대하여 대칭이다.
④ 위로 볼록한 포물선이다.
⑤ 제 1, 2사분면을 지난다.
원점을 지나고 y축에 대해 대칭인 것은 a와 상관없는 이차함수 y = ax2그래프의 특징이에요. 그래서 1번과 3번은 맞아요.
y = 2x2는 a가 0보다 크네요. 그래프의 모양을 생각해보죠. x > 0 인 곳은 그래프에서 오른쪽 부분이에요. 오른쪽 부분은 x가 커지면 y도 함께 커져요. 따라서 2번은 맞아요.
a > 0이니까 아래로 볼록한 곡선이죠? 4번은 틀렸네요.
y값의 범위가 y ≥ 0이니까 1, 2 사분면을 지나는 것도 맞아요.
따라서 틀린 것은 4번이네요
이차함수 그래프 그리기
이차함수 그래프 그리는 방법을 알아볼꺼에요. 아주 간략하게 그리는 거고, 꼭지점과 y절편 등을 이용해서 그리는 건 나중에 다시 더 배울 거예요.
일차함수의 그래프는 두 점을 찍은 다음 그 점들을 직선으로 연결해서 그래프를 그렸어요.
일차함수 그래프 그리기
하지만 이차함수는 조금 달라요. 직선이 아니거든요.
이차함수의 가장 기본이 되는 y = x²의 그래프를 그려 보자고요.
y = x²의 그래프 그리기
y = x²에 x = ..., -3, -2, -1, 0, 1, 2, 3, ...을 대입하면 y = ..., 9, 4, 1, 0, 1, 4, 9, ...가 나와요. 이 점들을 순서쌍을 나타내면 (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9)가 되겠네요. xy 좌표평면에 찍으면 아래처럼 돼요.
딱 봐도 직선으로 연결할 수는 없겠죠? 그럼 어떻게 하느냐? 각 점들이 최대한 매끄럽게 되도록 곡선으로 연결해줍니다. 정확히는 포물선 모양이에요.
원점은 뾰족한 모양이 되고 양쪽으로 곡선 모양이네요.
점을 많이 찍으면 그리기가 더 수월해요. 하지만 좌표 구하기가 더 어렵죠.
y = -x²의 그래프 그리기
y = -x²에 x = ..., -3, -2, -1, 0, 1, 2, 3, ...을 대입하면 y = ..., -9, -4, -1, 0, -1, -4, -9, ...가 나와요. 이 점들을 순서쌍을 나타내면 (-3, -9), (-2, -4), (-1, -1), (0, 0), (1, -1), (2, -4), (3, -9)가 되죠. 마찬가지로 점을 표시하고 매끄럽게 곡선으로 연결하면 돼요.
이차함수의 뜻, 이차함수란?
이차방정식에 이어 이차함수에요.
1학년 때 함수를 공부했고, 2학년 때는 일차함수와 그래프를 공부했죠. 이제는 이차함수와 그래프를 공부할 거예요. 식은 똑같은 데 차수만 높아지는 거니까 겁먹을 필요 없어요.
일차방정식과 이차방정식의 차이는 뭐였죠? 미지수 x의 차수가 일차냐 이차냐의 차이였어요. 마찬가지로 일차함수와 이차함수의 차이도 x에 관한 식의 차수가 일차냐 이차냐 차이에요. 차수가 일차면 일차함수, 이차면 이차함수지요.
일차함수는 y = ax + b (a ≠ 0, a, b 는 상수)였어요. 이차함수는 우변이 x에 관한 이차식이니까 y = ax2 + bx + c (a ≠ 0, a, b, c는 상수)겠죠?
이차방정식인지 아닌지 확인할 때, 괄호는 풀고 동류항을 다 정리한 후에 차수가 일차인지 이차인지 확인했었죠? 이차함수에서도 괄호는 다 풀고 동류항 계산을 다 한 다음에 차수를 확인합니다.
다음 중 이차함수 인것은?
(1) y = 2x + 6
(2) y = 2x2 + 3x + 1
(3) y = 2(x - 3)2
(4) x2 + 3x + 2 = 0
(5) y = 2(x - 2)2 + 3 - 2x2
(1)은 우변 x의 최고차항이 1차니까 일차함수고요.
(2)는 우변이 x에 관한 이차식이니까 이차함수가 맞아요.
(3) 역시 우변을 전개해보면 y = 2x2 - 12x + 18이어서 이차함수가 맞고요.
(4)는 이차식이긴 하지만 함수가 아닌 방정식이어서 이차방정식이네요.
(5)는 우변을 정리해보면 y = 2x2 - 8x + 8 + 3 - 2x2 = -8x + 11이여서 차수가 1인 일차함수네요.
따라서 이차함수인 것은 (2), (3)입니다.
일차함수의 활용
이번은 일차함수의 활용에 대해서 공부할 거예요.
매 단원의 마지막에 공부하는 내용이 활용이죠. 방정식의 활용, 연립방정식의 활용, 부등식의 활용 등이요. 바꿔말하면 활용을 배우면 그 단원이 끝나는 거예요. 멀게만 보였던 일차함수 단원이 이제 끝나는군요.
매 단원의 끝에 활용이 나오는 것처럼 일차함수의 활용도 다른 단원의 활용 문제와 별로 차이가 없어요. 문제는 푸는 순서와 요령은 같은데, 식을 세우는 과정에 함수라는 게 들어가는 것뿐이에요.
1학기 마지막 단원을 시작해보죠.
일차함수의 활용
일차함수의 활용도 다른 단원의 활용에서와 같은 순서로 진행돼요.
- x, y 정하기
문제를 잘 읽고, 문제에서 구하고자 하는 것을 x, y로 놓는다.
함수는 x에 대응하는 y 값이니까 일반적으로 변화하는 값을 x, 그에 따라 결정되는 값을 y로 놓아요. - x, y의 관계식(함수식) 세우기
문제에 나온 내용을 식으로 만든다. - 해 구하기
만든 함수식을 이용하여 해를 구한다. - 확인하기
구한 해가 문제의 조건에 맞는지 확인한다.
다른 식의 활용에서도 이런 순서로 진행되었죠?
일차함수의 활용은 연립방정식의 활용이나 부등식의 활용에 나왔던 문제보다 쉽다고 할 수 있어요. 미지수가 2개인 일차방정식을 하나만 만들면 되니까요. 방정식, 부등식에서 했던 활용과 별로 다르지도 않을뿐더러 식의 개수도 줄었으니 어렵게 생각하지 마세요.
일차함수의 활용 예제
지면에서 100m 높아질 때마다 기온은 0.6℃씩 내려간다고 한다. 지면 온도가 15℃일 때, 지면에서 2,700m 떨어진 곳 기온은 몇 ℃인가?
문제를 읽어보면 온도에 영향을 주는 건 지면으로부터의 높이네요. 그러니까 온도와 높이에 대한 관계식을 만들어야 해요.
여기서는 높이가 바뀌면 온도가 따라서 바뀌니까 높이를 x, 온도를 y로 놓으면 되겠네요.
100m 높아질 때마다 기온은 0.6℃씩 내려가면 1m 높아질 때마다 0.006℃씩 내려가고 xm 높아지면 0.006x℃ 내려가겠네요. 지면에서의 온도(처음 온도)가 15℃라고 했으니까 xm에서의 온도 y = 15 - 0.006x라고 할 수 있겠군요.
2,700m일 때 온도를 구하라고 했으니 식에 대입하면
y = 15 - 0.006x
y = 15 - 0.0060 × 2700
y = 15 - 16.2
y = - 1.2
온도는 영하라는 게 있어서 음수로 나와도 괜찮죠? 따라서 구하는 답은 영하 1.2℃가 되겠네요.
20L의 물이 들어있는 물통에서 10분마다 0.5L의 물이 흘러나간다. 물이 흘러나가기 시작하여 1시간 30분 후에 물통에 남아있는 물의 양은 몇 L인가?
이 문제에서는 시간과 빠져나가는 물의 양, 남은 물의 양 사이의 관계식이 필요하죠? 시간을 x라고 하면 시간에 따라 흘러나가는 물의 양은 x항이 되고, 남은 물의 양은 y로 놓을 수 있어요.
10분마다 0.5L가 흘러나가니까 1분에는 0.05L, x분 후에는 0.05xL가 흘러나가겠네요. 남은 양은 처음 양 20L에서 흘러나간 양을 빼주면 되겠고요.
y = 20 - 0.05x
1시간 30분은 90분이니까 식에 대입하면
y = 20 - 0.05 × 90
y = 20 - 4.5
y = 15.5
1시간 30분 후에 남은 물의 양은 15.5L가 되겠습니다.
함께 보면 좋은 글
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기
연립방정식의 해와 일차함수의 그래프
연립방정식의 활용
부등식의 활용, 연립부등식의 활용
연립방정식의 해와 일차함수의 그래프
일차함수 그래프를 이용해서 연립방정식을 푸는 방법입니다.
약간 어려울 수도 있는 내용이에요. 일차함수와 직선의 방정식, 연립방정식의 개념이 섞여서 나오는 부분이라서요. 세 가지가 왔다 갔다 하니까 복잡할 수 있어요. 너무 어렵게 생각하지 마시고, 단순하게 "일차함수 = 직선의 방정식 = 연립방정식의 각 방정식"이라는 정도로 생각하고 보세요.
연립방정식이란에서 봤던 것처럼 연립방정식은 미지수가 2개인 일차방정식 두 개가 있는 걸 말하죠. 그리고 두 방정식을 모두 만족하는 (x, y)의 순서쌍을 연립방정식의 해라고 해요.
직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식은 미지수가 2개인 일차방정식이라고 했어요. 연립방정식에서의 방정식도 미지수가 2개인 일차방정식이죠?
그러니까 연립방정식은 직선의 방정식 2개가 묶인 것으로 생각해도 되겠죠?
일차함수의 그래프와 연립방정식
연립방정식의 그래프를 좌표평면 위에 그려볼까요?
연립방정식 의 그래프를 그리면 아래 그림처럼 돼요.
그래프는 직선의 방정식을 만족시키는 x, y의 순서쌍의 집합이죠. 그런데 그래프를 그렸더니 (4, 1)이라는 점에서 두 그래프가 만나요. 그래프가 만난다는 건 양쪽 모두 (4, 1)이라는 해를 가지고 있다는 뜻이네요.
실제로 연립방정식의 풀이법으로 연립방정식을 풀어보면 해가 x = 4, y = 1이 나와요.
그래프의 교점의 좌표가 연립방정식의 해와 같아요.
그래프의 교점 = 연립방정식의 해
연립방정식 의 해를 구하여라.
x + y = 2를 y에 관해서 풀면, y = -x + 2라는 일차함수가 돼요. 3x - y = -2는 y = 3x + 2가 되고요.
그래프를 그렸더니 아래처럼 됐어요.
두 그래프의 교점이 연립방정식의 해니까 교점인 (0, 2)가 해가 되겠네요. 따라서 해는 x = 0, y = 2가 되는군요.
두 직선의 위치와 연립방정식의 해
직선의 교점이 바로 연립방정식의 해에요. 따라서 교점의 개수와 해의 개수는 같아요.
두 직선이 한 점에서 만날 때 - 교점이 하나일 때
위 예제에서는 두 그래프가 한 점에서만 만났어요. 그러니까 해도 한 개만 있죠?
일차함수 그래프의 평행과 일치에서 보면 일차함수의 그래프의 기울기가 같으면 그래프가 평행이거나 일치하죠? 기울기가 다르면 한 점에서 만나요.
일차함수에서는 기울기를 바로 구할 수 있는데, 직선의 방정식에서는 기울기를 구하려면 y에 관해서 풀어야 해요.
매번 그럴 수는 없잖아요. 그래서 간단하게 기울기가 같은지 알 수 있는 방법을 이용해요. 바로 계수의 비를 비교하는 거예요. x 계수의 비와 y 계수의 비가 다르면 두 직선의 기울기가 달라요.
기울기가 다르다 = 그래프의 교점이 한 개 = 연립방정식의 해는 하나 = 연립방정식의 x 계수의 비와 y 계수의 비가 다르다
두 직선이 평행일 때 - 교점이 없을 때
그래프가 평행일 때는 어떨까요? 연립방정식의 해는 그래프의 교점인데, 그래프가 평행이니까 교점이 없어요. 그 말은 해가 없다는 뜻이겠죠?
일차함수의 그래프가 평행이려면 어떤 조건이 있어야 하죠? 기울기는 같고, y절편은 달라야 해요.
해가 특수한 연립방정식에서 해가 하나도 없을 때는 x와 y 계수의 비는 같지만 상수항의 비는 다를 때라는 걸 이미 배웠잖아요.
이 두 개를 연결해 볼까요?
기울기가 같고 y 절편이 다르다. = 그래프가 평행 = 교점이 없다 = 해가 없다 = 연립방정식의 x, y 계수의 비는 같고 상수항의 비는 다르다
두 직선이 일치할 때
그래프가 일치하면 교점의 개수는 무수히 많아요. 교점의 교수가 무수히 많다는 건 해가 무수히 많다는 거고요.
그래프가 일치하려면 어때야 하죠? 기울기가 같고 y절편도 같아야 해요.
연립방정식의 해가 무수히 많으려면 두 식의 x, y 계수의 비와 상수항의 비가 모두 같아야 해요
마찬가지로 일차함수의 그래프가 평행일 조건과 연립방정식의 해가 무수히 많을 조건을 연결해볼까요?
기울기가 같고 y 절편도 같다 = 그래프가 일치 = 교점이 무수히 많다 = 해가 무수히 많다 = 연립방정식의 계수의 비와 상수항의 비가 같다.
함께 보면 좋은 글
해가 특수한 연립방정식
직선의 방정식, 일차함수와 일차방정식
그래프를 보고 직선의 방정식 구하기
일차함수의 활용
그래프를 보고 직선의 방정식 구하기
일차함수 식 구하기, 직선의 방정식 구하기에서는 그래프의 특징을 설명해주는 내용을 보고 직선의 방정식(일차함수 식)을 구했어요.
이번에는 그런 설명 없이 그래프를 보고 일차함수 식을 구하는 내용이에요.
그래프를 보고 어떤 특징을 알아내는가가 중요한 것이지 둘 사이에는 차이가 전혀 없어요. 그래프에서 파악할 수 있는 건 모두 파악하는 것이 좋아요. 그리고 그 파악된 내용을 기본으로 어떤 방법으로 직선의 방정식을 구할까 결정하세요.
일차함수 식을 구하는 방법은 네 가지가 있어요.
- 기울기와 y절편을 알 때
- 기울기와 한 점의 좌표를 알 때
- 두 점의 좌표를 알 때
- x절편, y절편을 알 때
일반적으로 그래프만 봤을 때는 기울기를 알아내기가 어려워요. 대신 점의 좌표는 알아내기 쉽죠. 그래서 제일 많이 사용하는 방법이 3번이에요. 물론 공부를 열심히 한 학생이라면 그래프에서 두 점의 좌표만 보고도 기울기를 바로 구할 수 있을 거예요.
다음 그래프를 보고 직선의 방정식을 구하여라.
먼저 눈에 확 띄는 건 (-3, -4), (3, 2)라는 두 점의 좌표에요. 조금 더 자세히 보면 (0, -1), (1, 0)을 지나는 것도 알 수 있어요.
기울기를 구해보죠.
기울기 =
기울기가 1이니까 함수는 y = x + b라고 쓸 수 있겠네요. 여기에 (3, 2)를 대입해보죠.
2 = 3 + b
b = -1
결국 구하려는 직선의 방정식은 y = x - 1이군요.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프에서는 x절편이 –2, y절편이 2라는 걸 알 수 있어요.
두 점 (-2, 0), (0, 2)을 지나니까 이걸 이용해서 직선의 방정식을 구해보죠.
기울기 =
기울기가 1이고 y절편이 2이니까 직선의 방정식은 y = x + 2이에요.
축에 평행한 직선의 방정식
축에 평행한 직선의 방정식에서 배웠던 내용이에요.
축에 평행한 방정식에서는 기울기를 구할 필요가 없어요. 특히 y축에 평행한 직선의 방정식은 기울기라는 게 없으니까 구하려고 해도 구할 수도 없어요.
x축에 평행한 직선은 모든 y값이 하나로 일정해요. 그래서 y = n 꼴로 그냥 쓰면 돼요. 반대로 y축에 평행한 직선의 x값은 모두 일정해서 x = m이라고 쓰면 돼요.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프는 x축에 평행한 직선이고 모든 y값이 3이에요. 따라서 직선의 방정식은 y = 3입니다.
다음 그래프를 보고 직선의 방정식을 구하여라.
그래프는 y축에 평행한 직선이고 모든 x값이 2이에요. 따라서 직선의 방정식은 x = 2입니다.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기
일차함수 식 구하기, 직선의 방정식 구하기
일차함수의 식이 주어지면 그래프를 그릴 수 있나요? 거꾸로 이제는 그래프를 보고 또는 그래프의 특징만 보고 일차함수 식을 유추해내야합니다.
이제까지 공부했던 내용들을 총동원해야해요. 일차함수 그래프의 특징, x, y 절편, 기울기 등이요. 또 일차함수 그래프 그리기에서 공부했던 내용도 이해하고 있어야 해요
일차함수식을 구하는 것과 직선의 방정식을 구하는 것은 이름은 다르지만 사실상 같은 얘기라는 것도 알고 있어야하고요.
일차함수 식은 y = ax + b 꼴이므로 기울기와 y절편을 구하는 게 핵심이에요. 여러 경우에 어떻게 일차함수식을 구하는 지 알아보죠.
기울기와 y절편을 알 때 일차함수 식 구하기
y = ax + b라는 일차함수가 있을 때, a는 기울기, b는 y절편이에요.
따라서 함수를 모르더라도 기울기와 y절편을 알면 함수를 바로 구할 수 있겠죠?
기울기가 -3이고, y절편이 1인 일차함수를 구하여라.
기울기가 -3, y절편이 1인 일차함수는 y = -3x + 1입니다.
기울기와 한 점의 좌표를 알 때 일차함수 식 구하기
기울기는 함수식에 그대로 대입해보죠. y = ax + b에서 a는 알고 있으니까 b만 구하면 되겠네요.
함수의 그래프가 한 점을 지난다는 얘기는 그 점의 좌표를 함수식에 대입하면 식이 참이 된다는 뜻이죠? 점의 좌표를 y = ax + b에 대입하면 돼요. x와 y는 점의 좌표로 알고 있고, a는 기울기로 주어졌으니까 b를 구할 수 있어요.
일차함수 y = 3x + 1 그래프와 평행하고 (3, 2)를 지나는 일차함수를 구하여라.
일차함수 그래프의 평행과 일치에서 그래프가 평행이라면 기울기가 같고 y절편이 달라야 한다고 했어요. 구하고자 하는 일차함수의 그래프가 y = 3x + 1과 평행하니까 기울기는 3이에요. 따라서 구하는 식은 y = 3x + b의 식이겠네요.
y = 3x + b 식이 (3, 2)를 지나니까 점의 좌표를 식에 대입해 보죠.
2 = 3 × 3 + b
b = -7
(3, 2)를 대입해서 b를 구했어요. 결국 구하는 일차함수는 y = 3x – 7이네요.
두 점의 좌표를 알 때 직선의 방정식 구하기
두 점의 좌표만 알고 있을 때는 먼저 기울기를 구해야 해요. 기울기 구하는 방법은 일차함수와 그래프 - 기울기에 나와 있어요.
기울기는 위 방법으로 구할 수 있고, 원래 문제에서 줬던 두 점의 좌표까지 알고 있어요. 그러면 바로 앞에서 했던 기울기와 한 점의 좌표를 알 때 사용했던 방법 그대로 기울기와 점의 좌표를 이용해서 일차함수 식을 구할 수 있어요.
두 점 (1, 2), (-2, 17)을 지나는 일차함수 식을 구하여라.
먼저 두 점의 좌표를 이용해서 기울기를 구해보죠.
기울기 = (17 - 2) ÷ (-2 - 1) = 15 ÷ (-3) = -5
기울기가 -5니까 y = -5x + b 라고 놓을 수 있고, 이 그래프가 (1, 2)를 지나니까 대입해보면
2 = -5 × 1 + b
b = 7
따라서 구하고자 하는 일차함수 식은 y = -5x + 7입니다.
x절편, y절편을 알 때 직선의 방정식 구하기
x절편과 y절편을 안다는 건 x, y축과 만나는 두 점의 좌표를 안다는 뜻이고, 이건 그래프 위의 두 점의 좌표를 알려준 것과 같아요. 따라서 바로 위에서 했던 두 점의 좌표를 알 때 직선의 방정식 구하기 방법에서 했던 것처럼 기울기를 구해야 해요. 기울기를 구하고 거기에 x절편과 y절편을 알고 있으니까 첫 번째 "기울기와 y절편을 알 때 일차함수" 구하기 방법을 사용하면 되겠죠?
두 점의 좌표를 알 때 + 기울기와 y절편을 알 때를 섞어서 사용하면 돼요.
(-1, 0), (0, 2)를 지나는 직선의 방정식을 구하여라.
두 점의 좌표를 줬는데, 자세히 보니까 각각 x, y의 좌표가 0일 때로 x절편, y절편이네요. 이 내용을 먼저 알아두세요.
두 점의 좌표를 줬으니까 기울기를 구해야겠죠?
기울기 = {2 - 0} ÷ {0 - (-1)} = 2 ÷ 1 = 2
기울기가 2니까 y = 2x + b라고 할 수 있겠고 두 점 (-1, 0), (0, 2)를 지나니까 한 점의 좌표를 식에 넣어서 b를 구할 수 있어요. 하지만 그보다는 y절편이 b라는 사실을 알고 있으니까 (0, 2)를 이용해서 바로 y = 2x + 2를 구할 수 있겠죠?
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식이라는 용어에 대해서 알아봤어요. 미지수가 2개인 일차방정식 ax + by + c = 0의 순서쌍 (x, y)를 좌표평면에 표시했더니 직선이 된다. 이때 ax + by + c = 0을 직선의 방정식이라고 하고, 일차함수의 그래프와 모양이 같다는 거지요.
이번 글에서는 직선의 방정식 중에서 특이한 모양의 직선을 알아볼 거예요.
바로 x축에 평행한 직선,
x축, y축
먼저 x축을 직선의 방정식으로 표현할 수 있어요. 좌표평면에서 x축은 가로로 되어 있는데, y좌표가 모두 0이에요. x = 1일 때도 y = 0, x = 2일 때도 y = 0이죠. x가 어떤 수가 되더라도 y = 0이에요.
따라서 x축을 직선의 방정식으로 표현하면 y = 0이라는 식으로 나타낼 수 있어요.
y축은 y = 1일 때도 y = 2일 때도 무조건 x = 0이죠. 그래서 y축의 직선의 방정식은 x = 0이에요.
x축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 0, b = 1, c = -1이면 식은 어떻게 되나요?
0 × x + 1 × y - 1 = 0
y = 1
y = 1이라는 직선의 방정식이 되고, … (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1) … 라는 점을 지나요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 x축에 평행한 직선이죠. 이 그래프는 y축과 (0, 1)에서 만나고, x축과는 만나지 않아요.
그러니까 y = n (n은 상수) 꼴의 식은 (0, n)을 지나고 x축에 평행한 직선이라고 정리할 수 있겠네요.
기울기라는 건 (y의 증가량) ÷ (x의 증가량)인데 y가 일정해서 y 증가량은 0이므로 기울기는 0인 함수입니다.
y축에 평행한 직선의 방정식
ax + by + c = 0에서 a = 1, b = 0, c = -1이면 식은 어떻게 되나요?
1 × x + 0 × y - 1 = 0
x = 1
x = 1이라는 직선이 되고, … (1, -2), (1, -1), (1, 0), (1, 1), (1, 2) … 라는 점을 지나요. x는 무조건 1이고, y값만 바뀌네요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 y축에 평행한 직선이에요. y축과는 만나지 않고, x축과는 (1, 0)에서 만나네요.
x = m (m은 상수) 의 직선은 (m, 0)을 지나고 y축에 평행한 직선이에요.
기본적으로 함수는 x 하나에 y가 하나만 대응해야해요. 그런데, x = m 꼴 직선의 방정식은 x = 1일 때 y가 무수히 많죠? 그래서 함수라고 할 수 없어요. 기울기 = (y의 증가량) ÷ (x의 증가량)인데, x = m으로 항상 일정해서 x의 증가량이 0, 즉 분모가 0이에요. 따라서 기울기라는 것이 없다는 것도 알아두세요.
주의하세요. x축에 평행한 직선은 y = n 꼴이고, y축에 평행한 직선은 x = m 꼴이에요.
함께 보면 좋은 글
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기
직선의 방정식, 일차함수와 일차방정식
이번 글에서는 직선의 방정식과 일차함수, 일차방정식의 관계에 대해서 공부합니다.
일차함수와 일차방정식, 직선의 방정식은 서로 깊은 관계가 있어요. 용어의 뜻을 제대로 이해하고 식을 자유자재로 왔다 갔다 할 수 있어야 해요.
일차함수와 일차방정식 모두 일차식이라는 공통점이 있지요. 둘 사이의 공통점을 알아보고 그 특징까지 공부해봐요. 또 직선의 방정식이라는 용어를 쓰는데, 이게 무슨 뜻인지까지 알아보죠.
일차방정식의 그래프
미지수가 2개인 일차방정식에서 공부했던 것처럼 미지수가 2개면 하나는 x, 다른 하나는 y라고 써서 ax + by + c = 0이라고 나타내죠. 이 일차방정식을 만족하는 x, y의 순서쌍이 있겠죠? 이런 순서쌍들을 좌표평면에 나타낸 것을 일차방정식의 그래프라고 해요.
직선의 방정식
특히 일차방정식의 해가 무수히 많을 때, xy 순서쌍을 좌표평면에 점으로 찍어보면 하나의 직선으로 나타나는데 이것을 직선의 방정식이라고 부릅니다.
일차방정식 ax + by + c = 0을 y에 대해서 풀어볼까요?
ax + by + c = 0
by = -ax - c
ax + by + c = 0 (a ≠ 0, b ≠ 0)
→ (a ≠ 0, b ≠ 0)
y에 대하여 풀었더니, 일차함수의 모양과 같은 모습이죠? 좌변에 y, 우변에 x항과 상수항
무슨 말이냐 하면 미지수가 2개인 일차방정식의 그래프, 즉 직선의 방정식의 그래프가 일차함수의 그래프와 같다는 거지요.
일차방정식 4x + 2y = 8의 그래프를 그리시오.
일차방정식을 일차함수 형태인 y = -2x + 4로 바꾼 다음에 일차함수 그래프 그리기에서 썼던 방법으로 그래프를 그려도 돼요. 하지만 그보다 쉬운 방법은 x절편과 y절편을 이용해서 그리는 방법인데요. x절편은 y = 0일 때의 x좌표, y절편은 x = 0일 때의 y좌표니까 각각을 일차방정식에 대입해서 풀어서 x, y축과 만나는 점의 좌표를 구한 다음 직선을 그어서 그래프를 그리면 돼요.
y = 0을 대입하면 x축과 만나는 점의 좌표는 (2, 0), x = 0을 대입하면 y축과 만나는 점의 좌표는 (0, 4)네요. x, y 절편을 그래프에 찍고 선을 그어보죠.
함께 보면 좋은 글
미지수가 2개인 일차방정식
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y = ax + b 그래프의 특징
일차함수 그래프의 평행과 일치
일차함수의 그래프에서 웬만한 건 다 다루었어요. 일차함수 y = ax + b 그래프에서 a가 무엇을 의미하는지, a의 부호에 따라서 그리고 b의 부호에 따라서 그래프의 모양이 어떻게 바뀌는 지 등이요.
일차함수를 보면 기울기와 y절편이 바로 눈에 띄죠? 두 개의 일차함수 y = ax + b, y = cx + d가 있다고 할 때, 기울기와 y절편을 비교해서 두 일차함수의 그래프가 평행한지 일치하는지 알아보죠.
일차함수 그래프의 평행
평면에서 두 직선이 서로 만나지 않는 걸 평행이라고 해요. 그러니까 일차함수 그래프가 평행하다는 말은 서로 만나지 않는다는 뜻이죠.
y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평행이동한 것이라고 했어요. 두 그래프는 서로 만나지 않아요. 그럼 두 그래프는 평행한 것이죠. 사실 평행이동을 했으니까 당연히 평행할 수밖에 없어요.
두 함수를 비교해볼게요. x, y는 변수니까 바뀔 수 있어서 비교할 수가 없어요. a, b는 상수라서 일정하죠. 두 그래프에서 기울기가 모두 a로 같아요. 그리고 y 절편이 b와 0으로 달라요. 여기서 일차함수의 그래프가 평행하려면 어떤 조건인지 알 수 있어요.
두 일차함수 그래프가 평행하려면: 기울기가 같고, y 절편은 다르다
y = ax + b와 y = cx + d에서 a = c이고 b ≠ d → 평행
일차함수 그래프의 일치
일차함수의 그래프가 일치한다는 건 그래프가 포개진다는 뜻이죠. 포개진다는 건 그래프에서 같은 점 위에 있다는 뜻이고요. 함수식이 같다는 얘기예요.
y = ax + b와 y = cx + d라는 두 일차함수가 일치하려면 a = c, b = d라는 것이죠.
두 일차함수의 그래프가 일치하려면: 기울기가 같고, y 절편이 같다.
y = ax + b와 y = cx + d 에서 a = c 이고 b = d → 일치
일차함수 y = 2x + 1의 그래프와 평행인 일차함수와 일치하는 일차함수를 각각 1개씩 적으시오.
먼저 문제에서 주어진 함수에서 기울기는 2, y절편은 1이네요. 평행한 것은 기울기가 같고 y절편이 다른 함수니까 기울기는 2일 테고, y 절편은 1만 아니면 돼요. y = 2x + 2도 될 수 있고, y = 2x - 1도 될 수 있겠네요. 그 개수가 매우 많아요.
일치하는 함수는 기울기도 같고, y 절편도 같아요. 같은 식이라는 거죠. y = 2x + 1이 되겠네요. 일치하는 일차함수는 딱 한 개예요.
함께 보면 좋은 글
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기