중등수학

이 글에서는 수학에서 사용하는 거리라는 개념의 정확한 뜻에 대해서 알아볼 거예요. 그 거리 개념을 이용해서 점과 점 사이의 거리도 알아볼 거고요. 두 점의 한가운데 있는 점에 대해서도 알아볼 거예요.

집에서 학교까지의 거리를 말할 때 우리는 보통 우리가 다니는 길을 그대로 갔을 때의 거리를 얘기하죠? 실제 이동한 거리요. 때로는 시간으로 표현하기도 하고요.

그런데 어떤 날은 큰길로 학교에 가고 다른 날은 지름길로 갈 때 이동 거리는 달라질 수 있어요. 이동 거리라는 건 때에 따라 달라질 수도 있다는 거예요.

하지만 수학의 도형에서의 거리는 두 지점 사이의 가장 가까운 거리를 말해요. 사람이 다닐 수 있느냐 없느냐는 절대 고려하지 않지요.

아래 지도에서 빨간색 선은 실제 이동 경로에 따른 거리이고 파란색 선은 거리라고 할 수 있어요.

집과 학교 사이의 거리

두 점 사이의 거리

두 점 A, B 사이의 거리는 두 점을 연결하는 무수히 많은 선 중에서 길이가 가장 짧은 선의 길이를 말하는데, 길이가 가장 짧은 선은 선분 AB에요. 따라서 두 점 A, B 사이의 거리는 선분 AB의 길이를 뜻해요.

두 점 A, B 사이의 거리 = 선분 AB의 길이

두 점 A, B 사이의 거리 그러니까 선분 AB의 길이를 기호로 선분 AB로 표시하는데요. 기본 도형 - 점, 선, 면, 직선, 반직선, 선분에서 선분 AB는 선분 AB를 나타낸다고 했죠? 이 기호 선분 AB는 선분 AB이기도 하고, 선분 AB의 길이이기도 해요. 두 가지 뜻이 있어요.

집과 학교 사이의 거리도 마찬가지로 가장 짧은 직선거리를 나타내니까 파란색으로 표시된 선의 길이인 거지요.

중점

중점(中點)은 말 그대로 가운데 있는 점을 말해요. 무엇의 가운데? 두 점의 가운데 있다는 뜻이죠. 보통 알파벳으로 M(Middle point, Median point)이라고 써요

두 점 A, B가 있는데, 중점 M은 두 점의 한가운데에 있으니까 A에서 중점까지의 거리(선분 AM의 길이)와 B에서 중점까지의 거리(선분 BM의 길이)가 같겠죠? 따라서 중점을 정의할 때 가운데 있는 점이라고 하지 않고, 선분 AM과 선분 BM의 길이가 같을 때 점 M을 중점이라고 해요.

중점

M은 중점이니까 선분 AM의 길이는 전체 길이인 선분 AB의 길이의 절반이겠죠? 다른 말로 하면 중점 M은 선분 AB 길이를 이등분한다고 할 수 있는 거죠.

두 점 A, B와 중점 M
중점의 성질

거리와 중점은 오직 선분에서만 구할 수 있어요. 직선이나 반직선은 시작점 혹은 끝점이 끝도 없이 계속되니까 거리나 중점을 구할 수 없어요. 직선 위의 두 점 A, B, 반직선 위의 두 점 C, D 사이의 거리나 중점을 구할 수는 있어요. 하지만 이때 두 점이라는 특정한 위치가 정해졌으니까 직선이 아니라 선분 AB, 선분 CD가 되어서 구할 수 있는 거예요.

점 M은 선분 AB의 중점이고 점 N은 선분 BM의 중점이다. 선분 AB의 길이가 20cm일 때 선분 MN의 길이를 구하여라.
중점 예제

M이 선분 AB의 중점이니까 선분 AM의 길이는 전체 길이의 절반이겠죠? 20 ÷ 2 = 10 (cm)예요. 선분 AM = 선분 BM = 10cm죠. 마찬가지로 점 N은 선분 BM의 중점이니까 선분 MN의 길이는 선분 BM의 절반이겠죠? 10 ÷ 2 = 5 (cm)예요. 선분 MN = 선분 BN = 5cm이니까 선분 MN은 5cm입니다.

함께 보면 좋은 글

기본 도형 - 점, 선, 면, 직선, 반직선, 선분
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
작도, 수직이등분선의 작도

정리해볼까요

두 점 A, B 사이의 거리

  • 선분 AB의 길이
  • 중점 M: 중점
<<    중1 수학 목차    >>
 
그리드형

새로운 단원인 도형 단원이에요.

도형은 그림이 많이 나오니까 그림을 보고 무슨 도형인지 어떤 특징이 있는지 빨리 파악해야 해요.

언제나 마찬가지지만 단원의 첫 부분에는 단원에서 사용할 용어들을 배우지요. 이 글에서는 도형을 이루는 가장 기본적인 것인 , , 직선, 반직선, 선분의 정의에 대해서 정리해 볼게요.

사실 처음 듣는 단어들은 없어요. 그렇다고 뜻을 모르는 것도 아니고요. 다만 좀 더 구체적인 수학적 의미로서 꼭 알고 있어야할 내용이에요.

점, 선, 면

점은 딱히 뭐라고 설명하기가 좀 그렇네요. 그냥 연필로 딱 한 번 찍은 것을 점이라고 하잖아요. 우리가 알고 있는 그 점입니다.

선은 무수히 많은 점이 모여서 이루어진 걸 말해요. 그냥 죽 그은 것처럼 보이지만 아주 많은 점을 아주 가깝게 많이 찍으면 그게 선이 되는 거예요.

조금 더 멋있게(?) 표현하면 점들이 연속적으로 움직인 자리가 바로 선이에요.

면은 무수히 많은 선이 모여서 이루어진 걸 말해요. 보통 우리는 면을 그리면 모서리만 그리죠? 직사각형을 그리면 선을 네 개만 그어서 바깥쪽에는 선이지만 안쪽은 비어있다고 생각하기 쉬운데, 사실 채우지 않았다 뿐이지 선으로 둘러싸인 모든 곳에 선이 그어져 있다고 생각해야 해요.

그래서 면은 선들이 연속적으로 움직인 자리라고 정의해요.

선과 면의 정의

교점과 교선

교점과 교선에서 교는 섞이다는 뜻인데 여기서는 서로 만난다는 뜻으로 해석해요.

교점은 말 그대로 만나는 점이라는 뜻인데, 뭐가 만나느냐? 선과 선이 만나는 점 또는 면과 선이 만나서 생기는 점을 교점이라고 해요.

이때 선과 면은 꼭 반듯한 직선이 아니어도 상관없어요. 곡선이나 휘어진 면이 만나서 생기는 곳도 교점이라고 해요.

교점

교선은 면과 면이 만나서 생기는 선이에요. 면과 면이 만날 때는 만나는 점이 하나만 생기는 것이 아니라 여러 개가 생기는 데, 그 여러 개가 모여서 바로 선이 되는 거죠.

교선

직선, 반직선, 선분

직선은 서로 다른 두 점에 의해서 결정돼요. 그러니까 점이 하나만 있다면 그 점을 지나는 선은 무수히 많이 그릴 수 있어요. 하지만 서로 다른 두 점이 있으면 그 두 점을 모두 지나는 직선은 딱 하나만 생겨요.

그래서 직선을 정의할 때는 서로 다른 두 점을 이용해서 정의합니다.

직선은 서로 다른 두 점 A, B를 지나 한없이 곧게 뻗은 선이에요. 두 점을 지나야 하고 끝이 없이 계속되어야 해요. A, B를 지나지만 어는 한 곳에서 끝나면 직선이라고 하지 않아요. 또 하나 중요한 건 곧게 뻗은 선이어야 한다는 거예요. 중간에 휘어지면 안 돼요.

직선은 지나는 두 점을 이용해서 표시하는데, A, B를 지나기 때문에 알파벳 A와 B를 이용해서 직선 AB라고 하기도 하고 기호로 직선 AB로 표시하기도 해요. 선이 A와 B를 지나서도 계속되니까 화살표를 양쪽으로 표시하는 거예요. 혹 두 점 A, B가 정의되지 않았거나 간단히 쓰고 싶을 때는 소문자 l(엘)을 써서 직선 l이라고 쓰기도 해요.

직선

반직선은 직선 AB 위의 한 점 A에서 출발해서 점 B쪽으로 곧게 뻗은 선을 말해요. 반직선에서 중요한 것은 출발점이 있다는 거예요. 직선은 점 A을 지나서 계속되어야 하지만 반직선은 점 A를 지나는 것이 아니라 바로 그 위에서 시작한다는 거지요. 넘어가면 안 된다는 얘기에요.

반직선도 마찬가지로 알파벳 A와 B를 이용해서 표시해요. 반직선 AB라고 하기도 하고, 기호로 반직선 AB로 표시하기도 해요. 선이 A에서 출발해서 B쪽 방향으로 계속되니까 B쪽 방향으로 화살표가 하나만 있어요.

반직선

선분은 직선 AB 위의 점 A에서 B까지의 부분을 말해요. 점에서 점까지 에요. 점을 넘어가는 건 아닙니다.

선분은 선분 AB라고 하기도 하고, 기호로는 선분 AB로 표시해요. 선이 A에서 B로 끝나니까 화살표가 없는 그냥 선만 그어요.

선분

반직선 AB(반직선 AB)와 반직선 BA(반직선 BA)는 달라요. 출발점이 다르잖아요. 반직선 AB는 출발점이 A이고, 반직선 BA는 출발점이 B에요. 두 반직선이 서로 같으면 출발점이 같아야 한다는 것도 잊지 마세요.

그 외 직선 AB와 직선 BA는 같고, 선분 AB와 선분 BA도 같아요.

아래 그림을 보고, 직선, 반직선, 선분으로 구분하시오.

위 그램에서는 선 양쪽으로 화살표가 하나도 없지요. 화살표가 어느 방향으로 나 있느냐를 보고 반직선의 방향을 찾기도 하거든요. 하지만 화살표가 표시되는 경우보다 표시되지 않는 경우가 훨씬 많아요. 이때는 선이 점을 지나서 더 이어지는지 아닌 지를 보고 판단해야 해요.

첫 번째 그림은 M, N이라는 두 점이 있는데, 선이 두 점을 모두 지나서도 연결이 되어 있네요. 그래서 이건 직선이고 두 점 M, N을 지나니까 직선 MN(직선 MN)입니다.

오른쪽 위의 그림에서는 점 M에서는 점 위에서 선이 끝나고, 점 N에서는 선이 계속 이어져 있죠? 그래서 점 M에서 출발해서 점 N으로 가는 반직선 MN(반직선 MN)이네요.

왼쪽 아래 그림은 반대로 점 M에서는 계속 이어져 있고, 점 N에서는 끝나니까 점 N에서 출발해서 점 M으로 가는 반직선 NM(반직선 NM)이고요.

마지막 오른쪽 아래 그림은 선이 모두 두 점에서 끝나니까 선분 MN(선분 MN)이에요.

함께 보면 좋은 글

두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리

정리해볼까요

점, 선, 면

  • 선: 무수히 많은 점이 모인 것. 점들이 연속적으로 움직인 자리
  • 면: 무수히 많은 선이 모인 것, 선들이 연속적으로 움직인 자리
  • 교점: 선과 선, 선과 면이 만나는 점
  • 교선: 면과 면이 만나서 생기는 선

직선, 반직선, 선분

  • 서로 다른 두 점을 지나는 직선은 하나
  • 직선: 두 점 A, B를 지나는 한없이 곧게 뻗은 선. 직선 AB 또는 직선 AB
  • 반직선: 점 A에서 출발하여 점 B 방향으로 곧게 뻗은 선. 반직선 AB 또는 반직선 AB
  • 선분: 직선에서 두 점 A와 B를 연결하는 부분. 선분 AB 또는 선분 AB
<<    중1 수학 목차    >>
 
그리드형

이번 글은 누적도수의 그래프를 그리는 방법에 대한 글로 통계 마지막 시간이에요.

통계는 크게 보면 두 가지에요. 용어 배우고, 표와 그래프를 그리는 거지요.

각 용어에 도수, 상대도수, 누적도수가 있어요. 각 용어에 맞게 표나 그래프 그리는 법을 익혀두세요.

누적도수의 그래프를 그리는 방법은 도수분포다각형이나 상대도수의 그래프 그리는 법과 딱 한 가지가 달라요. 바꿔 말하면 그 다른 한가지가 매우 중요하다는 거지요.

누적도수의 그래프 그리는 방법

  1. 세로축에 누적도수를 가로축에 각 계급의 양 끝값을 적는다.
  2. 각 계급의 끝값 중에 큰 쪽 끝값과 누적도수가 만나는 곳에 점을 찍는다. 이때 첫 번째 계급의 왼쪽 끝에 도수가 0인 점을 찍는다.
  3. 각 점을 차례대로 선으로 연결한다.

2번이 다른 그래프와 다른 점이고 가장 중요한 부분이에요.

다른 그래프에서는 양 계급 끝값의 가운데, 즉 계급값 부분에 점을 찍었는데, 누적도수의 그래프에서는 계급값이 아니라 끝값 중 큰 값에 점을 찍어요.

누적도수의 그래프

그 계급의 누적도수 = 계급의 도수 + 앞 계급의 누적도수
계급의 도수 = 해당 계급의 누적도수 - 앞 계급의 누적도수

그래프를 보고 이웃한 두 계급의 누적도수를 알면 계급의 도수를 구할 수 있겠지요?

누적도수 그래프의 특징

오른쪽 위로 올라가는 모양이에요. 누적이라는 뜻 자체가 숫자가 커진다는 걸 의미하니까 오른쪽으로 갈수록 숫자가 커지고 그 때문에 오른쪽으로 갈수록 위로 올라가는 그래프가 돼요.

경사가 가장 급한 곳의 도수가 가장 커요. 경사가 크다는 말은 앞의 누적도수와 차이가 크다는 말이지요. 함수에서 기울기를 생각해보세요. x의 증가량에 해당하는 계급의 크기는 똑같아요. 여기에 y의 증가량에 해당하는 해당 계급의 도수 (그 계급의 누적도수 - 앞 계급의 누적도수)가 클수록 경사가 커지겠죠?

경사가 없는 계급은 도수가 0인 걸 말해요. 경사가 없이 평평하다는 건 "그 계급의 누적도수- 앞 계급의 누적도수 = 0" 라는 말이잖아요.

그래프에서 마지막 계급의 오른쪽 끝점의 누적도수는 도수의 총합과 같아요. 누적도수의 분포표에서 계급의 누적도수는 도수의 총합과 같았죠? 그래프에서도 마찬가지예요.

아래는 수학 점수를 구간별로 나눈 누적도수의 그래프이다. 그래프를 보고 물음에 답하여라.
(1) 도수가 가장 큰 계급의 계급값을 구하여라.
(2) 점수가 10번째로 높은 학생이 속한 계급을 구하여라.
누적도수의 그래프

(1)번 실제 도수를 구하지 않더라도 그래프에서 경사가 가장 큰 곳이 도수가 가장 큰 계급이라고 했어요. 위 그래프에서 경사가 가장 큰 곳은 80점 이상 90점 미만인 계급이네요. 문제에서 구하라고 한 것은 계급이 아니라 계급값이니까 (90 + 80) ÷ 2 = 85가 되겠네요.

(2)번 점수가 10번째로 높은 학생이니까 오른쪽에서 10번에 해당하는 학생, 즉 11에 해당하는 도수가 속한 구간을 찾아야겠지요. 11이라는 도수와 만나는 계급은 80점 이상 90점 미만이네요.

함께 보면 좋은 글

도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표
상대도수의 그래프
누적도수와 누적도수의 분포표

정리해볼까요

누적도수의 그래프

  • 누적도수의 그래프 그리기
    1. 가로축에 계급의 양 끝값, 세로축에 누적도수를 적는다.
    2. 계급의 끝 값중 큰 값과 누적도수가 만나는 곳에 점을 찍는다. 가장 처음 계급의 왼쪽 끝 값에 도수가 0인 점을 찍는다.
    3. 점들을 선분으로 연결한다.
  • 누적도수 그래프의 특징
    • 오른쪽 위로 올라가는 모양
    • 경사가 가장 큰 곳이 도수가 가장 크다.
    • 경사가 없이 평평한 곳은 도수가 0
<<    중1 수학 목차    >>
 
그리드형

도수, 상대도수라는 용어를 공부했어요.

이번 글에서 배울 용어는 누적도수라는 용어에요. 도수, 상대도수에서 사용하는 도수와 같은 도수인데, 앞에 누적이라는 말이 붙어있죠? 국어사전에서 누적이라는 말은 "포개어 여러 번 쌓음"이라고 되어있네요.

즉, 누적도수는 도수를 계속 쌓아가는 걸 말해요. 도수분포표에서 처음 계급부터 어떤 계급까지의 도수를 차례대로 더한 값이에요. 쉽게 말해서 계급의 도수에 앞에 있는 계급의 도수까지 모두 더한다고 생각하면 돼요.

누적도수의 분포표

어떤 계급의 누적도수 = 그 계급의 도수 + 처음 계급부터 앞 계급까지의 도수의 합
                                   = 그 계급의 도수 + 앞 계급의 누적도수

아래 표에서 왼쪽은 시험 점수를 10점 단위로 나눈 계급이고, 가운데는 점수별 학생 수에요. 오른쪽에는 누적도수를 나타낸 겁니다. 이 표처럼 각 계급의 누적도수를 표로 나타낸 것을 누적도수의 분포표라고 해요.

점수(점) 학생 수(명) 누적 도수(명)
60 이상 ~ 70 미만 1 1
70 ~ 80 3 1 + 3 = 4
80 ~ 90 10 1 + 3 + 10 = 14
4 + 10 = 14
90 ~ 100 6 1 + 3 + 10 + 6 = 20
14 + 6 = 20
합계 20

제일 처음 계급인 60점 이상 70점 미만인 학생 수는 1명이에요. 이보다 앞에는 계급이 없으니까 누적도수는 1이지요.

두 번째 70점 이상 80점 미만인 학생 수는 3명이에요. 이보다 앞에는 60점 이상 70점 미만이라는 계급이 있고 도수가 1이에요. 그래서 1 + 3 = 4라는 누적도수를 갖게 돼요.

세 번째 80점 이상 90점 미만인 학생 수는 10명이에요. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만이라는 두 개의 계급이 있고, 이 계급에는 각각 1, 3이라는 도수가 있어요. 1 + 3 + 10 = 14라는 누적도수를 갖게 돼요. 사실 70점 이상 80점 미만의 누적도수가 4였기 때문에 그냥 4 + 10 = 14로 계산해도 돼요.

네 번째 90점 이상 100점 미만인 학생 수는 6명이죠. 이보다 앞에는 60점 이상 70점 미만, 70점 이상 80점 미만, 80점 이상 90점 미만이라는 세 개의 계급이 있고, 이 세 계급의 누적도수는 14지요. 그래서 누적도수는 14 + 6 = 20이에요.

누적도수의 특징

누적도수에는 두 가지 큰 특징이 있어요. 첫 번째 그림인 누적도수의 분포표에서 빨간색으로 표시된 곳이요.

  • 첫 번째 계급은 누적도수 = 도수
  • 마지막 계급의 누적도수 = 도수의 총합

첫 번째 계급은 앞 계급이 없으니까 더할 게 0이어서 누적도수와 계급의 도수가 같아요.

마지막 계급의 누적도수는 그 이후로 더할 게 없죠. 더할 수 있는 건 다 더했다는 거예요. 그래서 총 도수와 마지막 계급의 누적도수가 같아요. 마지막 계급의 누적도수와 총 도수가 같으니까 누적도수의 합계란에는 빈 칸으로 두는 거예요.

누적도수는 어떤 대상이 자료 전체에서 차지하는 위치를 알고 싶을 때 사용해요. 예를 들어 90점인 학생은 전체에서 몇 등인가를 구할 때 그냥 도수분포표보다 훨씬 편리하지요.

아래 누적도수의 분포표를 보고, A, B, C, D의 값을 구하여라.

점수(점) 학생 수(명) 누적 도수(명)
60 이상 ~ 70 미만 2 A
70 ~ 80 3 B
80 ~ 90 C 16
90 ~ 100 4 20
합계 D

A는 첫 번째 계급의 누적도수이므로 계급의 도수와 같아요. A = 2네요.
B는 계급의 도수인 3과 앞 계급의 누적도수 A = 2를 더해서 5가 되고요.
C는 그냥 도수죠. 앞 계급의 누적도수인 5와 C를 더해서 16이어야 하므로 C = 11이어야 하고요.
D는 총 도수인데, 총 도수는 마지막 계급의 누적도수와 같죠? 마지막 계급의 누적도수가 20이므로 총 도수도 20입니다.

함께 보면 좋은 글

도수분포표, 변량, 계급, 계급값, 도수
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표
상대도수의 그래프
누적도수의 그래프, 누적도수 그래프 그리는 방법

정리해볼까요

누적도수

  • 도수분포표에서 첫 번째 계급부터 어떤 계급까지의 도수를 차례대로 더하여 얻은 값
  • 계급의 누적도수 = 그 계급의 도수 + 앞 계급의 누적도수
  • 첫 번째 계급에서는 누적도수 = 도수
  • 마지막 계급의 누적도수 = 도수의 총합
<<    중1 수학 목차    >>
 
그리드형

상대도수의 그래프

2012. 7. 15. 12:30

상대도수의 분포표는 도수분포표에서 도수가 상대도수로 바뀐 것뿐이에요. 마찬가지로 상대도수의 그래프는 도수가 상대도수로 바뀐 것 빼고는 히스토그램이나 도수분포다각형과 완전히 다 같아요.

히스토그램은 가로축에 계급의 양 끝값, 세로축에 도수였죠? 상대도수의 그래프는 가로축에 계급의 양 끝값, 세로축에 상대도수를 놓고 그래프를 그리면 돼요.

상대도수 그래프 그리기

  1. 가로축에 각 계급의 양 끝값을 적는다.
  2. 세로축에 상대도수를 적는다.
  3. 히스토그램이나 도수분포다각형을 그리는 방법과 똑같은 방법으로 그래프를 그린다.

상대도수 그래프의 특징

상대도수 그래프는 각 계급의 도수가 전체에서 차지하는 비율을 쉽게 알 수 있고, 전체 도수가 다른 자료와 비교할 때 매우 편리해요.

아래는 상대도수와 상대도수의 분포표의 예제 문제에 나왔던 상대도수를 이용하여 그래프로 나타낸 겁니다.

단순히 표에서 숫자를 이용해서 비교할 때보다 그래프로 나와 있으니까 훨씬 더 쉽게 알아볼 수 있겠죠?

상대도수 그래프의 넓이

도수분포다각형에서 그래프와 가로축으로 이루어진 부분의 넓이는 히스토그램의 직사각형의 전체 넓이와 같았어요.

상대도수의 그래프에서는 도수 대신 상대도수를 사용하니까 (계급의 크기) × (상대도수의 총합)이 되는데, 상대도수의 총합은 1이니까 넓이는 계급의 크기와 같죠.

도수분포다각형의 그래프와 가로축 사이의 넓이
     = 히스토그램 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

상대도수의 그래프에서 그래프와 가로축으로 둘러싸인 넓이
= 계급의 크기

두 학급의 수학 점수를 상대도수 그래프로 나타낸 것이다. 파란색이 1반, 빨간색이 2반을 나타낼 때 물음에 답하여라.
(1) 1반에서 80점 이상 90점 미만인 학생 수가 10명이고 상대도수가 0.5일 때 1반의 전체 학생 수를 구하여라.
(2) 90점 이상인 학생 수의 비율이 더 높은 반은 몇 반인가?

(1)번에서 (상대도수) = (계급의 도수) ÷ (총 도수)에요. 1반의 전체 학생 수를 구하라고 했으니 총 도수를 구하란 말이네요. 식에 대입해 보죠.
0.5 = 10 ÷ x
x = 20
1반의 학생 수는 20명이네요.

(2)번에서는 실제 두 반에서 90점 이상인 학생이 몇 명인지 알 수도 없고, 상대도수도 몰라요. 하지만 그래프를 보면 그 숫자를 알지 못해도 누가 많은지는 알 수 있어요. 90점 이상 100점 미만의 계급에 1반의 선이 조금 더 위로 올라와 있죠? 따라서 90점 이상인 학생의 비율은 1반이 더 높다고 할 수 있겠네요.

함께 보면 좋은 글

히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표

정리해볼까요

상대도수의 그래프

  • 히스토그램과 도수분포다각형에서 도수 → 상대도수로 바꾼 것과 같다.
  • 가로축에 각 계급의 끝 값, 세로축에 상대도수를 넣는다.
 
그리드형

통계 단원에 점점 익숙해지고 있나요?

새로운 용어도 많이 나오고 표도 만들고 그래프도 그려야 해서 조금 어렵죠? 이 글에서도 새로운 용어와 표 만들기를 할 거예요. 하지만 어렵게 생각하지 마세요. 이미 공부했던 도수와 도수분포표에 숟가락 하나만 얹으면 되거든요.

상대도수

상대도수는 도수의 총합에 대한 각 계급의 도수의 비율을 말해요. 그러니까 전체에 대한 상대적인 크기죠. 상대도수를 식으로 쓰면 아래와 같아요.

계급의 상대도수 = (계급의 도수) ÷ (도수의 총합)

백분율 구할 때 어떻게 하나요? 전체 40개 중 20개의 백분율을 구할 때, 20 ÷ 40 × 100 = 50% 이렇게 구하죠? 상대도수를 구할 때는 뒤에 × 100만 빼주면 돼요. 전체 도수가 40이고, 어떤 계급의 도수가 20이면 이 계급의 상대도수는 20 ÷ 40 = 0.5인 거죠.

아래 표에서 총 도수는 20이고, 80점 이상 90점 미만의 도수가 10이죠. 그럼 80점 이상 90점 미만의 상대도수는 10 ÷ 20 = 0.5예요.

이런 식으로 각 계급의 상대도수를 모두 구하면 아래 표처럼 돼요.

점수(점) 학생 수(명) 상대도수
60 이상 ~ 70 미만 1 1 ÷ 20 = 0.05
70 ~ 80 3 3 ÷ 20 = 0.15
80 ~ 90 10 10 ÷ 20 = 0.5
90 ~ 100 6 6 ÷ 20 = 0.3
합계 20 1

도수를 표로 나타낸 것을 도수분포표라고 하지요? 그럼 상대도수를 위 표처럼 나타낸 표를 뭐라고 할까요? 바로 상대도수의 분포표라고 합니다. 도수분포표에서 도수만 상대도수로 바뀐 것뿐이에요.

상대도수의 특징

상대도수의 분포표에서 상대도수의 총합은 1이에요.

상대도수의 분포표의 제일 마지막 칸을 볼까요? 상대도수의 총합이 얼마로 나오나요? 상대도수를 다 더해보죠. 0.05 + 0.15 + 0.5 + 0.3 = 1이죠. 위 표에서만 그런 것이 아니라 모든 상대도수의 분포표에서 항상 1이에요.

상대도수는 각 계급의 도수에 비례해요.

상대도수 구하는 식을 보죠. 도수의 총합은 일정하고 바뀌는 건 도수밖에 없어요. 그러니까 도수에 비례하는 거예요.

그냥 도수도 있는데, 왜 굳이 상대도수라는 걸 구할까요? 상대도수가 유용할 때가 있기 때문이겠죠? 언제 유용하냐?

바로 도수가 너무 커서 전체를 조사하기 힘들 때예요. 예를 들어서 전체 도수의 총합이 100만이고, 어떤 계급의 도수가 30,000, 40,000 이러면 숫자가 크니까 알아보기가 쉽지 않잖아요. 이럴 때 상대도수를 이용해서 숫자를 작게 하는 거죠.

또 도수의 총합이 다른 두 개의 자료를 비교할 때도 사용해요. 1반과 2반의 수학 점수를 비교하는데, 1반은 학생이 20명이고 2반은 25명이라면 단순히 80점 이상 90점 미만 학생 수를 비교할 수는 없겠죠? 이럴 때 상대도수를 이용해서 비교해요.

다음은 두 학급의 수학 성적을 나타낸 상대도수의 분포표이다. 물음에 답하여라.
(1) A, B, C, D의 값을 구하여라.
(2) 두 반 중 90점 이상인 학생의 비율이 더 높은 학급은 어디인지 구하여라.

점수(점) 1반 2반
학생 수(명) 상대도수 학생 수(명) 상대도수
60 이상 ~ 70 미만 1 0.05 3 A
70 ~ 80 3 0.15 B 0.12
80 ~ 90 10 0.5 14 0.56
90 ~ 100 6 0.3 C D
합계 20 1 25 E

(1)번에서 A는 총 도수가 25이고, 도수가 3이니까 3 ÷ 25 = 0.12네요.

B는 두 가지 방법으로 구할 수 있어요. B ÷ 25 = 0.12에서 B = 0.12 × 25 = 3이라는 걸 알 수 있어요. 다른 방법으로 상대도수는 도수에 비례하니까 70점 이상 80점 미만의 도수, 상대도수와 비교할 수도 있고요. B : 0.12 = 14 : 0.56이라는 비례식을 만들 수 있죠.

C를 구해보죠. C는 도수도 비어있고, 상대도수도 비어있어서 다른 방법이 필요해요. 총 도수가 25니까 3 + B + 14 + C = 25가 되어야 해요. B는 위에서 3이었으니까 C = 5겠네요.

D는 5 ÷ 25 = 0.2가 되겠죠.

E는 상대도수의 총합인데, 상대도수의 총합은 무조건 1이에요. 따라서 E = 1입니다.

(2)번에서 90점 이상인 학생의 비율이 1반은 0.3이고 2반은 0.2니까 1반의 비율이 더 높군요.

함께 보면 좋은 글

도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
히스토그램과 히스토그램의 특징, 히스토그램 그리기
상대도수와 상대도수의 분포표
상대도수의 그래프

정리해볼까요

상대도수

  • 전체 도수에 대한 계급의 도수의 비율
  • 계급의 상대도수 = (계급의 도수) ÷ (총 도수)
  • 상대도수의 특징
    • 상대도수의 총 합은 항상 1
    • 상대도수는 계급의 도수에 정비례
    • 도수의 총합이 매우 크거나 도수의 총합이 서로 다른 두 자료를 비교할 때 사용
 
그리드형

자료를 표(도수분포표)로 만드는 법, 그림(히스토그램)으로 그리는 법까지 공부해봤어요. 물론 도수분포표와 히스토그램을 분석하고 정보를 찾아내는 것도 해봤고요.

이번에는 두 가지가 아닌 다른 한 가지를 더 공부할 거예요. 그림을 그리는 방법이요.

자료를 여러 가지 방법으로 표현해보면서 각각 어떤 특징이 있는지, 어떤 장점이 있는지를 살펴보죠.

이번에 배울 내용은 도수분포다각형이라는 거예요.

도수분포다각형 그리는 방법

다각형은 각이 여러 개 있는 도형이죠? 도수분포다각형은 자료를 여러 개의 각을 가진 도형으로 표현한 그림을 말해요.

꺾은선 그래프와 닮아있어요.

그럼 도수분포다각형을 어떻게 그리느냐?

  1. 히스토그램을 그리세요.
  2. 히스토그램에서 각 사각형의 윗변의 가운데에 중점을 찍어요. 특히, 계급의 양끝에 도수가 0인 계급이 있다고 생각하여 그곳에도 중점을 찍어요.
  3. 중점을 직선으로 연결하세요.

도수분포다각형을 그리는 것에 익숙해지면 굳이 히스토그램을 그리지 않아도, 계급과 도수가 만나는 곳에 점을 찍어서 그냥 그릴 수도 있겠지요.

도수분포다각형 그리기

도수분포다각형의 특징

그럼 도수분포표도 있고 히스토그램도 있는데, 굳이 또 도수분포다각형이라는 걸 왜 그리는 걸까요? 뭔가 장점이 있으니까 그리겠죠?

도수분포다각형은 변량과 도수의 분포상태를 연속적으로 관찰할 수 있어요. 꺾은선으로 되어있어서 변량과 도수의 분포의 흐름을 연속적으로 판단하기가 쉬워요.

아래에서 빨간색 선만 보면 점수가 어떻게 바뀌는지를 표에서보다 더 알아보기 쉽죠.

또 서로 다른 변량을 이용해서 그린 둘 이상의 도수분포다각형을 한 곳에 겹쳐서 그리면 서로를 비교하기 편리한 장점도 있어요.

도수분포다각형

히스토그램에서는 전체 직사각형의 넓이를 구했더니 어떤 특징이 있었죠? (계급의 크기) × (총 도수)와 같았어요. 도수분포다각형에도 넓이에 특별한 성질이 있어요.

도수분포다각형에서 선과 가로축 사이의 넓이를 구해볼까요? 선이 여러 번 꺾여있어서 넓이를 구하기가 어렵죠? 어떻게 구하냐면, 도수분포다각형 선 밖에 파란색으로 점 찍어진 곳의 넓이와 선 안의 파란색으로 점 찍어진 빈 곳의 넓이가 같아요. 빨간색 점도 그렇고, 녹색 점도 그렇지요.

도수분포다각형의 넓이

결국, 도수분포다각형의 넓이를 구하는 것과 히스토그램의 직사각형의 넓이를 구하는 게 같아요.

도수분포다각형과 가로축으로 둘러싸인 도형의 넓이
     = 히스토그램의 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
히스토그램과 히스토그램의 특징, 히스토그램 그리기

정리해볼까요

도수분포다각형

  • 도수의 분포를 다각형 모양으로 나타낸 그래프
  • 도수분포다각형 그리기
    1. 히스토그램을 그린다.
    2. 히스토그램에서 각 사각형 윗변의 가운데에 중점을 찍는다.
      계급의 양끝에 도수가 0인 계급이 있다고 생각하여 중점을 찍는다.
    3. 중점을 선분으로 연결한다.
  • 도수분포다각형의 넓이 = 히스토그램의 직사각형의 전체 넓이 = (계급의 크기) × (총 도수)
<<    중1 수학 목차    >>
 
그리드형

도수분포표에 대해서 알아봤어요. 여러 개의 자료로 표를 만들면 자료의 위치나 흐름 등을 쉽게 파악할 수 있는 장점이 있어요.

이번 글에서 공부할 히스토그램은 도수분포표에서 한 발 더 나가서 표가 아니라 그림으로 그리는 거예요. 그림이 글자보다 직관적이고 이해하기가 쉽잖아요.

히스토그램이 무엇인지, 히스토그램을 어떻게 그리는지 알아보죠.

히스토그램

도수분포표는 아래 표처럼 생겼어요. 왼쪽 칸에는 계급을 쓰고 오른쪽 칸에는 도수를 적지요. 제일 아랫줄에는 도수의 총합을 적어요.

아래는 도수분포표 만드는 법에서 사용한 수학 점수를 도수분포표로 나타낸 거예요.

점수(점) 학생 수(명)
60 이상 ~ 70 미만 1
70 ~ 80 3
80 ~ 90 10
90 ~ 100 6
합계 20

이 도수분포표의 왼쪽에 있는 계급을 가로축에, 오른쪽 칸에 있는 도수를 세로축에 표시해서 직사각형 모양으로 나타낸 그래프가 바로 히스토그램이에요.

히스토그램으로 그리면 아래처럼 생겼어요.

히스토그램

히스토그램 그리는 방법

위에서 설명한 것처럼 히스토그램의 가로축에는 도수분포표에서의 계급의 양 끝값을, 세로축에는 도수를 써요. 눈금과 눈금 사이가 아닌 눈금선이 있는 부분에 계급의 양 끝값과 도수를 써야 해요.

그리고 실제 사용하는 계급 앞과 뒤에 한 칸씩을 더 만드세요.

각 계급을 가로로, 도수를 세로로 하는 직사각형을 그려요. 주의할 건 눈금에 다 채워서 그려야 해요. 옆의 직사각형과 바로 붙도록 그립니다. 아래 그림처럼 직사각형 사이가 서로 떨어져 있으면 안 돼요. 앞의 그림은 제대로 된 히스토그램, 아래 그림은 잘못된 히스토그램입니다.

잘못된 히스토그램

히스토그램의 특징

히스토그램은 그림(그래프)이므로 자료의 분포 상태를 도수분포표보다 좀 더 쉽게 알아볼 수 있어요. 글자보다 그림이 이해하기 쉬운 건 당연하잖아요.

히스토그램에서 한 계급의 직사각형의 넓이를 한 번 구해볼까요? 한 계급에서 가로의 길이는 계급의 크기와 같아요. 세로의 길이는 도수와 같죠. 그래서 직사각형의 넓이는 (계급의 크기) × (계급의 도수)가 되겠죠? 60점 이상 70점 미만의 직사각형의 넓이는 10 × 1 = 10, 70점 이상 80점 미만의 직사각형의 넓이는 10 × 3 = 30 이렇게 구할 수 있죠.

그런데 가로에 있는 계급의 크기는 계급이 달라도 모두 일정해요. 따라서 직사각형의 넓이는 도수에 비례해요.

다음이 중요한 내용인데요. 전체 직사각형의 넓이를 구해볼까요? 각각의 직사각형의 넓이를 다 더하면 되겠죠? 60점 이상 70점 미만은 10, 70점 이상 80점 미만은 30, 80점 이상 90점 미만은 10 × 10 = 100, 90점 이상 100점 미만은 10 × 6 = 60이죠. 10 + 30 + 100 + 60 = 200이네요.

이번에는 (계급의 크기) × (총 도수)를 구해볼까요? 10 × (1 + 3 + 10 + 6) = 10 × 20 = 200이에요. 위에서 구한 직사각형의 넓이와 같죠?

직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)

아래 히스토그램을 보고 아래 물음에 답하여라.
(1) 계급값이 85점인 계급의 도수를 구하여라.
(2) 계급값이 95점인 계급의 직사각형의 넓이는 60점 이상 70점 미만인 계급의 직사각형의 넓이의 몇 배인가?
히스토그램

(1)에서 계급값이 85이므로 계급은 80점 이상 90점 미만이 되겠죠? 이 계급에서 막대의 세로가 도수니까 10이네요.

(2)는 계급값이 95점인 계급은 90점 이상 100점 미만인데, 이때의 도수는 6이에요. 60점 이상 70점 미만인 계급의 도수는 1이고요. 넓이는 도수에 비례한다고 했으니까 두 계급의 직사각형의 넓이를 비교할 때는 실제 넓이가 아닌 도수만 비교해도 돼요. 6/1 = 6이라서 넓이는 6배 입니다.

히스토그램과 막대그래프의 차이

히스토그램은 얼핏 보면 막대그래프와 닮았어요. 그런데 왜 막대그래프가 아닌 히스토그램을 그릴까요?

막대그래프는 보통 연속되지 않는 자료들을 그래프로 그릴 때 사용해요. 사과는 몇 개, 수박은 몇 개, 이럴 때 사용하죠. 수박과 사과는 서로 연결할 수 없잖아요.

히스토그램은 60 ~ 70점, 70 ~ 80점, … 처럼 서로 연속된 자료를 나타낼 때 사용합니다. 첫 번째 계급의 끝값인 70점과 두 번째 계급의 70점이 서로 연결되잖아요.

그래프를 보면 가장 눈에 띄는 게 있어요. 히스토그램은 막대가 서로 붙어 있고, 막대그래프는 벌어져 있어요. 위에서 설명한 연속이냐 연속하지 않느냐의 차이 때문에 생기는 건데요. 60 ~ 70, 70 ~ 80은 연속하니까 죽 붙여서 그려야 하는 거지요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

히스토그램이란?

  • 도수분포표의 계급을 가로축에, 도수를 세로축에 표시하여 직사각형 모양으로 나타낸 그래프
  • 도수분포표보다 자료의 분포 상태를 한 눈에 알아볼 수 있다.
  • 직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)
 
그리드형

도수분포표에서 사용하는 용어를 공부했고 도수분포표를 만드는 법도 공부했어요. 도수분포표에서 원하는 정보를 읽어내는 요령도 생겼지요.

이제는 도수분포표를 보고 그 표에 나와 있지 않은 정보를 유추해내는 방법을 공부할 거예요. 바로 도수분포표를 보고 변량의 평균을 구하는 거지요.

도수분포표를 이용해서 구한 평균과 실제 변량의 평균 사이에는 어떤 관계가 있는지도 알아보자고요.

평균

대푯값은 자료의 특징이나 자료 전체의 경향을 대표할 수 있는 값으로 중앙값이나 최빈값 등이 있어요. 중앙값은 계급값을 할 때 살짝 들어본 기억이 나나요? 계급값은 계급의 중앙값, 그러니까 (계급의 양 끝값의 합) ÷ 2라고 했었지요?

대푯값은 딱 하나만 있는 게 아니고 여러 개가 있어요.

평균은 대푯값 중의 하나입니다. 평균 구하는 공식은 모두 알고 있죠?

평균 구하기

도수분포표에서 평균 구하기

도수분포표에서 평균을 구할 때는 위 공식에서 오른쪽에 있는 내용을 이용해요.

도수분포표에서는 도수의 총합을 구할 수 있죠? 그런데 변량의 총합을 구할 수 없어요. 변량이 나오지 않으니까요. 그럼 평균을 구할 수 없을까요?

정확한 평균을 구할 수는 없지만 대략적인 평균을 구할 수는 있어요. 도수의 총합은 정확하게 구할 수 있지만 변량의 총합을 구할 수 없으니까 대략적인 변량의 총합을 구하는 거죠.

도수분포표에서 평균을 구할 때는 아래 순서로 해요.

  1. 각 계급의 계급값을 구한다.
    계급값은 위에서 설명한 것처럼 그 계급을 대표하는 대푯값의 한 종류에요. 정확한 값을 구할 수 없으므로 대표할 수 있는 값을 이용합니다.
  2. 각 계급의 (계급값) × (도수)를 구한다.
    대푯값인 계급값을 이용해서 계급의 대략적인 총합을 구하는 거예요. 각 계급의 도수는 도수분포표에서 바로 알 수 있죠?
  3. (계급값) × (도수)을 모두 더한다.
    계급별로 구한 (계급값) × (도수)를 모두 더하여 변량의 총합을 대신합니다.
  4. (계급값) × (도수)의 총합을 도수의 총합으로 나눈다.

도수분포표에서 평균구하기

아래는 도수분포표 만드는 법 예제에 있는 변량과 도수분포표에요. 이걸 이용해서 도수분포표에서 평균을 구해보죠.

점수(점) 학생 수(명) 계급값 계급값 × 도수
60 이상 ~ 70 미만 1 65 65 × 1 = 65
70 ~ 80 3 75 75 × 3 = 225
80 ~ 90 10 85 85 × 10 = 850
90 ~ 100 6 95 95 × 6 = 570
합계 20 65 + 225 + 850 + 570 = 1710

구하는 평균은 1710 ÷ 20 = 85.5군요.

변량을 이용해서 실제 평균을 구해볼까요? 역시 같은 예제에 있는 변량입니다.

92     88     76     90     96
72     84     82     86     74
90     86     94     88     68
82     84     86     98     84

20개의 값을 다 더한 다음에 20으로 나눠볼게요. 다 더했더니 1700이네요. 1700 ÷ 20 = 85군요.

실제로 구한 평균과 도수분포표를 이용해서 구한 평균이 다르죠? 도수분포표를 이용한 평균은 정확하진 않지만 차이가 많이 나지 않아서 변량의 분포라든가 위치 등을 파악하는데 큰 어려움은 없어요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

도수분포표에서 평균구하기

  1. 각 계급의 계급값을 구한다.
  2. (계급값) × (도수) 구한다.
  3. 각 계급의 (계급값) × (도수)를 모두 더한다.
  4. {(계급값) × (도수)의 총합} ÷ (도수의 총합)

도수분포표에서의 평균 = {(계급값) × (도수)의 총합} ÷ 도수의 총합

<<    중1 수학 목차    >>
 
그리드형

도수분포표 만드는 법

2012. 7. 10. 12:30

도수분포표를 만드는 법을 공부해볼 거예요. 사실 도수분포표를 만드는 방법은 따로 공부하지 않아도 할 수는 있어요. 하지만 만드는 법을 공부하면 좀 더 체계적이고 더 많은 정보를 더 정확하게 줄 수 있는 도수분포표를 만들 수 있어요.

도수분포표를 만들기에 앞서 도수분포표에서 사용하는 용어들에 대해서 정확히 이해를 해야 해요. 혹시 이해되지 않는다면 도수분포표, 변량, 계급, 계급값, 도수를 한 번 읽어보세요.

도수분포표를 만드는 순서

  1. 주어진 자료에서 가장 큰 변량과 가장 작은 변량을 찾는다.
  2. 가장 큰 변량과 가장 작은 변량이 포함될 수 있는 계급을 만든다.
    계급은 OO 이상 ~ OO 미만이 되도록 하고, 계급의 크기가 모두 같아야 합니다.
    계급의 개수는 5 ~ 15개 정도가 적당해요.
  3. 각 계급에 속하는 변량의 개수를 세어 계급의 도수를 구한다.

2번에서 OO 이상 ~ OO 미만은 첫 번째 계급에만 적어주면 돼요.

3번에서 각 계급에 속하는 도수를 모두 더한 것이 전체 변량의 개수와 같은지 확인하세요. 빼먹은 것이 있거나 두 번 센 것이 있는지 확인하는 과정이에요.

다음 수학 점수를 이용하여 도수분포표를 만들고, 물음에 답하여라.
92     88     76     90     96
72     84     82     86     74
90     86     94     88     68
82     84     86     98     84
(1) 계급의 개수를 구하여라.
(2) 점수가 82점인 학생이 속하는 계급을 구하여라.
(3) 점수가 10번째로 높은 학생이 속하는 계급의 계급값을 구하여라.
(4) 도수가 가장 작은 계급을 구하여라.

도수분포표를 만드는 첫 단계는 변량 중에서 가장 큰 것과 가장 작은 것을 찾는 거예요. 가장 큰 변량은 마지막 줄 네 번째에 있는 98이고 가장 작은 변량은 세 번째 줄 마지막 68이네요.

계급을 나누는데, 계급의 크기를 10으로 만들어볼까요? 물론 5로 해도 상관은 없어요. 계급의 크기를 10으로 하는데, 68과 98이 들어가야 하니까 처음 계급은 60점 이상 ~ 70점 미만이 되어야겠고, 마지막 계급은 90점 이상 100점 미만으로 해야겠네요.

계급을 나누고 계급에 해당하는 점수를 적어보죠.
60 ~ 70 : 68 (한 개)
70 ~ 80 : 76, 72, 74 (세 개)
80 ~ 90 : 88, 84, 82, 86, 86, 88, 82, 84, 86, 84(열 개)
90 ~ 100 : 92, 90, 96, 90, 94, 98(여섯 개)

괄호안의 숫자를 다 더해보면 20개가 되어서 문제에서 준 변량의 개수와 똑같죠?

각 계급에 해당하는 점수의 개수, 즉 도수를 구했으니 표로 만들어볼까요?

점수(점) 학생 수(명)
60 이상 ~ 70 미만 1
70 ~ 80 3
80 ~ 90 10
90 ~ 100 6
합계 20

(1) 계급의 개수는 60 ~ 70, 70 ~ 80, 80 ~ 90, 90 ~ 100 이렇게 네 개군요.

(2) 점수가 82점인 학생이 속하는 계급은 80점 이상 90점 미만이고요.

(3) 점수가 10번째로 높은 학생이 속하는 계급은 80점 이상 90점 미만이네요. 계급값은 양 끝값을 더해서 2로 나누어준 것이니까 (80 + 90) ÷ 2 = 85점이군요.

(4) 도수가 가장 작은 계급은 도수가 1인 60점 이상 70점 미만이네요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표에서의 평균구하기
히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

도수분포표 만드는 법

  1. 가장 큰 변량과 가장 작은 변량을 찾는다.
  2. 가장 큰 변량과 가장 작은 변량을 포함하는 계급을 만든다.
  3. 각 계급에 속하는 변량의 개수를 조사하여 도수를 구한다.
 
그리드형

새로운 단원은 통계입니다. 통계는 비교적 어려운 단원이에요.

새로운 용어가 많이 나오는 데다 비슷비슷해서 헛갈리기도 쉽지요. 용어의 뜻을 정확히 알아야 해요. 문제에 나오거나 설명하는 단어를 제대로 이해하지 못하면 문제를 풀 수가 없거든요.

용어를 설명하다 보니까 약간 딱딱할 수 있어요. 용어를 이해한다고 하는 게 꼭 여기에 나온 표현대로 뜻을 이해할 필요는 없어요. 자기 나름대로 표현 방식으로 단어의 뜻을 이해하세요.

들어가기 전에

열 명의 1학기 기말고사 시험 수학 점수가 있어요. 92, 84, 88, 76, 96, 72, 92, 84, 68, 96점을 받았다고 해보죠.

70점대 몇 명, 80점대 몇 명 … 이런 식으로 점수대별로 몇 명이나 있는지 표를 만들어볼게요.

1학기 기말고사 수학 시험 점수
점수(점) 학생 수(명)
60 이상 ~ 70 미만 1
70 ~ 80 2
80 ~ 90 3
90 ~ 100 4
합계 10

10명의 점수를 주면 여러분은 위 표처럼 나타낼 수 있죠?

이번 글에서 우리가 공부할 게 뭐냐면 바로 위 표에서 사용하는 용어들이에요. 용어를 모른다고 해서 표를 못 만드는 건 아니에요. 하지만 용어를 알면 표를 더 쉽고 정확하게 만들 수 있죠. 또 표에서 좀 더 정확한 정보를 읽어낼 수도 있어요.

변량, 계급, 계급값, 계급의 크기, 도수, 도수분포표

변량

변량은 점수, 시간 같은 여러 자료를 수량으로 나타낸 것을 말해요. 그냥 자료를 쭉 적어놓은 거로 생각하면 쉬워요.

위에서는 수학 점수 92, 84, 88, 76, 96, … 이렇게 쭉 쓰여 있는 게 변량이에요.

계급

계급은 변량을 일정한 간격으로 나눈 구간이에요.

70점대 몇 명, 80점대 몇 명 … 이런 식으로 점수대별로 학생 수를 알아보려면 어떻게 했죠? 70 ~ 80, 80 ~ 90, 90 ~ 100 이렇게 점수를 나눴잖아요. 이렇게 점수별로 나누어 놓은 구간이 계급이에요. 위의 표에서 왼쪽에 있는 게 계급이에요.

계급의 크기라는 용어도 있어요. 계급의 크기는 계급의 간격(너비)을 말해요.

위 예에서 70 ~ 80이라는 계급이 있었어요. 여기서 계급의 크기는 10이에요. 70과 80 사이는 10의 차이가 있잖아요.

계급의 크기 = (계급의 큰 쪽 끝값) - (계급의 작은 쪽 끝값)

중요한 건 계급의 크기는 모두 같다는 거예요. 한 계급이 70 ~ 80이었으면 그다음 계급은 80 ~ 90이 되어야 해요. 70 ~ 80, 80 ~ 85 이렇게 크기가 다르게 계급을 나누면 안돼요.

계급값은 계급을 대표하는 값으로 각 계급의 한가운데 값(중앙값)을 말해요. 70 ~ 80 사이의 한 가운데 값은 75죠. 그래서 75가 이 계급의 계급값이에요.

계급값 = (계급의 양 끝값의 합) ÷ 2

80 ~ 90의 계급값은 85, 90 ~ 100의 계급값은 95가 되겠죠?

도수

도수는 각 계급에 속하는 변량의 개수예요.

60 ~ 70점에 해당하는 점수는 68점 하나네요. 70 ~ 80점에 해당하는 점수는 72, 76점으로 두 명이에요. 80 ~ 90점에 해당하는 점수는 84, 86, 84 세 명이고, 90 ~ 100점에 해당하는 점수는 92, 96, 92, 96 네 명이에요.

같은 값이 있어도 하나로 세지 않고 각각을 따로 세요.

여기서 60 ~ 70에 해당하는 점수가 하나니까 도수는 1, 70 ~ 80에 해당하는 점수는 두 개니까 도수가 2이고, 80 ~ 90에 해당하는 점수가 세 개니까 도수는 3, 90 ~ 100에 해당하는 점수는 네 개니까 도수가 4예요. 앞 표에서 오른쪽에 있는 게 도수지요.

즉 어떤 계급에 해당하는 자료가 몇 개인가가 바로 도수예요.

도수분포표

마지막으로 도수분포표는 주어진 전체 자료를 몇 개의 계급으로 나누고 각 계급에 속하는 도수를 조사하여 나타낸 표예요. 그러니까 앞 표가 바로 도수분포표예요.

도수분포표를 보면 한 자료가 전체에서 어느 위치에 속하는지를 쉽게 알아볼 수 있어요. 84점이라는 수학 점수가 전체에서 어느 정도나 되는지를 파악하기가 쉽죠. 또 전체 자료의 분포를 파악하는 데도 도움이 돼요.

하지만 자료 하나하나의 특징을 파악하기 어려운 단점도 있어요. 80 ~ 90에 3명이 있는데, 이들의 점수가 몇 점인지는 알 수 없다는 거지요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표 만드는 법
도수분포표에서의 평균구하기
히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

도수분포표

  • 변량: 자료를 수량으로 나타낸 것
  • 계급: 변량을 일정한 간격으로 나눈 구간
  • 계급의 크기: 계급의 구간 너비. (계급의 큰 쪽 끝값) - (계급의 작은 쪽 끝값)
  • 계급값: 각 계급의 중앙값. (계급의 양 끝값의 합) ÷ 2
  • 도수: 각 계급에 해당하는 변량의 개수
  • 도수분포표: 주어진 자료를 몇 개의 계끕으로 나누고 각 계급에 속하는 도수를 조사하여 나타낸 표.
 
그리드형

이번에는 이차함수 그래프를 대칭이동 시켜볼꺼에요. 선대칭, 점대칭 이런 용어 들어보셨죠?

우리는 선대칭을 이용할 건데, 그렇다고 아무 선이나 막 그어서 대칭시키는 게 아니에요. 좌표평면에 우리가 자주 보는 선이 두 개 있어요. 바로 x축과 y축이에요. 이차함수 그래프를 두 선에 대칭 시키는 걸 공부할 겁니다.

이차함수 그래프를 평행이동할 때 그래프의 폭과 모양은 바뀌지 않았어요. 이차함수 그래프를 대칭이동 시킬 때는 모양은 바뀌지만 폭은 그대로예요. 즉 그래프를 평행, 대칭이동 시켜도 그래프의 폭은 바뀌지 않는다는 걸 미리 알아두세요.

이차함수 그래프의 x축 대칭이동

아래는 y = (x-1)2 + 1 그래프와 이 그래프를 x축에 대칭 시킨 그래프입니다.

이차함수 그래프의 x축 대칭이동

y = (x-1)2 + 1에서 a = 1이라서 아래로 볼록한 그래프인데, 대칭이동 시켰더니 위로 볼록이 되었어요. 그래프의 폭은 같으니까 1인데, 위로 볼록이니까 음수여야하죠? 그래서 a = -1이에요.

점들을 보세요. (1, 1)이 (1, -1)로, (2, 2)가 (2, -2)로, (3, 5)가 (3, -5)로 바뀌었죠? 이차함수 그래프를 x축에 대하여 대칭시켰더니 어떻게 되나요? x값은 그대로인데, y 값들만 부호가 반대로 되었죠?

이차함수 그래프를 x축에 대하여 대칭이동 시키면 y의 부호가 반대가 돼요. 즉, y 대신에 -y를 넣어주면 돼요.

y = (x - 1)2 + 1에 y = -y를 넣어주면
-y = (x - 1)2 + 1
y = -(x - 1)2 - 1

위의 식에서 a가 1에서 -1로 부호가 바뀌었죠? 그리고 q의 부호도 바뀌었어요.

y = a(x - p)2 + q에 y대신 -y 대입
-y = a(x - p)2 + q
y = -a(x - p)2 - q

이차함수 그래프의 y축 대칭이동

아래는 y = (x - 3)2 + 1의 그래프에요.

이차함수 그래프의 y축 대칭이동

y축에 대칭이동 시켰어도 그래프는 그대로 위로 볼록한 모양이에요. a 값의 변화가 없다는 얘기에요.

점을 한 번 살펴볼께요. (3, 1)이 (-3, 1)로, (4, 2)가 (-4, 2)로, (5, 5)가 (-5, 5)로 바뀌었어요. y는 그대로인데, x는 부호가 반대로 바뀌었죠? 따라서 함수식에서도 x 대신 -x를 넣어주면 돼요.

y = (x-3)2 + 1에 x = -x를 대입해보죠.
y = (-x - 3)2 + 1
y = {-(x + 3)}2 + 1
y = (x + 3)2 + 1

x = -x를 대입했더니, 완전제곱식 부분의 부호가 반대로 바뀌었죠? 뒤에 q 부분은 바뀌지 않았어요.

y = a(x - p)2 + q에 x대신 -x대입
y = a(-x - p)2 + q
y = a{-(x + p)}2 + q
y = a(x + p)2 + q

이차함수 그래프의 평행이동과 대칭이동

이차함수의 평행이동과 대칭이동을 잘 비교해서 차이를 알아야 해요.

이차함수의 평행이동

이차함수 y = ax2의 그래프를 x축으로 p만큼 평행이동 시키면 x 대신 x - p 대입
     y = ax2 → y = a(x - p)2
이차함수 y = ax2의 그래프를 y축으로 q만큼 평행이동 시키면 y 대신 y - q 대입
     y = ax2 → y - q = ax2 → y = ax2 + q
이차함수 y = ax2의 그래프를 x축으로 p만큼, y축으로 q만큼 평행이동 시키면 x 대신 x - p, y 대신 y - q 대입
     y = ax2 → y - q = a(x - p)2 → y = a(x - p)2 + q

이차함수 그래프의 대칭이동

이차함수 y = a(x - p)2 + q의 그래프를 x축에 대칭이동 시키면 y 대신 -y 대입
      y = a(x - p)2 + q → y = -a(x - p)2 - q
이차함수 y = a(x - p)2 + q의 그래프를 y축에 대칭이동 시키면 x 대신 -x 대입
      y = a(x - p)2 + q → y = a(x + p)2 + q

함께 보면 좋은 글

이차함수 그래프 그리기
이차함수 그래프의 특징
이차함수 그래프의 평행이동, y = ax² + q
이차함수 그래프의 평행이동, y = a(x-p)²

정리해볼까요

이차함수 그래프의 대칭이동

  • x축에 대칭: y = -y 대입
  • y축에 대칭: x = -x 대입
 
그리드형

이차함수의 활용

2012. 7. 7. 00:30

이차함수의 마지막 이차함수의 활용입니다. 이차함수는 1학기의 마지막 단원이니까 오늘 내용만 하면 1학기 수학이 다 끝나네요.

활용은 모든 단원에서 하지만 원리는 같아요. 구하는 미지수가 뭔지 찾고, 식 세우고, 계산하는 거죠.

이차함수의 활용은 그런 면에서 이차방정식의 활용과 비슷한 유형의 문제가 많이 나와요. 이차방정식의 활용을 열심히 공부했던 학생이라면 어렵지 않게 느껴질 겁니다.

이차함수의 활용

이차함수의 활용 푸는 순서

  1. x, y 정하기
    문제를 잘 읽고 문제에서 구하고자 하는 것을 x, y로 놓는다.
  2. 함수식 만들기
    x, y의 관계를 잘 나타낼 수 있는 식을 만든다.
  3. 답 구하기
    함수식을 풀거나 그래프를 이용하여 구하는 답을 찾는다.
  4. 확인하기
    구한 답이 문제의 조건에 맞는지 확인한다.

함수의 활용 문제에서 대부분 변하는 값을 x로 놓아요. 시간이라든가 길이 같은 게 되죠. 그리고 x에 따라 바뀌는 종속적인 값을 y로 놓아요. 시간에 따라 바뀌는 온도, 가로 길이에 따라 바뀌는 넓이 같은 거죠.

이차함수의 활용에서는 최대, 최소를 구하는 문제가 많이 나오거든요. 최대/최소를 직접 구하거나 최댓값, 최솟값을 가질 때 변수의 값을 구하는 문제요. 따라서 일반형이 아닌 표준형을 많이 사용해요.

또 표준형 y = a(x - p)2 + q에서 a에 따라서 최댓값, 최솟값 중 하나만 가지니까 a의 부호도 잘 보죠.

두 수의 합을 주고 곱을 구하는 문제

두 수의 합의 관계식을 주고, 곱의 최댓값을 구하거나 곱이 최대일 때 두 수를 구하는 문제 유형이에요.

실제로 두 수를 주는 건 아니고 두 수의 관계식을 주는 거죠. 예를 들어 두 수의 합이 10이다. 두 수의 차가 20이다 이런 식으로요.

한 수를 x라고 놓으면 다른 수는 관계식에서 구할 수 있어요. 두 수의 합이 10일 때, 한 수를 x라고 놓으면 다른 한 수는 10 - x가 되는 거지요. x(10 – x)는 두 수의 곱이 되겠죠?

합이 16인 두 수의 곱이 가장 클 때 그때의 두 수와 곱의 최댓값을 구하여라.

한 수를 x라고 놓으면 다른 한 수는 16 - x가 되겠죠? 곱은 x(16 - x)가 될 거고요.

y = x(16 - x)
y = 16x - x2
y = -x2 + 16x
y = -(x2 - 16x)
y = -(x2 - 16x + 82 - 82)
y = -(x - 8)2 + 64

x = 8일 때 곱이 최대가 되고 그 때 곱은 64네요. 한 수가 8이니까 다른 한 수는 16 - 8 = 8이겠고요. 답은 두 수는 8, 8, 곱의 최댓값은 64가 되겠습니다.

도형의 둘레, 넓이 문제

자주 나오는 유형 중 하나가 도형의 둘레와 넓이에 관한 문제예요. 이 유형도 위의 유형과 같아요. 도형의 둘레는 가로, 세로 길이의 합이고 도형의 넓이는 가로, 세로 길이의 곱이잖아요.

둘레의 길이가 36cm인 사각형의 넓이가 최대가 되도록 하는 가로, 세로 길이를 구하여라.

가로, 세로 길이를 구하라고 했으니까 가로를 x, 세로를 y로 놓으면 될까요? 그렇게 하지 않아요. 가로를 x로 놓으면 가로 x에 따라 바뀌는 넓이를 y로 놓는 거예요.

가로를 x라고 놓으면 세로는 둘레의 길이에서 구할 수 있어요. 둘레는 2 × (가로 + 세로) = 36이니까 세로 길이는 18 - x네요.

직사각형의 넓이는 가로 × 세로니까 y = x (18 - x)라는 함수식을 세울 수 있어요

y = x(18 - x)
y = -x2 + 18x
y = -(x2 - 18x)
y = -(x2 - 18x + 92 - 92)
y = -(x - 9)2 + 81

x = 9일 때 최댓값 81을 가지므로 가로가 9cm일 때 넓이가 최대예요. 가로가 9cm니까 세로는 18 - 9 = 9cm군요.

가로, 세로 길이가 모두 9cm인 정사각형일 때 넓이가 최대네요.

정리해볼까요

이차함수의 활용

  1. 구하고자 하는 수를 x, y로 놓는다
  2. x, y의 관계를 함수식으로 나타낸다
  3. 함수를 풀어 답을 찾는다.
  4. 구한 답이 문제의 조건에 맞는 지 확인한다.
 
그리드형

이차함수에서 최댓값최솟값을 구하는 방법입니다.

함수의 최댓값과 최솟값은 바로 y값을 말하는 거지요. 따라서 y의 범위를 구하면 돼요. y의 범위를 구해서 가장 큰 값이 최댓값, 가장 작은 값이 최솟값이죠.

일반적으로 x의 범위가 주어지지 않으면 x는 실수 전체라고 생각해요. 범위가 주어졌을 때는 그 범위에 맞게 해야겠지요. 또 범위가 주어지지 않더라도 사람 수나 길이 등은 양수나 자연수라는 것도 잊으면 안돼요.

최대, 최소를 구할 때는 y의 범위를 바로 알 수 있는 이차함수의 표준형을 이용해요. 일반형으로 나와 있으면 표준형으로 고쳐요.y = ax2 + bx + c의 그래프, 이차함수 일반형

이차함수 최솟값

이차함수의 그래프를 생각해보죠. y = a(x - p)2 + q에서 a > 0이라고 해보죠. 그래프는 어떻게 되나요? a > 0이면 그래프는 아래로 볼록인 모양이에요. 아래로 볼록이니까 그래프에서 가장 아래에 있는 곳의 y값은 꼭짓점의 y좌표예요. 꼭짓점의 y좌표는 q잖아요. 따라서 y의 범위가 y ≥ q죠. y는 q보다 크니까 최솟값은 q예요.

그럼 최댓값은 얼마일까요? 그래프를 다시 한 번 보죠. 대칭축을 기준으로 또는 꼭짓점을 기준으로 좌우 양쪽으로 가면 갈수록 y는 커져요. x축의 오른쪽으로 얼마나 갈 수 있을까요? 끝도 없이 가겠죠? 그렇다면 그에 해당하는 y값도 끝도 없이 커질 거예요. x축 왼쪽으로도 마찬가지죠. 무슨 말이냐면 y가 끝을 알 수 없는 값을 가진다는 거예요. 그래서 그 끝을 알 수 없으므로 최댓값이라는 게 존재하지 않는 거죠.

  • a > 0인 이차함수의 최솟값은 x = p일 때, y = q
  • 최댓값은 구할 수 없다.

이차함수의 최댓값

이차함수의 최댓값

이번에는 y = a(x - p)2 + q에서 a < 0이라고 해볼게요. 그래프는 위로 볼록한 모양이에요. 위로 볼록한 그래프에서 가장 높은 곳에 있는 점은 꼭짓점이죠? y값의 범위가 y ≤ q예요. 최댓값이 q라는 얘기죠.

최솟값은 x축 양쪽으로 가면 갈수록 작아져서 가장 작은 값을 알 수 없어요. 최솟값은 구할 수 없어요.

  • a < 0인 이차함수의 최솟값은 x = p일 때, y = q
  • 최솟값은 구할 수 없다.

이차함수 y = a(x - p)2 + q에서 x의 범위가 주어지지 않으면 이차함수는 최댓값 또는 최솟값 중 하나만
a > 0이면 최솟값만
a < 0이면 최댓값만
최댓값/최솟값은 꼭짓점의 y 좌표. x = p일 때 y = q

x의 범위가 주어졌을 때 최대, 최소

보통 흔한 경우는 아닌데, x의 범위가 주어질 때가 있어요. 문제에서 x의 범위를 따로 주는 건 아니고 사람 수라든가 길이, 개수 이런 식으로 특정한 범위를 가질 수밖에 없는 값들이 주어지요. 예를 들어서 20명의 사람이 있는데, 어쩌고 저쩌고에서는 “0 ≤ x ≤ 20인 자연수”라는 범위를 갖는 거죠

이럴 때도 기본적으로 a > 0이면 꼭짓점에서 최솟값, a < 0이면 꼭짓점에서 최댓값을 갖는 건 같아요. 이건 바뀌지 않아요. 추가로 x 범위의 경계에서 최대, 최소를 가질 수 있다는 건데요.

이차함수의 최댓값, 최솟값

a > 0이면 꼭짓점에서 최솟값, 양쪽 경계 중 한 곳에서 최댓값을 가져요.
a < 0이면 꼭짓점에서 최댓값, 양쪽 경계 중 한 곳에서 최솟값을 가져요.

물론 식에 양쪽 경계의 값을 넣어서 나온 결과를 비교할 수도 있는데요. 간단하게 구하려면 축의 방정식 즉, 꼭짓점의 x좌표에서 더 먼 쪽에서 최대/최소를 가져요.

정리해볼까요

이차함수의 최댓값과 최솟값

  • 이차함수의 최댓값과 최솟값은 a의 부호에 의해 결정
  • a > 0이면 꼭짓점에서 최솟값
  • a < 0이면 꼭짓점에서 최댓값
  • x의 범위가 있을 때
    • a > 0이면 꼭짓점에서 최솟값, 꼭짓점에서 먼 곳에 최댓값
    • a < 0이면 꼭짓점에서 최댓값, 꼭짓점에서 먼 곳에 최솟값
 
그리드형

이차함수식에서 미지수를 구하면 함수식을 완성시킬 수 있어요. 그런데 이차함수 식을 구하는 것이 아니라 계수의 부호를 판별하는 유형의 문제도 자주 나와요. 이번 글에서는 이차함수의 계수의 부호를 알아내는 방법을 공부합니다.

부호를 구하는 데 무작정 구할 수는 없죠? 바로 그래프를 보고 부호를 판단해야 해요.

이차함수는 두 가지 유형으로 표현하죠? 하나는 표준형, 다른 하나는 일반형 이렇게요.

두 가지 유형에서 계수의 부호을 어떻게 구하는 지 알아볼까요?

y = a(x-p)² + q에서 a, p, q 부호 찾기

이차함수의 표준형에서 계수는 a, p, q 에요.

가장 먼저 알 수 있는 건 a에요. a는 그래프의 모양을 보고 판단합니다. 어떤 모양이요? 어디로 볼록한 지를 보는 거죠.

a < 0 이면 그래프는 위로 볼록이고 a > 0이면 그래프는 아래로 볼록이에요. 그러니까 그래프가 아래로 볼록이면 a > 0이고, 위로 볼록이면 a < 0인 거죠.

이차함수 계수 부호 확인 - a 부호

그 다음은 p, q인데요. p, q는 뭐죠? 그래프의 꼭짓점의 좌표에요. 그러니까 꼭짓점이 어디에 있는지 보면 p, q의 부호를 알 수 있겠죠? 꼭짓점이 1사분면에 있다면 p > 0, q > 0 이런 식으로요.

이차함수 계수 부호 확인 - p, q 부호

y = a(x-p)² + q에서 a, p, q의 부호
a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
p는 꼭짓점의 x좌표의 위치: y축 왼쪽이면 p < 0, y축 오른쪽이면 p > 0
q는 꼭짓점의 y좌표의 위치: x축 아래면 q < 0, x축의 위면 q > 0

아래 y = a(x-p)² + q의 그래프를 보고 a, p, q의 부호를 구하여라.
이차함수 계수 부호 확인 - 예제

왼쪽에 있는 그래프 먼저 볼까요?

그래프가 아래로 볼록이니까 a > 0이고요. 꼭짓점이 3사분면에 있어요. 3사분면(x<0, y<0)에 있으니까 p < 0, q < 0 이에요.

오른쪽 그래프는 위로 볼록이네요. 그래서 a < 0이고, 꼭짓점이 1사분면에 있으니까 p > 0, q > 0이에요.

y = ax² + bx + c에서 a, b, c 부호 구하기

먼저 a부터 부호를 구해보면요. 이차항의 계수인 a는 위에서와 마찬가지로 그래프의 모양, 즉 볼록한 방향을 보고 판단합니다. 똑같아요. 위로 볼록이면 a < 0, 아래로 볼록이면 a > 0이지요.

이차함수 계수 부호 확인 - a 부호

그 다음에는 c를 볼까요? c는 y 절편이에요. 따라서 y 절편이 x축 위면 c > 0, y 절편이 x축 아래면 c < 0이 되지요.

이차함수 계수 부호 확인 - c 부호

a와 c는 그래프를 보면 바로 알 수 있겠죠? 문제는 b인데, 이건 좀 복잡해요.

y = ax² + bx + c의 그래프, 이차함수 일반형에서 일반형 함수식을 표준형으로 바꾸는 법을 알아봤어요. 이 때는 a, b, c에 숫자가 있었는데, 이걸 숫자가 아닌 문자 그대로 바꾸면 어떻게 되나면요. y = a(x\frac{b}{2a})^{2} 어쩌고 저쩌고가 돼요.

꼭짓점의 x 좌표 그러니까 축의 방정식이 x = -\frac{b}{2a}가 되거든요. 따라서 꼭짓점의 x좌표가 어디인지를 보면 b의 부호를 알 수 있어요.

-\frac{b}{2a}가 y축의 왼쪽에 있다고 해보죠.

-\frac{b}{2a} < 0 \\ \frac{b}{2a} > 0

이게 무슨 말이냐면 b를 2a로 나눴더니 양수가 된다는 말은 둘의 부호가 서로 같다는 뜻이죠. a와 b의 부호가 같은데, a의 부호는 그래프의 볼록한 방향에서 알 수 있으니 b의 부호도 알 수 있는 거죠.

-\frac{b}{2a}가 y축의 오른쪽에 있다고 해보죠.

-\frac{b}{2a} > 0 \\ \frac{b}{2a} < 0

이번에는 b를 2a로 나눈 게 음수가 됐어요. 둘의 부호가 서로 반대라는 뜻이죠. 마찬가지로 a는 그래프의 볼록한 방향으로 알 수 있고, b는 a와 반대 부호를 가진다는 걸 알 수 있겠죠.

이거를 좌동우이라는 말로 표현해요. 그러니까 대칭축이 y축의 왼쪽에 있으면 a와 b의 부호가 같고, 대칭축이 y축의 오른쪽에 있으면 a와 b의 부호가 다르다라는 말이에요.

이차함수 계수 부호 확인 - b 부호

y = ax² + bx + c에서 a, b, c 부호
a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
b는 좌동우이: 대칭축이 y축의 왼쪽이면 a, b의 부호가 같고, 대칭축이 y축의 오른쪽이면 a, b의 부호가 반대
c는 y절편: y절편이 x축보다 위에 있으며 c > 0, y절편이 x축보다 아래 있으면 c < 0

아래 y = ax² + bx + c의 그래프를 보고 a, b, c의 부호를 구하여라..
이차함수 계수 부호 확인 - 예제

왼쪽에 있는 그래프 먼저 볼까요?

그래프가 아래로 볼록이니까 a > 0이고요. 대칭축이 y축 왼쪽에 있죠? 좌동우이니까 b의 부호는 a의 부호와 같아요. a > 0이니까 b > 0이네요. y절편이 x축보다 아래 있어서 c < 0이에요.

답은 a > 0, b > 0, c < 0 입니다.

오른쪽 그래프는 위로 볼록이니까 a < 0이고요. 대칭축이 y축의 오른쪽에 있으니까 a와 b의 부호가 반대에요. 따라서 b > 0이죠. y절편은 x축보다 아래 있어서 c < 0입니다.

답은 a < 0, b > 0, c < 0이네요.

정리해볼까요

y = a(x-p)² + q에서 a, p, q 부호

  • a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
  • p는 꼭짓점의 x좌표의 위치: y축 왼쪽이면 p < 0, y축 오른쪽이면 p > 0
  • q는 꼭짓점의 y좌표의 위치: x축 아래면 q < 0, x축의 위면 q > 0

y = ax² + bx + c에서 a, b, c 부호

  • a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
  • b는 좌동우이: 대칭축이 y축의 왼쪽이면 a, b의 부호가 같고, 대칭축이 y축의 오른쪽이면 a, b의 부호가 반대
  • c는 y절편: y절편이 x축보다 위에 있으며 c > 0, y절편이 x축보다 아래 있으면 c < 0
 
그리드형

+ 최근글