중등수학

다각형을 공부하고 있어요.

이 글에서는 다각형에 있는 변이 아닌 다른 선분에 대해서 알아볼 거예요. 그리고 그 선분을 몇 개나 그을 수 있는지 알아보고 개수를 구하는 공식도 만들어 볼거고요.

공식이 어떻게 만들어지는 그 과정을 잘 이해해보세요. 공식 유도과정을 잘 이해하면 공식을 외우기도 쉽고 공식을 써먹기도 쉬워요.

대각선

다각형에서 이웃한 꼭짓점을 연결한 선분은 변이라고 하죠? 그럼 이웃하지 않은 꼭짓점을 연결한 선분을 뭐라고 할까요? 많이 들어본 이름일 텐데 바로 대각선이라고 해요.

보통 대각선 하면 비스듬하게 그어진 선을 생각하는데, 여기서는 그게 아니니까 주의하세요.

아래 그림은 삼각형, 사각형, 오각형, 육각형의 한 꼭짓점에서 대각선을 그어 본 거예요.

대각선의 개수

삼각형에는 대각선이 없죠? 왜요? 이웃하지 않은 꼭짓점이 없으니까요.

사각형에서는 한 꼭짓점에서 한 개의 대각선을 그을 수 있네요. 오각형은 두 개, 육각형은 세 개의 대각선을 한 꼭짓점에서 그을 수 있어요.

사각형 ABCD를 계속 보죠. 사각형의 한 점에서 그을 수 있는 대각선의 개수는 몇 개일까요?

대각선은 한 꼭짓점에서 이웃하지 않은 꼭짓점으로 연결한 선분이에요. 점 A를 보세요. 점 A에서는 자기 자신인 점 A와 이웃한 점 B, 점 D가 아닌 점 C에만 대각선을 그을 수 있어요. 그러니까 점 A에서는 총 한 개의 대각선을 그을 수 있는 거죠.

오각형에서는 자기 자신, 이웃한 꼭짓점 두 개를 뺀 나머지 꼭짓점에 대각선을 그을 수 있어요. 육각형에서도 자기 자신과 이웃한 두 꼭짓점을 뺀 나머지 꼭짓점에 대각선을 그을 수 있고요.

n각형에서 n에 상관없이 자기 자신과 이웃한 두 개를 뺀 나머지 점에 대각선을 그을 수 있다는 결론이 나와요.

한 꼭짓점에서 그을 수 있는 대각선의 개수는 (n - 3)개에요.

다각형의 대각선의 개수

대각선의 개수

그럼 n각형에서 그을 수 있는 대각선의 총 개수는 한 꼭짓점에서 그을 수 있는 대각선의 개수와 꼭짓점의 수를 곱하면 되겠죠? n(n - 3)개가 되겠군요.

사각형에서는 4 × (4 - 3) = 4개가 나와요. 오각형은 5 × (5 - 3) = 10, 육각형은 6 × (6 - 3) = 18개가 되겠네요.

여기서 한 가지 더 짚고 넘어갈 게 있어요.

사각형 ABCD는 점 A, 점 B, 점 C, 점 D에서 각각 하나의 대각선을 그을 수 있으니 총 4개의 대각선을 그을 수 있어요.

그런데 점 A에서 점 C로 그은 대각선 AC와 점 C에서 점 A로 그은 대각선 CA는 같은 선분이에요. 따라서 두 개가 아니라 한 개로 쳐야 해요. 또 점 B에서 점 D로 그은 대각선 BD와 점 D에서 점 B로 그은 대각선 DB도 같은 선분이죠? 같은 대각선을 두 번씩 세면 안 되니까 위에서 구했던 대각선의 개수를 2로 나눠줘야 해요.

n각형 대각선의 개수 = 다각형의 대각선 개수 공식

삼각형, 사각형, 오각형, 육각형에서 대각선의 개수를 표로 정리해보죠.

다각형의 대각선의 개수
다각형 삼각형 사각형 오각형 육각형 n각형
꼭짓점의 개수(개) 3 4 5 6 n
한 꼭짓점에서 그을 수 있는 대각선의 개수 (개) 0 1 2 3 n - 3
대각선의 총 개수 (개) 0 2 5 9 1/2 × n(n - 3)

함께 보면 좋은 글

다각형, 내각, 외각, 정다각형
삼각형 내각의 합과 외각의 크기, 외각의 합
다각형 내각의 크기의 합과 외각 크기의 합

정리해볼까요

대각선

  • 다각형에서 이웃하지 않은 꼭짓점을 연결한 선
  • n각형의 대각선의 개수 = 1/2 × n(n - 3)
 
그리드형

새로운 단원의 시작이에요. 평면도형에 대해서 공부할 거예요.

평면도형은 앞에서 공부했던 평면 위에 있는 도형을 말해요. 더 깊이 생각할 필요도 없어요.

이 단원에서는 평면도형의 종류를 알아보고 그 도형마다 어떤 특징이 있는지 공부할 거예요. 우선 이 글에서 우리가 알고 있는 삼각형, 사각형 등에서 사용하는 용어와 그 특징들을 알아보죠.

용어라 해봐야 두 세 개밖에 안되니까 어렵게 생각하지 말고, 용어의 정의보다는 특징과 관련성 등에 주목해서 읽어보세요.

다각형

다각형은 이름 그대로 각이 여러 개 있는 도형이에요. 다시 말해 여러 개의 선분으로 둘러싸인 평면 위의 도형이죠. 대표적인 다각형은 뭐가 있어요? 맞아요. 삼각형, 사각형, 오각형 등이 있어요.

원은 다각형이 아니에요. 각이 없잖아요.

보통 다각형은 둘러싸인 선분의 개수로 이름을 부르는데 선분이 3개이면 삼각형, 4개이면 사각형이라고 해요. 선분이 n개이면 n각형이라고 하지요. 각의 개수에 따라 불러도 똑같죠.

내각, 외각

다각형, 내각, 외각

다각형에서 꼭짓점은 알파벳 대문자를 사용해서 A, B, C … 순서로 이름을 적어요. 위 그림에서도 각 꼭짓점에 알파벳으로 이름을 붙였네요.

내각이라는 게 있어요. 다각형의 한 꼭짓점에서 이웃하는 두 변으로 이루어진 각을 말해요. 이름 그대로 다각형의 안쪽에 있는 각이죠. 위 그림에서 내각은 ∠A, ∠B, ∠C, ∠D, ∠E 이렇게 총 다섯 개가 있어요. 오각형이니까요.

외각은 내각과 반대로 바깥에 있는 각이에요. 다각형의 한 내각의 꼭짓점에서 한 변과 그 변에 이웃한 변의 연장선이 이루는 각이에요. 다각형의 변 하나를 원래보다 길게 죽 그어요. 이렇게 길게 그은 선과 그 옆에 있는 선과 이루는 각이 외각이에요.

위 그림에서 변 CD의 연장선을 그었더니 ∠EDF라는 각이 생겼어요. 이 각이 바로 ∠CDE의 외각이에요. 또 변 DE의 연장선을 그었더니 ∠CDG라는 각이 생기죠? 이 각도 역시 ∠CDE의 외각이에요. ∠CDE의 외각이 ∠EDF와 ∠CDG 두 개가 생겼어요. 그런데 잘 보면 이 두 각은 직선 CF와 직선 EG라는 두 직선이 만나서 생기는 맞꼭지각이죠? 맞꼭지각은 크기가 같으니까 두 외각도 크기가 같아요. ∠EDF = ∠CDG

내각인 ∠CDE와 외각인 ∠EDF를 더하면 몇 °가 될까요? 두 각을 더하면 ∠CDF가 되는데 이건 평각이라서 180°예요. (내각) + (외각) = 180°

자, 다음 두 가지를 기억하세요.

한 꼭짓점에서 두 개의 외각은 맞꼭지각으로 크기가 같다
한 꼭짓점에서 내각과 그 이웃한 외각의 합은 180°

내각과 외각의 설명이 어렵죠? 그냥 정의를 그렇게 하는 거지 외워야하는 건 아니에요. 내각과 외각이 무엇을 의미하는지 알고 그림에서 내각과 외각을 찾을 줄 알면 돼요.

정다각형은 정삼각형, 정사각형처럼 모든 변의 길이가 같고 내각의 크기가 모두 같은 다각형을 말해요. (내각) + (외각) = 180°인데, 내각의 크기가 모두 같으니까 외각의 크기도 모두 같겠죠? n개의 선분으로 둘러싸인 정다각형은 정n각형이라고 불러요.

함께 보면 좋은 글

대각선의 개수구하기, 대각선의 개수 공식
삼각형 내각의 합과 외각의 크기, 외각의 합
다각형 내각의 크기의 합과 외각 크기의 합

정리해볼까요

다각형

  • 여러 개의 선분으로 둘러싸인 평면도형
  • n개의 선분으로 둘러싸여 있으면 n각형
  • 내각: 다각형에서 이웃하는 두 변으로 이루어진 각
  • 외각: 한 꼭짓점에서 한 변과 이웃하는 변의 연장선으로 이루어진 각
    • 한 꼭짓점에서 외각은 두 개. 맞꼭지각으로 크기가 같다.
    • 한 꼭짓점에서 (내각) + (외각) = 180°
  • 정다각형: 변의 길이, 내각, 외각의 크기가 모두 같다.
<<    중1 수학 목차    >>
 
그리드형

이제 도형의 기초 단원의 마지막이에요

양이 상당히 많았네요. 점, 선, 면부터 시작해서 위치관계, 작도까지

직접 그림을 그려보지 않으면 이해가 잘되지 않아서 어렵긴 하지만 몸으로 익힌 거라서 한 번 이해하면 머리에 조금 더 오래 남는 단원이기도 해요.

이제 마지막이니까 앞에서 했던 내용을 잘 기억해보세요. 오늘 할 내용의 절반은 앞에서 했던 내용과 같아요. 절반은 거저 먹는 거예요.

도형의 합동

합동이에요. 합동은 함께 모여서 일을 하는 걸 말하는데, 여기서 말하는 합동은 그게 아니에요

도형을 모양이나 크기를 바꾸지 않고 옮겨서 다른 도형에 완전히 포갤 수 있을 때 두 도형을 합동이라고 해요. 쉽게 말해서 도형을 뒤집고 돌려봐서 두 도형이 똑같으면 합동인 거예요.

기호로는 ≡로 표시해요. 작대기가 세 개예요. =에 -을 하나 더 해서 -가 총 세 개입니다.

모양과 크기를 바꾸지 않고 위치만 바꾼 거니까 두 도형의 모양과 크기는 같겠죠? 넓이도 같아요.

합동인 두 도형에서 꼭짓점도 각도 변도 모두 포개지겠죠? 이렇게 포개지는 걸 대응한다고 하는데 포개지는 변을 대응변, 포개지는 각을 대응각, 포개지는 꼭짓점을 대응점이라고 해요.

삼각형을 이용해서 조금 더 설명할게요

아래 △ABC와 △DEF가 있어요. 이 두 삼각형은 서로 합동이에요. △DEF를 180° 돌리면 △ABC와 포개지거든요.

도형의 합동

대응점을 찾아보죠. 대응점은 도형을 포갰을 때 서로 겹치는 점이에요. 서로가 서로에게 대응점이에요.

점 A - 대응점 - 점 D
점 B - 대응점 - 점 E
점 C - 대응점 - 점 F

이번에는 대응변을 찾아볼까요? 변 AB와 변 DE가 서로 포개져요. 그러니까 변 AB의 대응변은 변 DE이죠. 대응변의 길이는 서로 같아요. 당연하죠. 서로 포개지는 거니까요.

변 AB - 대응변 - 변 DE
변 BC - 대응변 - 변 EF
변 CA - 대응변 - 변 FD

∠A와 ∠D도 서로 포개지죠. 그러니까 서로가 서로의 대응각이에요. 대응각의 크기도 서로 같아요.

∠A - 대응각 - ∠D
∠B - 대응각 - ∠E
∠C - 대응각 - ∠F

도형의 합동을 기호로 ≡로 표시한다고 했으니 두 △ABC, △DEF가 합동이면 △ABC ≡ △DEF로 표시할 수 있어요. 이때 꼭 기억해야하는 한 가지가 있는데요. 바로 두 삼각형을 적을 때, 대응점의 순서가 같아야한다는 거예요.

△ABC는 이름을 적을 때, A, B, C의 순서로 적었어요. 그러니까 그와 합동인 삼각형은 A의 대응점인 D, B의 대응점인 E, C의 대응점인 F의 순서로 적은 △DEF라는 거예요

△DEF와 △DFE, △EDF, △EFD, △FDE, △FED는 하나의 삼각형을 부르는 여러 이름이에요. 하지만 △ABC에 합동인 삼각형을 부를 때는 꼭 △DEF라는 이름을 써야 해요.

그럼 △CBA과 합동인 삼각형은 뭐라고 불러야 할까요? 각 C, B, A의 대응점을 순서대로 붙인 △FED죠.

이거 중요해요. 그림을 봐서 대응점을 잘 못 찾을 때 이름만 보고도 금방 알 수 있어야 해요.

삼각형의 합동조건

위의 내용은 모든 평면도형에 적용되는 내용이에요. 삼각형이든 사각형이든 오각형이든 상관없어요.

삼각형의 합동조건은 삼각형에만 적용되는 거예요. 다만 새로운 건 아니에요. 이미 공부했던 삼각형의 결정조건, 삼각형의 작도의 연장선이거든요.

삼각형을 작도할 수 있는 조건은 세 가지가 있었어요. 세 변의 길이가 주어졌을 때, 두 변의 길이와 그 끼인각이 주어졌을 때, 한 변의 길이와 양 끝각이 주어졌을 때죠?

삼각형의 합동 조건도 세 가지가 있어요. 뭘까요? 차이가 있다면 두 삼각형 사이에서 생기는 조건이므로 하나 또는 둘이 아니라 한 쌍, 두 쌍이라고 쓰는 거죠.

  • SSS 합동: 세 쌍의 대응변의 길이가 같을 때
  • SAS 합동: 두 쌍의 대응변의 길이와 끼인각의 크기가 같을 때
  • ASA 합동: 한 쌍의 대응변의 길이와 양쪽 끝각의 크기가 같을 때

삼각형의 합동

S는 변을 나타내는 side, A는 각을 나타내는 angle의 첫 글자를 딴 거예요. SSS는 세 변, SAS는 두 변과 끼인 각, ASA 는 한 변과 양 끝각이라는 걸 조금 더 쉽게 기억할 수 있어요.

삼각형의 작도, 삼각형의 합동의 세 조건이 모두 같아요. 따로 외울 필요 없겠죠?

아래 두 삼각형은 서로 합동이다. 그림을 보고 물음에 답하시오.
(1) 두 삼각형은 삼각형의 합동 조건 중 어디에 해당하는가?
(2) 변 BA의 대응변은?
(3) ∠F와 포개지는 각은?
(4) 점 E에 대응하는 점은?
도형의 합동 - 예제

(1)번, 숫자는 쓰여 있지 않지만 그림을 보면 아랫변에 길이가 같다는 표시가 되어 있고, 양 끝각에 각 표시가 되어 있는 걸로 봐서 삼각형의 합동조건 중 세 번째인 한 변의 길이와 양 끝각이 같을 때에 해당하는 걸 알 수 있어요.

(2)번, 두 삼각형이 합동이니까 기호로 표시하면 △ABC ≡ △DEF로 쓸 수 있지요? 변 BA의 대응변을 물어봤어요. 그러면 변 DE가 되겠죠? 그런데 우리 삼각형의 이름을 부를 때 어떻게 하기로 했어요? 대응점의 순서대로 부르기로 했잖아요. 그러니까 변을 말할 때도 대응점의 순서대로 하면 변 DE가 아니라 변 ED가 되어야겠죠? 사실 변이나 각에서는 이름을 대응점 순서대로 하지 않아도 상관없어요. 하지만 삼각형과의 통일성을 위해서 이렇게 연습하세요.

(3) ∠F와 포개지는 각은 ∠F의 대응각을 찾으라는 얘기죠? ∠F의 대응각은 ∠C네요.

(4) 점 E에 대응하는 점은 점 E의 대응점 즉, 점 B네요.

함께 보면 좋은 글

삼각형의 정의, 대변, 대각
삼각형의 결정조건, 삼각형의 작도
크기가 같은 각의 작도, 평행선의 작도

정리해볼까요

도형의 합동

  • 한 도형을 크기나 모양을 바꾸지 않고 옮겨서 다른 도형에 완전히 포개어질 때 두 도형을 합동이라고 한다. 기호는 ≡
  • 대응: 합동인 두 도형에서 서로 포개어지는 것
    대응점: 대응하는 꼭짓점
    대응변: 대응하는 변
    대응각: 대응하는 각
  • 두 삼각형의 넓이, 대응변의 길이, 대응각의 크기는 서로 같다.
  • 합동인 도형을 기호로 나타낼 때는 대응점의 순서대로

두 삼각형이 합동일 조건

  • SSS 합동: 세 쌍의 대응변의 길이가 같을 때
  • SAS 합동: 두 쌍의 대응변의 길이와 끼인각의 크기가 같을 때
  • ASA 합동: 한 쌍의 대응변의 길이와 양쪽 끝각의 크기가 같을 때
<<    중1 수학 목차    >>
 
그리드형

삼각형의 정의와 삼각형에서 사용하는 용어인 대변, 대각 등을 알아봤어요.

삼각형의 용어를 공부했고, 기본도형의 작도도 공부했으니 이제 삼각형을 작도하는 걸 공부해보죠.

삼각형을 작도할 때 조건에 따라서는 그리지 못하는 경우도 있어요. 어떤 때는 알려준 조건에 따라 여러 모양의 삼각형을 그릴 수도 있고요.

이 글에서는 삼각형을 그릴 때 딱 하나의 삼각형만 나오게 하는 조건과 그 조건에 맞게 삼각형을 그리는 방법에 대해서 알아볼 거예요.

삼각형의 결정조건

<< 삼각형의 결정조건은 2013년 중1 수학에서는 삭제된 내용으로 2012년까지만 배웠던 내용입니다. 2013년 이후에 중 1인 학생은 아래 삼각형의 작도로 바로 넘어가세요. >>

삼각형을 그릴 수 있는 조건이 세 가지가 있어요. 그 세 가지 조건을 삼각형의 결정조건이라고 해요. 평면의 결정 조건이라는 것도 있었죠?

삼각형의 결정조건은 삼각형을 그릴 수 있는 조건이에요. 정확하게 얘기하면 모양과 크기가 일정한 딱 하나의 삼각형을 그리는 조건이에요. 삼각형의 결정조건에 맞지 않는다고 해서 꼭 삼각형을 그릴 수 없는 건 아니에요. 삼각형을 그릴 수 없는 경우도 있고, 하나가 아니라 여러 모양의 삼각형을 그릴 수도 있는 거예요.

삼각형의 결정조건은 해당 조건에서는 모양과 크기가 일정한 삼각형을 하나만 그릴 수 있어요.

삼각형의 결정조건은 삼각형을 그리는 데뿐 아니라 다음에 공부할 합동에서도 아주 중요하니까 꼭 기억하세요.

  • 세 변의 길이를 알 때
  • 두 변의 길이와 그 사이 끼인각의 크기를 알 때
  • 한 변의 길이와 양쪽 끝각의 크기를 알 때

삼각형의 결정조건 세 가지 중에 첫 번째는 세 변의 길이를 알려줬을 때에요. 세 변의 길이를 알면 컴퍼스를 이용해서 삼각형을 그릴 수 있어요. 세 변의 길이만큼 컴퍼스를 벌려서 원을 그리고 그 교점들을 연결하면 되지요.

주의해야 할 건 세 변의 길이를 줬다고 해서 무조건 삼각형을 그릴 수 있는 게 아니에요.

가장 긴 변의 길이가 다른 두 변의 길이의 합보다 크거나 같으면 삼각형을 그릴 수 없어요. 예를 들어 세 변의 길이가 1cm, 2cm, 100cm라면 삼각형을 그릴 수 없는 거죠. 마찬가지로 1cm, 2cm, 3cm이면 삼각형을 그릴 수 없어요.

세 변의 길이를 줬을 때 길이가 가장 긴 변의 길이는 다른 두 변 길이의 합보다 작아야 삼각형을 그릴 수 있어요. 이거 중요하니까 잊어버리지 마세요. 1cm, 2cm, 2.999cm는 삼각형을 그릴 수 있어요.

삼각형의 결정조건 두 번째는 두 변의 길이와 끼인각의 크기를 알 때에요. 두 변의 길이를 알려준다고 했잖아요. 끼인각은 그 두 변이 만나서 생기는 각이에요. 다른 각은 안돼요. 꼭 길이를 알려준 두 변이 만난서 생기는 각이어야 해요. 이때는 끼인각을 먼저 그려요. 그다음 각 변의 길이만큼만 남기는 거지요.

삼각형의 결정조건 마지막은 한 변의 길이와 양쪽 끝각의 크기를 알 때에요. 한 변을 긋고 양쪽에 주어진 각과 크기가 같은 각을 넣으면 삼각형을 그릴 수 있어요.

변 AB의 길이를 알려줬을 때, △ABC를 그리기 위한 추가적인 조건으로 옳지 않은 것을 고르시오.
① 변 BC의 길이, 변 CA의 길이
② 변 BC의 길이, ∠B의 크기
③ ∠A의 크기, ∠B의 크기
④ 변 CA의 길이, ∠C의 크기

삼각형의 결정조건을 묻는 문제에요. 삼각형의 결정 조건은 세 변의 길이, 두 변의 길이와 끼인각의 크기, 한 변의 길이와 양 끝각의 크기를 알 때에요.

이 세 가지에 해당하지 않는 걸 찾아볼까요? 변 AB의 길이를 알고 있으니까 추가로 필요한 게 무엇인지 보면 되겠네요.

①은 두 변의 길이를 더 알려줬어요. 그러면 세 변의 길이를 모두 알려준 거니까 삼각형을 그릴 수 있겠네요
②는 한 변의 길이를 알려주고 한 각의 크기를 알려줬어요. 두 변의 길이와 한 각의 크기를 알려줬는데, 그 각이 길이를 알려준 두 변 사이의 끼인각이어야 한다고 했죠? 알려준 변은 AB와 BC에요. 그럼 그 사이에 끼인각은 ∠B가 되겠죠? 알려준 각이 끼인각인 ∠B의 크기라서 이때도 삼각형을 그릴 수 있겠네요.
③은 두 각의 크기를 알려줬어요. 한 변의 길이와 두 각을 알려줬으니까 두 각이 변의 양 끝각인지 알아봐야겠죠? 변 AB의 양 끝각은 ∠A와 ∠B인데 두 각의 크기를 알려줬네요. 삼각형을 그릴 수 있겠죠?
④는 한 변의 길이와 한 각의 크기를 알려줬어요. ②에서 했던 방법으로 살펴보면 두 변의 길이는 맞는데, 끼인각의 크기가 아니에요. 따라서 ④번은 삼각형의 결정 조건에 맞지 않아요.

삼각형의 작도

삼각형을 그리는 방법이에요. 삼각형을 그리는 방법은 여러 가지가 있지만 삼각형의 결정조건에 맞는 방법으로 그리면 돼요.

삼각형을 작도하는 첫 번째는 세 변의 길이가 주어졌을 때에요. 세 변의 길이를 주면 컴퍼스를 이용해서 그려요.

삼각형의 작도 - 세 변의 길이가 주어졌을 때

  1. 먼저 한 변의 길이만큼을 컴퍼스로 옮겨서 선을 그어요. 선분 AB라고 할게요.
  2. 선분 AB의 한쪽 끝 점 A에 바늘을 놓고 다른 한 변의 길이를 반지름으로 하는 원을 그려요.
  3. 선분 AB의 반대쪽 끝 점 B에 바늘을 놓고 마지막 변의 길이를 반지름으로 하는 원을 그려요.
  4. ②와 ③의 교점에서 점 A와 점 B로 선을 그으면 △ABC가 돼요.

삼각형을 작도하는 두 번째는 두 변의 길이와 그 사이 끼인각의 크기가 주어졌을 때에요.

삼각형의 작도 - 두 변의 길이와 그 끼인각의 크기가 주어졌을 때

  1. 끼인각을 먼저 그려야 하는데, 크기가 같은 각의 작도에 있는 방법대로 알려준 각과 크기가 같은 각을 그려요. ∠POQ라고 해보죠.
  2. 점 O에 바늘을 놓고 한 변의 길이를 반지름으로 하는 원을 그려요. 이때 원과 선분 OQ가 만나는 교점을 점 B라고 할게요.
  3. 다시 점 O에 바늘을 놓고 다른 한 변의 길이를 반지름으로 하는 원을 그려요. 이 원과 선분 OP가 만나는 교점을 점 A라고 할게요.
  4. 점 A와 점 B를 연결하면 △AOB가 생겨요.

삼각형의 작도 마지막은 한 변의 길이와 양 끝각이 주어졌을 때에요.

삼각형의 작도 - 한 변의 길이와 양 끝각이 주어였을 때

  1. 한 변의 길이만큼을 컴퍼스를 이용해서 선을 그어요. 이걸 선분 AB라고 하지요.
  2. 선분 AB의 한쪽 끝 점 A에 미리 알려준 크기의 각을 그려요. 이때 선분을 충분히 길게 그려요. 이 선분을 선분 AP라고 하지요.
  3. 선분 AB의 반대쪽 끝 점 B에 알려준 다른 크기의 각을 그려요. 이때 선분을 선분 BQ라고 하고 BQ와 선분 AP의 교점을 점 C라고 해보죠. 그러면 △ABC가 생겨요.

삼각형의 작도는 삼각형의 결정조건을 토대로 하되 전에 배웠던 크기가 같은 각을 작도하는 방법을 이용합니다.

삼각형의 결정조건 세 가지를 꼭 알고 있어야 하고, 실제로 작도를 해보면서 그 순서도 익혀보세요.

함께 보면 좋은 글

작도, 수직이등분선의 작도
크기가 같은 각의 작도, 평행선의 작도 삼각형의 정의, 대변, 대각
도형의 합동, 삼각형의 합동조건

정리해볼까요

삼각형의 결정조건

  • 세 변의 길이를 알 때 (가장 긴 변의 길이는 다른 두 변의 길이의 합보다 작아야)
  • 두 변의 길이와 그 사이 끼인각의 크기를 알 때
  • 한 변의 길이와 양쪽 끝각의 크기를 알 때

삼각형의 작도

  • 삼각형의 결정조건을 이용하여 작도
 
그리드형

직선과 각에 이어서 이번에는 직선과 각들로 이루어진 도형에 대해서 알아볼 거예요.

도형 중에 가장 먼저 배우는 건 역시 가장 간단한 삼각형이죠.

삼각형에서 적용되는 성질 대부분이 사각형, 오각형에도 그대로 적용되니까 첫 단계인 삼각형에 대해서 제대로 공부해야 해요.

이 글에서는 삼각형의 의미와 삼각형에서 사용하는 용어들에 대해서 알아보죠.

삼각형의 정의, 대변, 대각

삼각형은 이름 그대로 각이 세 개 있는 도형이죠? 각이 세 개인 것은 꼭짓점이 세 개라는 말과 같아요. 삼각형을 좀 더 멋있게 정의해 볼까요? 세 점 A, B, C를 선분으로 연결한 도형을 삼각형 ABC라고 정의해요. 기호로는 △ABC로 표시하고요. △ 기호 뒤에 세 점을 모두 쓰는 거죠.

삼각형의 대변, 대각

삼각형은 꼭짓점과 변, 각으로 이루어져 있어요.

꼭짓점: 점 A, 점 B, 점 C
변: 변 AB, 변 BC, 변 CA
각: ∠ABC (= ∠B), ∠BCA (= ∠C), ∠CAB (= ∠A)

변 AB는 점 A와 점 B를 연결하는 선이잖아요. 점, 선, 면, 직선, 반직선, 선분에서 알아봤던 것처럼 변 AB는 선분 AB니까 기호로 선분로 나타낼 수 있어요. 변 BC와 변 CA도 마찬가지로 삼각형의 대변로 나타낼 수 있고요.

삼각형에 대변대각이라는 게 있어요. 똥 아니에요. 대변은 한 각과 마주보고 있는 변을 말하고, 대각은 한 변과 마주보는 각을 말해요.

△ABC에서 ∠A와 마주 보는 변은 변 BC죠? 그래서 ∠A의 대변은 변 BC입니다. 대변의 길이는 각의 알파벳을 소문자로 쓴 것으로 표현해요. 그러니까 ∠A의 대변의 길이는 a로, ∠B의 대변의 길이는 b로 나타내는 거지요.

삼각형의 대변은 찾기 쉬워요. 이름에 그 각의 알파벳이 들어있지 않은 변이 대변이에요. ∠B의 대변은 이름에 B가 없는 변, 즉 변 CA가 되는 거죠.

∠A의 대변: 변 BC = a
∠B의 대변: 변 CA = b
∠C의 대변: 변 AB = c

대각은 마주 보는 각인데, 변이 마주 보는 각이에요. 대변과 대각은 서로 반대겠죠? 대각도 마찬가지로 이름에 변에 있는 알파벳이 없는 각이 대각이에요. 변 AB의 대각은 A, B가 없는 ∠C가 되는 거죠.

변 AB의 대각: ∠C
변 BC의 대각: ∠A
변 CA의 대각: ∠B

함께 보면 좋은 글

삼각형의 결정조건, 삼각형의 작도
도형의 합동, 삼각형의 합동조건
삼각형 내각의 합과 외각의 크기, 외각의 합

정리해볼까요

삼각형의 정의, 대변, 대각

  • 점 A, B, C를 선분으로 연결한 도형을 삼각형 ABC라고 하고 기호는 △ABC
  • 대변: 각이 마주보고 있는 변, 대변의 길이는 소문자로 나타낸다.
  • 대각: 변이 마주보고 있는 각
<<    중1 수학 목차    >>
 
그리드형

직선의 이등분선, 각의 이등분선에 이어서 이번에는 크기가 같은 각 평행선작도하는 방법을 알아보죠.

크기가 같은 각을 만약 각도기로 그린다면 몇 °인지를 재서 바로 그리면 되겠지만 작도는 각도기를 이용하지 않으니까 좀 더 복잡해지죠

하지만 앞에서 해봤던 것처럼 그리는 흐름을 이해하고, 연습만 몇 번 해보면 작도도 생각보다 어렵지는 않아요.

이 글에서 공부할 크기가 같은 각의 작도와 평행선의 작도는 원리가 같으니까 하나만 제대로 이해하면 돼요.

크기가 같은 각의 작도

크기가 같은 각을 작도해보죠.

하나의 각을 주고, 이 각과 크기가 같은 각을 그리는 거예요. 이 각을 ∠XOY라고 해볼게요.

크기가 같은 각의 작도

  1. 이 ∠XOY에서 점 O에 컴퍼스를 대고 원을 그려요. 원과 선분 OX가 만나는 점을 P, 원과 선분 OY가 만나는 점을 Q라고 하지요.
  2. 일단 이렇게 해놓은 상태에서 크기가 같은 새로운 각을 그릴 선분을 하나 그어요. 선분 l이라고 할까요?
  3. 선분 l의 한쪽 끝점 A에 컴퍼스 바늘을 놓고 ①에서 그렸던 원과 반지름이 같은 원을 그려요. 이 원이 선분 l과 만나는 점을 B라고 해보죠.
  4. 컴퍼스를 이용해서 점 P와 점 Q 사이의 거리만큼을 재요. 그리고 점 B에 컴퍼스의 바늘을 놓고 원을 그립니다. 이 원과 ③에서 그린 원과의 교점이 생겨요. 이 교점을 C라고 할게요.
  5. 점 A와 점 C를 자를 대고 연결해요.

이 ∠BAC가 ∠POQ와 크기가 같은 각입니다.

평행선의 작도

평행선의 성질, 평행선에서 동위각과 엇각에서 공부했던 두 직선이 한 직선과 만날 때 동위각 또는 엇각의 크기가 같으면 두 직선이 평행하다는 성질을 기억하나요?

평행선의 작도는 동위각 또는 엇각을 이용해서 크기가 같은 각을 만드는 과정이에요.

점 P를 지나고 직선 l에 평행한 직선을 작도해보죠.

평행선의 작도

  1. 직선 l과 직선 위에 있는 않은 점 P를 그려요.
  2. 점 P를 지나고 직선 l과 한 점에서 만나는 직선을 그려요. 직선 l과 만나는 점을 점 O라고 하고요.
  3. 점 O에 컴퍼스 바늘을 대고 원을 그려요. 이때 원이 직선 OP와 만나는 점을 점 A라고 하고 원과 직선 l이 만나는 점을 점 B라고 하지요.
  4. ③에서 그렸던 원과 같은 반지름으로 점 P에 컴퍼스 바늘을 놓고 원을 그려요. 이 원과 직선 OP가 만나는 점을 C라고 해보죠.
  5. 컴퍼스를 이용해서 점 A와 점 B의 거리를 재고, 이 길이를 반지름으로하여 점 C에 컴퍼스 바늘을 놓고 원을 그려요. 이 원과 ④에서 그렸던 원의 교점을 점 D라고 합니다.
  6. 점 P와 점 D를 직선으로 연결해요.

이 직선 PD가 점 P를 지나고 직선 l에 평행한 평행선이에요.

④에서 점 C의 위치가 점 P와 직선 l 사이에 있으면 평행선에서 엇각을 이용하고, 점 C가 점 P보다 위에 있으면 평행선의 동위각을 이용하는 거예요.

위 예에서는 점 C가 점 P보다 위에 있으니 동위각을 이용해서 평행선을 그린 거죠.

동위각 ∠AOB = ∠CPD라는 성질을 이용해서 평행선을 그려봤어요. ③번 이후의 과정은 크기가 같은 각을 작도하는 방법과 완전히 같아요. 그러니까 크기가 같은 각을 그리는 작도를 연습해봐야겠죠?

함께 보면 좋은 글

작도, 수직이등분선의 작도
각의 이등분선의 작도, 직각의 삼등분선의 작도
평행성의 성질, 평행선에서 동위각과 엇각

정리해볼까요

크기가 같은 각의 작도

  1. ∠XOY에서 점 O에 컴퍼스를 대고 원을 그려 선분 OX와의 교점을 P, 선분 OY와의 교점을 Q라고 한다.
  2. 선분 l을 그린다.
  3. 선분 l의 한쪽 끝점 A를 중심으로 ①과 같은 반지름의 원을 그린다. 이때 l과의 교점을 B라고 한다.
  4. 선분 PQ의 길이를 반지름으로하는 원을 점 B를 중심으로 그리고 ③에서 그린 원과의 교점을 점 C라고 한다.
  5. 점 A와 점 C를 자를 대고 선을 연결한다.

평행선의 작도

  • 두 직선이 한 직선과 만날 때 동위각과 엇각의 크기가 같으면 두 직선은 평행하다는 성질 이용
  • 동위각 또는 엇각과 크기가 같은 각을 작도하는 과정
  1. 점 P를 지나고 직선 l과 한 점에서 만나는 직선을 그어 교점을 점 O라고 한다.
  2. 이후는 ∠O와 크기가 같은 각을 그리는 과정
 
그리드형

이전 글 작도, 수직이등분선의 작도에 이어서 이번에는 각의 이등분선직각의 삼등분선을 작도해볼거예요.

작도는 그냥 설명만 봐서는 잘 이해가 안 돼요. 컴퍼스와 자를 가지고 직접 그려봐야 해요. 연습장에 컴퍼스와 자를 이용해서 순서대로 따라 해보고, 나중에는 설명 없이 혼자서 그려보세요.

설명 없이 혼자서 척척 해낼 때의 성취감은 그냥 일반적인 문제를 풀 때보다 더 많이 생길 거예요.

직접 해보면 이해하기는 어렵더라도 머리 속에 더 오래 남아요. 해보지 않으면 금방 잊어버리니까 꼭 직접 해보세요.

각의 이등분선의 작도

각이 있는데, 몇 °인지 몰라요. 하지만 이 각을 절반으로 나누는 선을 그릴 수 있어요. 물론 이등분한 각도 몇 °인지는 모르겠지요?

각의 이등분선을 작도해보죠.

각의 이등분선의 작도

  1. 각 XOY를 그려요.
  2. 컴퍼스를 적당히 벌려서 점 O에 바늘을 놓고 원을 그려요. 선분 OX와 원이 만나는 점을 점 A라고 하고, 선분 OY와 만나는 점을 점 B라고 하지요.
  3. 점 A에 컴퍼스의 바늘을 놓고 원을 그려요. ②에서 사용했던 반지름과 달라도 상관없어요.
  4. 이번에는 ③에서 사용했던 반지름 그대로 점 B에 컴퍼스 바늘을 놓고 원을 그려요. ③의 원과 한 점에서 만나죠? 이 점을 점 C라고 할게요.
  5. 점 C와 점 O를 자로 연결해요. 이 선분 OC가 바로 각 O의 이등분선입니다.

각의 이등선의 특징을 알아볼까요?

수직이등분선의 특징

각의 이등분선이니까 각 XOC와 각 YOC는 같겠죠. 각의 이등분선의 작도 - 이등분

선분 OA의 길이과 선분 OB의 길이가 같아요. 이등분선의 작도 ②단계에서 점 O를 중심으로 그은 원이니까 당연히 같겠죠. 각의 이등분선의 작도 - 이등분선의 특징 2

이등분선의 작도 ③, ④단계에서 같은 반지름으로 그렸으니까 선분 AC의 길이와 선분 BC의 길이도 같아요. 각의 이등분선의 작도 - 이등분선의 특징3

점 C에서 선분 OX에 내린 수선의 발을 점 P, 점 C에서 선분 OY에 내린 수선의 발은 점 Q라고 할 때, 선분 CP의 길이와 선분 CQ의 길이가 같아요. 삼각형 OCP와 삼각형 OCQ가 똑같거든요. 각의 이등분선의 작도 - 이등분선의 특징 4

직각의 삼등분선의 작도

일반적인 각은 삼등분선을 작도할 수 없지만, 직각만 유일하게 삼등분할 수 있어요.

정삼각형은 세 변의 길이가 같잖아요. 세 변의 길이가 같고 또 세 각의 크기가 같아요. 이 성질을 이용해서 직각을 삼등분하는 겁니다. 직각을 삼등분했으니 한 각은 30°가 되겠죠?

직각의 삼등분선 작도

  1. 각 XOY를 그려요. 이 각 XOY는 직각이에요.
  2. 점 O에 컴퍼스의 바늘을 놓고 원을 그려요. 이 원과 선분 OX가 만나는 점을 점 A, 선분 OY와 만나는 점을 B라고 하지요.
  3. ②에서 사용한 원의 반지름 그대로 점 A에 바늘을 놓고 원을 그려요. ②에서 그린 원과 만나는 점을 점 C라고 할게요.
  4. 같은 반지름으로 점 B를 중심으로 원을 그려요. ②에서 그린 원과 만나는 점을 점 D라고 하지요.
  5. 점 O와 점 C를 연결하고, 점 O와 점 D를 연결하세요. 이 두 선분이 각 XOY를 삼등분하는 선입니다.
  6. 참고로 ③, ④의 원이 만나는 점을 점 E라고 할 때, 점 O와 점 E를 연결하면 각의 이등분선이 돼요.

점 A와 점 C는 ②에서 그린 원 위에 있는 점이에요. 그러니까 선분 OA의 길이와 선분 OC의 길이는 같겠죠? 직각의 삼등분선의 작도 설명 1

또 ③에서 그린 원과 ②에서 그린 원의 반지름이 같으니까 선분 AC의 길이는 선분 OA의 길이와 같아요. 직각의 삼등분선의 작도 설명 2

즉 삼각형 OAC가 세 변의 길이가 같은 정삼각형이라는 거지요. 정삼각형의 한 각의 크기는 60°로 모두 같아요. 따라서 ∠AOC가 60°니까 ∠XOY에서 ∠AOC를 뺀 나머지 ∠BOC는 30°예요.

같은 이유로 ∠AOD도 30°고, ∠COD도 30°지요.

∠AOB = 90°
∠AOC = ∠BOD = 60°
∠AOD = ∠BOC = ∠COD = 30°
∠AOE = ∠BOE = 45°

직각의 삼등분선 작도에서 제일 중요한 건 컴퍼스의 폭이 바뀌지 않는다는 거예요. 그리는 원의 반지름이 모두 같아야 하는 것에 주의하세요.

작도할 수 있는 각

위에서 공부한 내용을 어떻게 활용할까요? 이제 우리는 각도기가 없어도 몇 가지 각을 작도할 수 있어요.

제일 먼저 직선의 수직이등분선을 이용하면 90°를 작도할 수 있죠? 이 직각을 각의 이등분선 작도를 하면 45°를 그릴 수 있고요. 직각을 삼등분선을 그리면 30°와 60°를 그릴 수 있어요.

그 다음에 이 30°, 45°, 60°, 90°를 각의 이등분하면 각각 15°, 22,5° 등도 만들 수 있겠죠?

또 30°를 그린 다음에 그 선분을 연장해서 거기에 직각을 그리고 각의 이등분선을 긋는다면 30° + 45° = 75°까지 그릴 수 있어요. 다시 말해서 작도할 수 있는 각을 더하거나 빼서 나오는 각도 작도할 수 있는거지요. 90° + 45° = 135° 같은 각도 작도할 수 있는 거지요.

수직이등분선의 작도 → 90°
직각의 삼등분선의 작도 → 30°, 60°
각의 이등분선의 작도 → 45° 22.5° 15° 등
위 방법을 혼합 → 위에서 작도할 수 있는 각을 서로 더하거나 뺀 각 ex) 30° + 45° = 75°

함께 보면 좋은 글

작도, 수직이등분선의 작도
크기가 같은 각의 작도, 평행선의 작도
삼각형의 정의, 대변, 대각

정리해볼까요

각의 이등분선의 작도

  1. 각을 그린다.
  2. 점 O를 중심으로하는 원을 그려 선분과 만나는 점을 각각 A, B라고 한다.
  3. 점 A를 중심으로 하는 원을 그린다.
  4. 점 B를 중심으로 하는 원을 그린다. ②에서 그린 원과 만나는 점을 C라고 한다.
  5. 점 C와 점 O를 선으로 연결한다.

각의 이등분선의 특징

  • 각의 이등분선의 작도 - 이등분
  • 각의 이등분선의 작도 - 이등분선의 특징 2
  • 각의 이등분선의 작도 - 이등분선의 특징3
<<    중1 수학 목차    >>
 
그리드형

기본도형에 대해서 공부했어요. 점, 선, 면이란 무엇인지 점, 선, 면이 평면과 공간에서 어떤 위치와 특징을 갖는지요.

이제부터는 도형을 그리는 방법을 공부할 거예요. 우리가 알고 있던 도형이 어떻게 그려지는지 좀 더 알아보자고요. 똑같은 삼각형이라도 조건에 따라서 여러 가지 방법으로 그릴 수 있어요.

이 글에서는 도형 그리기의 기초인 작도에 대해서 알아볼 거고 수직이등분선을 그리는 과정을 통해서 간단한 작도를 직접 한 번 해볼 거예요.

눈금 없는 자와 컴퍼스가 필요하니까 꼭 준비하세요.

작도

작도눈금 없는 자컴퍼스를 이용해서 도형을 그리는 걸 말해요. 눈금 있는 자로 그리거나 각도기를 가지고 그리는 건 작도가 아니에요. 작도할 때 몇 가지 조건을 주는데, 그 조건에 맞추면 눈금 있는 자와 각도기 없이도 도형을 그릴 수 있거든요.

작도할 때 사용하는 눈금 없는 자는 선을 그을 때 써요. 두 점을 연결해서 선을 그을 때와 이미 그려져 있는 선분을 더 길게 그릴 때요.

컴퍼스는 원래 기능대로 원을 그릴 때 쓰고요. 자에 눈금이 없으니 길이를 잴 수가 없잖아요. 이때 컴퍼스를 이용해서 주어진 선분의 길이만큼을 다른 곳에 옮길 수 있어요.

몇 가지 작도를 직접 해보면서 알아보죠.

수직 이등분선의 작도

선분의 수직이등분선이 뭔지는 이름에서 알 수 있겠죠? 수직은 90°로 만난다는 뜻이고 이등분은 정확하게 둘로 나눈다는 거잖아요. 그러니까 선분의 중점(M)을 지나고 90°로 만나는 선을 그리는 방법을 배울 거예요.

두 점 사이의 거리, 중점

선분 AB의 수직이등분선을 눈금 없는 자와 컴퍼스로 그려보죠.

아래 그림에서 검은색은 이전 단계에서 이미 그려진 것이고 파란색 선은 현재 단계에서 그리는 것들이에요. 파란색 점은 컴퍼스의 바늘을 놓는 위치입니다.

수직이등분선의 작도

  1. 먼저 선분 AB를 그리고요.
  2. 컴퍼스의 바늘을 점 A에 두고 적당한 길이로 벌린 다음에 원을 그리세요. 이때 반지름은 선분 AB 길이의 정도가 좋아요.
  3. 이번에는 컴퍼스의 길이를 그대로 유지한 체 컴퍼스의 바늘을 점 B에 두고 원을 그리세요.
  4. 점 A를 중심으로 그렸던 원과 점 B를 중심으로 그렸던 원이 만나는 지점이 두 군데가 생겨요. P, Q라고 할게요. 이 P, Q를 눈금 없는 자로 연결해서 선을 그으세요.

바로 이 선분 PQ가 선분 AB의 수직이등분선이에요.

수직이등분선은 몇 가지 특징이 있어요. 아래 그림을 보세요.

수직이등분선의 특징

선분 AB와 선분 PQ는 수직이에요. 수직이등분선의 특징 - 수직

M은 선분 AB의 중점이니까 선분 AM의 길이와 선분 BM의 길이가 같죠. 수직이등분선의 특징 - 중점

같은 반지름을 이용해서 원을 그렸으니까 선분 AP의 길이와 선분 AQ의 길이, 선분 BP의 길이, 선분 BQ의 길이가 모두 같아요. 수직이등분선의 특징

함께 보면 좋은 글

각의 이등분선의 작도, 직각의 삼등분선의 작도
크기가 같은 각의 작도, 평행선의 작도
삼각형의 정의, 대변, 대각

정리해볼까요

작도

  • 눈금 없는 자와 컴퍼스를 이용해서 도형을 그리는 것
  • 눈금 없는 자
    • 두 점을 연결하는 선 그릴 때
    • 주어진 선을 늘릴 때
  • 컴퍼스
    • 원을 그릴 때
    • 선분의 길이를 다른 직선 위로 옮길 때

수직이등분선의 작도

  1. 점 A를 중심으로 하는 원을 그린다.
  2. 점 B를 중심으로 하는 원을 그린다.
  3. 두 원의 교점을 직선으로 연결

수직이등분선의 특징

  • 수직이등분선의 특징 - 수직
  • 수직이등분선의 특징 - 중점
  • 수직이등분선의 특징
<<    중1 수학 목차    >>
 
그리드형

앞에서는 평면에서의 여러 가지를 공부했어요. 평면에서 점과 직선의 위치 관계, 평면에서 두 직선의 위치 관계를요. 이제는 공간에서 같은 내용을 공부할 거예요.

점이 모이면 선이 되고, 선이 모이면 평면이 돼요. 그렇죠? 그럼 공간은 뭐가 모여서 된 걸까요? 바로 평면이 모여서 된 거예요. 그래서 평면에서 점과 직선의 위치 관계, 평면에서 두 직선의 위치 관계는 공간에서도 그대로 적용됩니다. 평면에서의 위치 관계에 추가로 몇 개 더 공부하는 거예요.

공간에서 두 직선의 위치 관계

점과 직선의 위치관계, 두 직선의 위치관계에서 평면에서 두 직선은 한 점에서 만나는 경우, 평행한 경우, 일치하는 경우가 있었어요. 일치하는 경우는 여러 점에서 만나는 경우니까 한 점에서 만나는 경우와 일치하는 경우를 합쳐서 두 직선이 만나는 경우라고 할 수 있죠.

공간에서는 여기에 한 가지가 더해지는 데요. 바로 꼬인 위치라는 거예요. 꼬인 위치는 쉽게 말해서 위 세 가지가 아닌 경우예요. 그러니까 만나지도 않으면서 평행하지도 않은 경우죠.

공간에서 두 직선의 위치 관계

왼쪽 세 그림에는 "한 평면 위"라고 쓰여 있죠? 이 세 가지는 평면에서 두 직선의 위치관계에도 있던 내용이에요. 반대로 꼬인 위치는 서로 다른 평면에 있는 경우고요.

꼬인 위치에 대해서는 잘 이해가 안 될 수 있는데요. 아래 직육면체 그림을 보죠.

직육면체

변 AB와 변 CD, 변 EF, 변 HG는 서로 평행이에요. 그리고 변 AB와 변 AD, 변 AE는 한 점 A에서 만나죠? 변 AB와 변 BC, 변 BF는 한 점 B에서 만나요. 그럼 변 AB와 변 EH는 어떤 사이일까요? 만나지도 않고 평행하지도 않아요. 이런 관계를 바로 "꼬인 위치에 있다."고 합니다.

평면과 직선의 위치관계

이번에는 공간에서 평면과 직선의 위치 관계예요.

공간에서 직선과 평면의 위치관계

직선이 평면에 포함되는 경우가 첫 번째예요. 평면에서 두 직선의 위치 관계에서 직선은 모두 평면에 포함되어 있었어요. 직선이 평면에 포함되는 경우는 다른 말로 평면 위의 직선이라고 표현하고 이때 직선과 평면이 만나는 점이 매우 많아요. 앞의 직육면체 그림에서 면ADHE에 선분 AD, DH, HE, EA가 포함되어 있어요.

두 번째는 평면과 직선이 한 점에서 만나는 경우예요. 마치 화살이 과녁에 박혀있는 것처럼 생겼어요. 직육면체 그림에서 면ADHE와 세로로 된 선분 AB는 점 A에서 만나죠. 또 선분 DC와는 점 D에서, 선분 HG와는 점 H, 선분 EF와는 E에서 만나요.

마지막은 직선이 평면과 만나지 않고 평행하는 경우예요. 점이 직선 위에 있지 않는 경우와 비슷한 모양이에요. 직육면체 그림의 면ADHE는 선분 BC, 선분 CG, 선분 GF, 선분 BF와 평행이에요.

공간에서 평면과 직선의 수직

평면과 직선이 한 점에서 만날 때 특이하게 만나는 경우가 있어요. 바로 직각으로 만나는 경우요. 두 직선이 한 점에서 만날 때, 수직으로 만나는 경우가 있잖아요. 여기서도 그런 경우예요.

공간에서 평면과 직선의 수직

평면을 P, 평면 P와 한 점에서 만나는 직선을 직선 m이라고 해보죠. 평면 P와 직선 m이 만나는 점을 점 O라고 하고요. 그리고 평면 P에 포함되고 점 O를 지나는 직선을 l이라고 하지요.

평면 P와 직선 m이 직교하니까 직선 m은 수선이고, 기호로 P ⊥ m으로 나타낼 수 있어요. 이때 점 O는 수선의 발이에요. (수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리)

공간에서 직선과 평면이 서로 수직일 때는 한 가지 특징이 있는데, 평면 P와 직선 m이 수직이면 평면 P위의 직선 l과 직선 m도 점 O에서 수직이에요.

아래 그림을 보고 변 AB와 꼬인 위치에 있는 선분을 모두 찾으시오.
직육면체

꼬인 위치는 만나지도 않고 평행하지도 않은 위치에 있는 걸 말해요.

변 AB와 평행한 변을 찾아볼까요? 변 CD, 변 EF, 변 GH가 있네요.

변 AB와 만나는 변을 찾아보죠. 변 AD, 변 AE, 변 BC, 변 BF이고요.

그럼 이제는 평행하지도 않고, 만나지도 않는 꼬인 위치에 있는 변을 찾아보죠. 직육면체에서 찾을 수 있는 변 중에 위에서 적지 않은 변을 다 적으면 돼요. 변 EH, 변 DH, 변 FG, 변 CG가 되겠네요.

함께 보면 좋은 글

평면의 결정 조건
점과 직선의 위치 관계, 두 직선의 위치 관계
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리

정리해볼까요

공간에서 두 직선의 위치관계

  • 한 평면에 있을 때
    • 한 점에서 만나다.
    • 일치
    • 평행
  • 다른 평면에 있을 때
  • 꼬인 위치: 만나지도 평행하지도 않은 경우

공간에서 평면과 직선의 위치관계

  • 직선이 평면에 포함
  • 직선과 평면이 한 점에서 만난다
  • 직선과 평면이 평행

직선과 평면의 수직

  • 직선과 평면이 한 점에서 만날 때
  • 평면을 P, 평면과 한 점에서 만나는 직선을 m, 평면과 직선이 만나는 점을 O, 점 O를 지나는 평면 위의 직선을 l이라고 할 때
    • P ⊥ m → 점 O에서 l⊥m
 
그리드형

점과 선, 각 등에서 쭉 공부해오고 있는데요.

이제는 점과 선의 위치 관계에 대해서 공부할 거예요. 서로 어떤 위치에 있는가인데 어렵게 생각하지 마세요. 서로 만나느냐 만나지 않느냐 평행하냐를 따지는 거예요.

예를 들어, 두 직선이 만나는지, 두 직선이 평행한지, 두 직선이 일치하는지를 구분하는 거죠.

지금 여기서 공부할 내용은 평면에서 점과 직선의 위치관계, 평면에서 두 직선의 위치관계예요.

점과 직선의 위치관계

한 평면 위에 점과 직선이 있을 때 서로 어떤 위치에 있는지 알아보죠.

먼저 점이 직선 위에 있을 때가 있어요. 점이 직선 위에 있다는 말은 직선이 점을 지나간다는 얘기지요. 문제에서 직선 위의 점 어쩌고저쩌고 나오면, 직선이 점을 지나가는 구나 하고 생각하면 돼요.

점이 직선 위에 있지 않을 때도 있겠지요? 이때를 다르게 표현하면, 직선이 점을 지나지 않는다고 표현할 수 있겠죠? 다른 말로 직선 밖의 점이라고 하는데 자주 쓰이는 말은 아니에요.

아래 그림에서 왼쪽은 점이 직선 위에 있는 것으로 직선 위의 점이라고 하고, 오른쪽은 점이 선 위에 있지 않은 것으로 직선 위에 있지 않은 점이라고 말해요.

점과 직선의 위치관계

여기서 말하는 위는 위, 아래 방향이 아니라는 걸 이해해야 해요.

점이 직선 위에 있느냐 없느냐는 직선이 점을 지나느냐 지나지 않느냐로 표현할 수도 있는 거예요.

두 직선의 위치관계

평면에서 두 직선의 위치관계에 대해서 알아볼까요?

평면이라고는 하지만 우리가 익히 아는 그냥 종이 위에 그린 그림이라고 생각하면 쉬워요. 평면이라고 다를 게 없어요.

평면에서 두 직선은 세 가지의 위치관계가 있어요. 첫 번째는 두 직선이 한 점에서 만나는 경우이고, 두 번째는 평행한 경우, 세 번째는 일치하는 경우예요.

두 직선의 위치관계

직선이 두 점 이상에서 만나면 두 직선이 일치한다고 할 수 있어요. 두 점을 지나는 직선은 하나 밖에 없거든요. 거꾸로 말해 두 직선이 일치하면 두 개 이상의 점에서 만난다고 할 수 있는 거죠.

두 직선이 한 점에서 만나는 경우와 일치하는 경우를 한꺼번에 두 직선이 만나는 경우라고 할 때도 간혹 있어요.

그리고 여기에서 생각하는 평면은 아주아주 넓은 평면이에요. 아래 그림처럼 그려진 평면이 작아서 두 직선이 만나지 않을 때 '직선이 만나지도 않고, 평행도 아니고, 일치하는 것도 아닌데요.' 하는 학생은 없기 바랍니다. 평면을 더 크게 그리면 두 직선은 만나게 되어 있어요. 직선이 끝이 없이 계속되는 것처럼 평면도 끝이 없어요.

평면에서 두 직선의 위치관계 - 예

함께 보면 좋은 글

평면의 결정 조건
공간에서 두 직선의 위치관계, 평면과 직선의 위치관계

정리해볼까요

평면에서 점과 직선의 위치관계

  • 점이 직선 위에 있다. = 직선이 점을 지난다
  • 점이 직선 위에 있지 않다. = 직선이 점을 지나지 않는다.

평면에서 두 직선의 위치관계

  • 한 점에서 만난다.
  • 서로 평행하다
  • 일치한다.
<<    중1 수학 목차    >>
 
그리드형

평면의 결정 조건

2012. 7. 24. 12:30

우리가 지금까지 공부했던 직선, 반직선, 선분, 각 등은 모두 평면에서 구했던 거예요. 평면이라는 게 어렵게 들릴 수도 있지만 그냥 간단히 도화지라고 생각하면 돼요. 지금까지 그냥 하얀 종이 위에 직선을 그려놓고 그 관계를 알아봤잖아요.

함수에서 그래프 그렸던 모눈종이처럼 생긴 좌표평면 기억나죠? 그게 바로 평면이에요.

평면이라는 말이 새롭게 들어간다고 해서 절대로 어려워하지 마세요. 면 중에서 평평한 면을 평면이라고 하는 거니까요.

기본 도형 - 점, 선, 면, 직선, 반직선, 선분에서 선은 점이 여러 개 모인 거였죠? 선이 여러 개 모이면 면이 되고요. 그런 점이 여러 개 모이면 면이 되는 거잖아요. 점 몇 개가 있어야 면을 만들 수 있을까요? 또 선이 몇 개가 있어야 면을 만들 수 있을까요?

평면의 결정조건

평면을 만드는 방법은 여러 가지가 있어요. 그런데 그중에서도 딱 하나의 평면만 만들 수 있는 조건들이 있어요. 이런 조건들을 평면의 결정조건이라고 해요.

그러니까 어떤 조건을 주면 다른 평면을 만들고 싶어도 못 만들고, 정해진 딱 하나의 평면만 만들 수 있는 거예요. 같은 조건을 가지고 어떤 사람은 A라는 평면을 다른 사람은 B라는 평면을 만든다면 그건 평면의 결정조건이라고 할 수 없어요.

평면의 결정조건에는 네 가지가 있어요. 하나씩 알아보죠.

① 한 직선 위에 있지 않은 점이 세 개 있으면 평면을 만들 수 있어요. 점이 직선 위에 있지 않다는 건 직선이 그 점을 지나지 않는다는 뜻이에요. 그러니까 한 직선 위에 있지 않은 세 점은 세 점을 동시에 지나는 직선이 없다는 거죠. 점 세 개를 연결해서 삼각형을 그린다고 생각해보세요. 그 삼각형은 평면이죠? 이 삼각형을 양쪽으로 계속 늘릴 수 있잖아요. 그럼 아주 넓은 평면이 만들어져요.

② 한 직선과 직선 위에 있지 않은 점이 하나 있으면 평면을 만들 수 있어요. 한 직선이 있다는 말은 직선 위에서 점 두 개를 가져올 수 있다는 뜻이죠? 직선 위의 두 점과 직선 밖의 한 점을 이용해서 ①번과 같은 방법으로 평면을 만들 수 있겠죠?

③ 한 점에서 서로 만나는 두 직선이 있으면 평면을 만들 수 있어요. 각 직선에서 두 점을 가져오면 총 네 개의 점이 찍히겠죠? 그다음 네 점을 연결하면 사각형 모양의 평면이 생길 거예요. 물론 이걸 확장하면 매우 넓은 평면을 만들 수 있고요.

④ 서로 평행한 두 직선이 있으면 ③번과 같은 방법으로 평면을 만들 수 있어요.

평면의 결정조건

함께 보면 좋은 글

점과 직선의 위치관계, 두 직선의 위치관계
공간에서 두 직선의 위치관계, 평면과 직선의 위치관계
삼각형의 결정조건, 삼각형의 작도

정리해볼까요

평면의 결정조건

  • 한 직선 위에 있지 않은 서로 다른 세 점
  • 한 직선과 직선 위에 있지 않은 한 점
  • 한 점에서 만나는 두 직선
  • 서로 평행한 두 직선
<<    중1 수학 목차    >>
 
그리드형

기찻길은 선로가 두 개예요. 이 선로는 간격이 일정해서 아무리 멀리까지 가도 서로 만나지 않아요. 이렇게 한 평면 위에 있는 두 직선이 만나지 않을 때 두 직선은 평행하다고 해요.

평행한 두 직선을 줄여서 평행선이라고 하고 기호로는 //로 나타내요. 평행한 직선 두 개를 오른쪽으로 약간 기울여서 그린 모양이죠.

두 직선 l, m이 평행하면 l //이라고 쓰는 겁니다. 거꾸로 l // m이라고 되어있으면 l과 m이 평행하다는 뜻이고요.

평행선의 성질

평행선에는 중요한 성질 두 가지가 있는데, 바로 맞꼭지각, 동위각, 엇각에서 공부했던 동위각과 엇각이에요.

맞꼭지각은 마주 보고 있어서 각의 크기가 같다고 했어요. 그런데 동위각엇각은 크기가 다를 수 있지요. 하지만 평행선에서는 이게 조금 달라지거든요.

평행선에서 동위각의 크기는 같다.

평면 위에서 평행선과 다른 한 직선이 만나서 생기는 교각 중에는 맞꼭지각도 있고 동위각, 엇각이 있어요.

동위각, 엇각

위 그림은 평행하지 않은 두 직선 l, m이 다른 직선 n과 만났을 때 생기는 교각의 모습이에요. ∠d와 ∠h가 동위각이죠? 그런데 얼핏 봐도 두 각의 크기는 달라요.

다음은 평행선과 한 직선이 만나서 생기는 교각이에요.

평행선에서 동위각

∠a와 ∠b의 크기가 어떤가요?

아래에 있는 직선 m을 그대로 위로 밀어 올린다고 생각해보죠. 그대로 위로 올리면 l과 만나겠죠? 두 직선은 평행하니까 단순히 만나기만 하는 게 아니라 완전히 일치하게 돼요. l이 m과 일치하니까 l과 이루는 ∠a이나 m과 이루는 ∠b가 서로 같은 건 당연하지요.

종이를 대서 실제로 위로 움직여서 확인 보세요.

평행선에서 엇각의 크기는 같다.

엇각은 서로 대각선 방향에 있는 각이라고 했어요. 그리고 엇각을 찾는 다른 방법은 동위각의 맞꼭지각을 찾는 거라고 했지요?

앞에서 동위각은 서로 크기가 같다고 했어요. 그리고 맞꼭지각도 서로 크기가 같죠? 따라서 원래 각의 동위각의 맞꼭지각인 엇각도 원래의 각과 크기가 같게 되는 거지요.

원래 각 = 동위각 = 맞꼭지각

평행선에서 엇각

위 그림에서 ∠b와 ∠c는 서로 엇각이에요.

∠b는 ∠a와 동위각이라서 크기가 같아요. ∠a와 ∠c는 맞꼭지각이니까 크기가 같죠.

∠b = ∠a = ∠c 관계가 있어서 결국 ∠b = ∠c가 되는 거죠.

평행선의 성질
평면 위의 평행선이 다른 직선과 만날 때
동위각의 크기가 같다
엇각의 크기가 같다.

다음 그림에서 l, m이 서로 평행일 때 x의 크기를 구하여라.

그림만 보면 위와 아래에 평행선이 있어요. 그런데 구하는 각은 평행선에 있는 각이 아니라 중간에 떠 있는(?) 각이죠? 이럴 때는 각에 선을 하나 그어주세요. 위, 아래에 있는 선과 평행해야 합니다. 그러면 총 세 개의 평행선이 생기는 거예요.

x가 새로 그은 선 때문에 둘로 나뉘었어요. 윗부분(①)과 아랫부분(②)을 더해서 x를 구해볼까요? 윗부분은 45°와 엇각이에요. 평행선에서 엇각은 크기가 같으니까 여기는 45°가 될 거예요.

아랫부분은 110° 부분을 볼까요? 110° 아래에 있는 각은 70°죠? 직선이니까 평각(180°)잖아요. 그럼 70°인 곳과 x의 아랫부분(②)은 동위각으로 크기가 같아요. 따라서 x의 아랫부분(②)은 70°예요.

x를 두 부분으로 나눴는데, ①은 45°, ②는 70°이니까 둘을 더해서 x = 115°네요.

평행선의 조건

어떤 두 직선이 있어요. 그 두 직선이 얼핏 봐서는 평행한 것처럼 보이지만 평행인지 아닌지 확신할 수가 없어요. 이때 두 직선이 평행인지 아닌지 어떻게 판단할까요?

원리는 바로 앞에서 공부한 평행선의 성질 두 가지를 이용하는 거예요.

평행선은 다른 직선과 만나서 생기는 각 중에서 동위각과 엇각의 크기가 같아요..

그러니까 그림에 선이 그어져 있다면 그 각을 보고, 동위각과 엇각의 크기가 같으면 두 직선은 평행선이고 다르면 평행선이 아닌 것이죠.

평행선에서는 동위각과 엇각이 같다. → 동위각과 엇각이 같은 두 직선은 평행선

함께 보면 좋은 글

맞꼭지각, 동위각, 엇각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
평면의 결정 조건

정리해볼까요

평행선의 성질

  • 동위각의 크기가 같다.
  • 엇각의 크기가 같다.
<<    중1 수학 목차    >>
 
그리드형

직선의 정의와 직선이 만날 때 생기는 점(교점), 직선이 만나서 생기는 각(교각)에 대해서 공부하고 있어요.

이제는 두 직선이 만날 때 두 직선의 관계에 대해서 알아보죠. 두 직선이 만나므로 평행한 두 직선은 아니고 그렇다고 일치하는 두 직선도 아니에요.

두 직선이 만나는 교점에서 교각이 90°인 직각일 때 어떤 의미를 가지는지 공부해봐요.

수직과 직교, 수선

직선 AB와 직선 CD가 만나는 점은 교점이라고 하고, 만나서 생기는 각은 교각이라고 해요. 그런데 이 교각이 90°일 때가 있는데, 이때를 두 직선이 직교한다고 해요. 직각으로 만난다는 말이지요.

당연한 얘기지만 한 교각이 90°면 두 직선이 만나서 생기는 모든 교각이 90°에요.

직선 AB와 직선 CD가 직교할 때, 두 직선은 서로 수직이라고 말해요. 아주 따지고 들어가면 의미의 차이가 있지만 그냥 직교와 수직은 같은 뜻이라고 생각해도 좋아요.

수직, 직교

수학에서는 의미를 쉽게 알 수 있게 기호로 표시하죠. 수직, 직교는 기호로 ⊥로 표시해요. 모음인 ㅗ처럼 생겼죠? 세로인 직선과 가로인 직선이 직각으로 만났을 때를 기호로 표시한 거라는 걸 알 수 있겠지요?

직선 AB와 직선 CD가 수직이면 수직, 직교 기호로 씁니다.

직선 AB와 직선 CD가 직교할 때, 한 직선을 다른 직선의 수선이라고 해요. 수직인 선이라는 뜻이죠. 직선 AB는 직선 CD의 수선이고, 직선 CD는 직선 AB의 수선이 되는 거죠.

직교, 수직, 수선은 두 직선의 교각이 90°일 때라는 걸 기억하세요.

수선의 발

한 직선 l과 직선 위에 있지 않은 한 점 P가 있다고 해보죠. 이때 점 P 을 지나는 새로운 직선을 그리는데, 직선 l에 수직인 직선, 즉 수선을 그었을 때 교점이 생기겠죠? 이 점을 H라고 할게요. 교점 H에는 교각이 몇 °일까요? 당연히 90°겠죠? 수선을 그었으니까요.

이때 이 점 H를 수선의 발이라고 해요. 새로 그은 직선이 직선 l의 수선이잖아요.

그냥 간단하게 두 직선이 수직으로 만나는 교점을 수선의 발이라고 생각하면 돼요. 수선의 발은 교점 중에서도 수직(직교)일 때 교점이라는 걸 알아두세요.

수선, 수선의 발

점과 직선 사이의 거리

두 점 사이의 거리, 중점에서 점 A와 점 B 사이의 거리는 두 점을 연결하는 가장 짧은 선, 즉 선분 AB의 길이라는 걸 공부했어요.

그럼 점 P와 직선 l 사이의 거리는 어떻게 구할까요. 마찬가지로 점 P와 직선 l을 연결하는 가장 짧은 선의 길이를 구하면 돼요. 그런데 가장 짧은 선이 뭐냐면 바로 직선 l에 수직인 선이에요. 직선 l이 수직인 선과 만나는 교점을 수선의 발, H라고 했어요. 그러니까 점 P와 직선 l 사이의 거리는 점 P와 점 H 사이의 거리가 되고, 이건 선분 PH의 길이와 같아요.

점과 직선 사이의 거리

점과 직선 사이의 거리 = 점과 수선의 발 사이의 거리 = 선분 PH의 길이

점과 직선 사이의 거리를 구할 때는 점에서 직선에 수선을 그어 수선의 발을 찾고, 점과 수선의 발 사이의 길이를 구하면 되는 거죠.

다음 그림을 보고 물음에 답하여라.
선분 AB의 길이 = 5cm, 선분 BC의 길이 = 10cm, 선분 AD의 길이 = 4cm이다.
(1) 선분 AD의 수선을 모두 구하여라.
(2) 점 A와 선분 BC의 거리를 구하여라.

(1) 선분 AD의 수선을 구하라고 했네요. 수선은 수직인 직선이에요. 선분 AD에 수직인 직선은 빨간 직각 표시가 있는 선분 BD와 선분 CD, 그리고 이 둘을 포함한 선분 BC가 되겠네요.

(2) 점 A와 선분 BC의 거리를 구하라고 했는데요. 점과 선분의 거리는 점에서 선분으로 수선을 긋고, 수선과 직선이 만나는 교점(수선의 발)과 점 사이의 거리를 구하는 거죠? 점 A에서 선분 BC에 그은 수선은 선분 AD가 되고요. 이 수선의 발은 점 D에요. 점 A에서 선분 BC까지의 거리는 선분 AD의 길이가 되고 이건 문제에서 4cm라고 줬네요. 따라서 점 A와 선분 BC 사이의 거리는 4cm네요.

함께 보면 좋은 글

두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
맞꼭지각, 동위각, 엇각
작도, 수직이등분선의 작도

정리해볼까요

직교, 수직

  • 두 직선의 교각이 90°일 때 두 직선은 직교
  • 두 직선은 서로 수직
  • 한 직선을 다른 직선의 수선
  • ⊥로 표시, 수직, 직교 기호
  • 수선의 발: 직교하는 두 직선의 교점
  • 점과 직선 사이의 거리: 점 P에서 직선 l에 내린 수선의 길이 = 점 P와 수선의 발 H 사이의 거리 = 선분 PH의 길이
<<    중1 수학 목차    >>
 


그리드형

맞꼭지각, 동위각, 엇각

2012. 7. 21. 12:30

평각, 직각, 예각, 둔각에서 각이란 무엇인지, 크기에 따라 각을 어떻게 나누는지 알아봤어요. 이번 글에서는 다른 각을 위치에 따라 구분하는 방법에 대해서 알아보죠.

이번 글에서는 맞꼭지각, 동위각, 엇각을 설명할 건데, 이게 글로 설명하기는 참 어려운 내용이에요. 그래서 정신줄 꽉 잡고 한 줄 한 줄 정독해야 이해할 수 있어요. 설명과 그림을 왔다 갔다 하면서 주의 깊게 보세요.

아마 한 번 봐서는 이해하기가 어려울 거예요.

맞꼭지각

선과 선, 면과 선이 만나는 점을 뭐하고 했지요? 교점이라고 했어요. 면과 면이 만나서 생기는 선은 교선이라고 했고요.

그럼 교각은 뭘까요? 만나서 생기는 각이겠지요. 뭐가 만나느냐면 바로 두 직선이 만나요. 그러니까 선과 선이 만나는 교점에 각이 생긴다는 얘기지요. 근데 교각은 항상 네 개가 생겨요. 그래서 이 네 개를 전부 다 교각이라고 합니다.

아래는 두 직선 l과 m이 만나서 생기는 교각을 표시한 그림이에요. a, b, c, d 모두 교각입니다.

교각, 맞꼭지각

이때 네 개의 교각 중에서 서로 마주 보고 있는 두 각을 서로의 맞꼭지각이라고 해요. 꼭짓점을 맞대고 있다는 뜻이죠. ∠a와 ∠c가 서로 마주 보고 있죠? 그래서 ∠a와 ∠c가 맞꼭지각이고, ∠b와 ∠d도 서로 맞꼭지각이에요.

맞꼭지각은 서로 크기가 같아요. ∠a = ∠c이고 ∠b = ∠d란 얘기죠

∠a + ∠b = ∠a + ∠d = 180° (평각)
∠b = ∠d

∠a + ∠b = ∠b + ∠c = 180° (평각)
∠a = ∠c

동위각, 엇각

맞꼭지각이 두 직선이 만나서 생기는 각이라면, 동위각과 엇각은 세 직선이 만나는 곳에서 생겨요. 두 직선 l, m이 다른 직선 n과 만나면 교각이 8개가 생겨요. l, n이 만나는 곳에서 4개, m, n이 만나는 곳에서 4개요.

동위각은 같은 위치에 있는 각이라는 뜻이에요. 교점을 중심으로 해서 같은 위치에 있다는 뜻인데요. 교점을 중심으로 해서 상하좌우의 위치가 같으면 동위각이라고 해요.

동위각을 쉽게 찾는 방법을 알려드릴게요. 동위각은 두 직선 l, m과 다른 직선 n이 만나서 생기는 거라고 했어요. 다른 직선 n을 가로축(또는 세로축)으로 놓으세요. 그런 다음 교점을 중심으로 오른쪽 위, 오른쪽 아래, 왼쪽 위, 왼쪽 아래 등으로 위치를 비교하면 동위각을 금방 찾을 수 있어요.

동위각

아래 그림에서는 n을 세로로 생각해보죠. ∠a는 직선 l과 n이 만나는 교점의 왼쪽 위에 있고, ∠b는 왼쪽 아래에 있죠? ∠c는 오른쪽 아래, ∠d는 오른쪽 위에 있어요. ∠e는 직선 m과 n이 만나는 교점의 왼쪽 위, ∠f는 왼쪽 아래, ∠g는 오른쪽 아래, ∠h는 오른쪽 위에 있어요.

동위각, 엇각

동위각을 찾아보죠. 왼쪽 위에 있는 동위각은 ∠a, ∠e, 왼쪽 아래 있는 동위각은 ∠b, ∠f, 오른쪽 아래 있는 동위각은 ∠c, ∠g, 오른쪽 위에 있는 동위각은 ∠d, ∠h가 되는 거예요.

동위각 찾는 건 몇 번 해봐서는 금방 이해가 되지 않으니까 연습을 많이 하세요.

엇각은 서로 엇갈린 위치에 있는 각이에요. 맞꼭지각도 아니고 동위각도 아닌 각이죠. 한 가지 중요한 게 있는데, 엇각은 8개의 각 모두에 있는 게 아니에요. 교점이 하나만 있는 두 직선 l, m 사이에 있는 4개의 각(∠b, ∠c, ∠e, ∠h) 사이에서만 찾아요. 선 밖의 각 4개는 전혀 생각하지 마세요.

엇각은 대각선 방향에 있는 각을 찾으면 되는데, ∠c의 엇각을 찾아볼까요? ∠c는 오른쪽 아래에 있으니까 대각선 방향은 왼쪽 위가 되겠네요. 왼쪽 위에 있는 각 즉, 대각선 방향에 있는 각은 ∠e죠? 그래서 ∠c와 ∠e가 서로 엇각이에요. ∠b는 왼쪽 아래에 있으니까 오른쪽 위에 있는 ∠h와 엇각이고요.

엇각을 찾는 다른 방법은 동위각의 맞꼭지각을 찾으면 돼요. ∠c의 동위각은 ∠g인데, ∠g의 맞꼭지각이 ∠e에요. 이 방법으로 찾아도 똑같이 ∠e가 나와요. 편한 방법으로 연습하세요.

아래 그림을 보고 다음을 구하여라.
(1) ∠a의 동위각
(2) ∠g의 엇각
(3) ∠i와 크기가 각
동위각, 엇각, 맞꼭지각 예제

이 문제는 어려운 유형의 문제에요. 교점이 3개이고 교각이 12개나 되거든요. 이렇게 교점이 세 개인 문제에서는 교점을 하나 가려서 없다고 생각하고 남은 교점 두 개에서 동위각과 엇각을 찾으세요. 그다음 다른 교점을 가리고 찾고, … 이렇게 여러 번 하는 방법으로 풀어야 해요.

(1) ∠a의 동위각을 찾으라고 했는데, 먼저 l과 m이 만나는 교점을 가리고 해보죠. n을 세로축으로 놓으면 ∠a의 동위각은 ∠e라는 걸 찾을 수 있어요.

그다음에는 m, n이 만나는 교점을 가려보세요. 그림을 왼쪽으로 약간 기울여서 l을 가로축으로 놓으면 ∠a는 왼쪽 위에 있는 각이 돼요. ∠i, ∠j, ∠k, ∠o 중에서 왼쪽 위에 있는 각은 어떤 각일까요? ∠i가 왼쪽 위에 있는 각이에요.

그래서 ∠a의 동위각은 ∠e와 ∠i네요.

(2) 엇각은 두 직선 사이에 있는 경우에만 찾는다고 했어요. 그림의 왼쪽 부분(직선 l과 n의 교점, 직선 m과 n의 교점)에서는 엇각을 고려할 수 있는 게 ∠b, ∠c, ∠e, ∠h뿐이에요. 여기에서는 ∠g는 엇각을 얘기하지 않으니까 이곳에 ∠g의 엇각은 없어요.

이번에는 직선 m과 n의 교점, 직선 l과 m의 교점을 생각해보죠. 두 직선 사이에 있는 각은 ∠h, ∠g, ∠j, ∠k네요. 여기에는 ∠g가 있어서 엇각을 고려해볼 수 있어요. 엇각은 대각선 방향에 있는 각이니까 오른쪽 아래에 있는 ∠g의 엇각은 왼쪽 위에 있는 ∠j가 되는군요.

(3) 직선이 만나는 곳에 교각이 생기는데 크기가 같으면 서로 맞꼭지각이어야 해요. ∠i와 맞꼭지각인 것은 ∠k니까 ∠i와 ∠k의 크기가 같아요.

글 처음에 말한 것처럼 동위각, 엇각을 찾는 건 쉬운 문제가 아니에요. 위에서 알려드린 몇 가지 팁을 이용해서 연습을 많이 해보세요.

함께 보면 좋은 글

두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
평행선의 성질, 평행선에서 동위각과 엇각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리

정리해볼까요

맞꼭지각

  • 교각: 두 직선이 만나서 생기는 각. 4개
  • 맞꼭지각: 교각 중에서 서로 마주보고 있는 각
  • 맞꼭지각은 서로 크기가 같다

동위각, 엇각

  • 두 직선과 다른 한 직선이 만나서 생기는 각. 교점 2개, 교각 8개
  • 동위각: 교점을 중심으로 같은 위치에 있는 각
  • 엇각: 서로 엇갈려 있는 각. 두 직선 사이에 있는 각만을 대상으로 함.
  • 동위각, 엇각 쉽게 찾는 법: 두 직선과 만나는 한 직선을 가로축(또는 세로축)으로 놓고 왼쪽 위, 왼쪽 아래, 오른쪽 위, 오른쪽 아래의 네 방향으로 나누어 비교
 
그리드형

평각, 직각, 예각, 둔각

2012. 7. 20. 12:30

이번 글에서는 에 대해서 알아볼 거예요. 초등학교 다닐 때에는 두 직선이 만나서 생기는 게 각이라고 공부했어요

이제 중학생이니까 조금 다르게 그리고 조금 더 정확하게 각의 의미를 공부할 거예요.

각의 정의와 각을 기호로 어떻게 표시하는지 각의 종류에는 무엇이 있는지 알아보죠.

각의 정의, 각의 표시

은 한 점 O에서 시작하는 두 반직선 OA, OB로 이루어지는 도형을 말하고 이것을 각 AOB라고 불러요.

각 rㄴㄷ과 각 ㄷㄴr은 같은 거잖아요. 각 AOB와 각 BOA는 같은 거예요.

각은 기호로 ∠ 로 표시해요. "니은"자 모양인데, 옆으로 약간 기울어져 있어요. 그래서 각 AOB는 ∠AOB로 쓰고, 각 BOA는 ∠BOA로 써요.

각은 세 알파벳을 모두 쓰지 않고, 각이 있는 부분의 꼭짓점의 알파벳을 이용해서 ∠O라고 하기도 하고, 각의 크기를 이용해서 ∠a로 나타내기도 해요. 똑같은 각을 나타내는 방법이 여러 가지인데 모두 다 알고 있어야 해요.

∠AOB = ∠BOA = ∠O = ∠a

각의 정의

각의 크기와 종류

각의 크기는 ∠AOB에서 반직선 OA가 점 O를 중심으로 반직선 OB까지 회전한 정도를 말하지요. 쉽게 말해서 두 반직선 사이의 벌어진 정도인데, 각의 크기를 알 때는 숫자로 표시하지만 정확한 값을 알 수 없을 때 대게 알파벳 소문자로 표시해요.

각은 그 크기에 따라 종류를 나눠요.

평각은 평평한 각이에요. 평평하다는 건 굴곡이 없이 고른 걸 말하잖아요. 그러니까 각을 이루는 두 반직선 OA와 OB가 직선을 이룰 때를 평각이라고 해요. 물론 점 O는 A와 B 사이에 있어야겠죠? 평각은 크기가 180°에요.

직각은 직각삼각형, 직사각형에서 볼 수 있어요. 직각은 평각의 1/2인 90°를 말해요.

예각은 0°보다 크고 90°보다 작은 각을 말해요. 0°는 예각이 아니에요. 각을 나타내는 기호인 ∠은 예각의 모양을 작게 그린 거예요.

둔각은 90°보다 크고 180°보다 작은 각을 말해요.

평각, 직각, 예각, 둔각

각을 크기에 따라서 네 가지로 나눌 수 있겠죠?

각의 크기에 따른 각의 분류, 평각, 직각, 예각, 둔각

다음 그림에서 예각을 모두 찾으시오.

예각은 0°보다 크고 90°보다 작은 각이에요. 그림에서 90°보다 작은 각을 찾아보죠.
먼저 점 A에서 생기는 각 중 90°보다 작은 각은 ∠CAF, ∠EAF(=∠BAF) 두 개네요.
점 B, C, D에는 직각밖에 없어서 넘어가고요.
점 E에서는 ∠BEF가 예각이고, ∠AEF는 둔각이네요.
점 F에서는 ∠AFC, ∠AFE, ∠EFC의 예각 세 개, ∠AFD, ∠DFE의 둔각이 두 개 있어요.
따라서 예각은 ∠CAF, ∠EAF, ∠BEF, ∠AFC, ∠AFE, ∠EFC의 총 여섯 개입니다.

함께 보면 좋은 글

두 점 사이의 거리, 중점
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
작도, 수직이등분선의 작도

정리해볼까요

  • 점 O를 시작점으로 하는 반직선 OA와 OB로 이루어진 도형
  • 각 AOB, 각 BOA, 각 O, 각 a
  • ∠ AOB, ∠ BOA, ∠ O, ∠ a
  • 0° ~ 예각 ~ 직각(90°) ~ 둔각 ~ 평각(180°)
 
그리드형

+ 최근글