로그함수

그래프를 공부하면 항상 그래프의 이동을 공부했어요. 로그함수의 그래프를 공부했으니 로그함수 그래프의 평행이동과 대칭이동에 대해서 공부할 차례죠.

이차함수든 지수함수든 로그함수든 어떤 함수가 됐든 그래프의 평행이동과 대칭이동은 별거 없어요. 원리는 다 똑같아요. 지금까지 계속 해왔던 거니까 간단히 짚고 넘어가죠.

여기서 공부하는 그래프를 외울 필요는 없어요. 그래프를 보고 "이건 어느 방향으로 어떻게 이동했구나."를 알면 돼요. 물론 함수식을 보고 "그래프가 어디에 어떻게 그려지겠구나."를 예상할 수 있어야 하고요.

로그함수 그래프의 평행이동

점과 도형의 평행이동에서 했던 내용을 그대로 적용하면 돼요.

  • x축으로 p만큼 평행이동하면 x 대신 x - p 대입
  • y축으로 q만큼 평행이동하면 y 대신 y - q 대입
  • x축으로 p만큼, y축으로 q만큼 평행이동하면 x 대신 x - p 대입, y 대신 y - q 대입

로그함수 y = logax (a > 0, a ≠ 1)그래프를 평행이동하면 어떻게 되는지 정리해보죠.

  • 처음: y = logax
  • x축으로 p만큼 평행이동한 그래프
    • x 대신 x - p 대입
    • y = loga(x - p)
  • y축으로 q만큼 평행이동한 그래프
    • y 대신 y - q 대입
    • y - q = logax → y = logax + q
  • x축으로 p만큼, y축으로 q만큼 평행이동한 그래프
    • x 대신 x - p, y 대신 y - q 대입
    • y - q = loga(x - p) → y = loga(x - p) + q

아래는 로그함수 y = logax (a > 1)의 그래프를 x축으로 p만큼, y축으로 q만큼 평행이동한 그래프예요. 각 그래프의 오른쪽 아래에 식이 쓰여 있어요. 0 < a < 1일 때의 그래프도 원리는 같아요.

로그함수 그래프  로그함수 그래프의 평행이동 - x축 방향
로그함수 그래프의 평행이동 - y축 방향 로그함수 그래프의 평행이동 - x, y축 방향

로그함수 그래프의 대칭이동

로그함수 그래프의 대칭이동은 x축, y축, 원점에 대하여 대칭이동에서 했던 내용과 똑같아요.

  • y축에 대하여 대칭이동하면 x 대신 -x 대입
  • x축에 대하여 대칭이동하면 y 대신 -y 대입
  • 원점에 대하여 대칭이동하면 x 대신 -x 대입, y 대신 -y 대입
  • y = x에 대하여 대칭이동하면 x 대신 y 대입, y 대신 x 대입

참고로 마지막에 있는 y = x에 대하여 대칭이동을 보죠. 로그함수 그래프를 y = x에 대칭이동하면 지수함수의 그래프가 된다는 건 로그함수와 로그함수의 그래프에서 공부했어요.

로그함수 y = logax (a > 0, a ≠ 1)그래프를 대칭이동하면 어떻게 되는지 정리해보죠.

  • 처음: y = logax
  • y축에 대하여 대칭이동한 그래프
    • x 대신 -x 대입
    • y = loga(-x)
  • x축에 대하여 대칭이동한 그래프
    • y 대신 -y 대입
    • -y = logax → y = -logax
  • 원점에 대하여 대칭이동한 그래프
    • x 대신 -x, y 대신 -y 대입
    • -y = loga(-x) → y = -loga(-x)

아래는 로그함수 y = logax (a > 1)의 그래프를 x축, y축, 원점에 대하여 대칭이동한 그래프예요. 0 < a < 1일 때의 그래프도 원리는 같아요.

로그함수 그래프  로그함수 그래프의 대칭이동 - y축에 대하여 대칭
로그함수 그래프의 대칭이동 - x축에 대하여 대칭  로그함수 그래프의 대칭이동 - 원점에 대하여 대칭

함께 보면 좋은 글

로그함수와 로그함수의 그래프
지수함수 그래프의 평행이동과 대칭이동
로그의 성질, 로그의 성질 증명
로그의 밑 변환 공식
로그의 성질 두 번째, 밑 변환 공식 이용

정리해볼까요

로그함수 y = logax (a > 0, a ≠ 1) 그래프의 평행이동

  • 처음: y = logax
  • x축으로 p만큼 평행이동한 그래프
    • x 대신 x - p 대입
    • y = loga(x - p)
  • y축으로 q만큼 평행이동한 그래프
    • y 대신 y - q 대입
    • y - q = logax → y = logax + q
  • x축으로 p만큼, y축으로 q만큼 평행이동한 그래프
    • x 대신 x - p, y 대신 y - q 대입
    • y - q = loga(x - p) → y = loga(x - p) + q

로그함수 y = logax (a > 0, a ≠ 1) 그래프의 대칭이동

  • 처음: y = logax
  • y축에 대하여 대칭이동한 그래프
    • x 대신 -x 대입
    • y = loga(-x)
  • x축에 대하여 대칭이동한 그래프
    • y 대신 -y 대입
    • -y = logax → y = -logax
  • 원점에 대하여 대칭이동한 그래프
    • x 대신 -x, y 대신 -y 대입
    • -y = loga(-x) → y = -loga(-x)
<<    수학 1 목차    >>
 
그리드형

로그함수와 로그함수의 그래프에 대해서 알아보죠.

로그의 정의에서 공부했던 것처럼 로그와 지수(거듭제곱)는 서로 깊은 관계가 있어요. 따라서 로그함수와 지수함수도 아주 깊은 관계가 있죠. 그래프도 물론이고요.

역함수와 역함수의 그래프의 성질에 대해서 알고 있으면 로그함수와 지수함수의 관계를 조금 더 쉽게 이해할 수 있어요.

로그함수

역함수, 역함수 구하는 법에서 역함수 구하는 방법 공부했었죠?

지수함수 y = ax (a > 0, a ≠ 1)의 역함수를 구해보죠.

  1. 함수 y = f(x)가 일대일 대응인지 확인
    지수함수 y = ax (a > 0, a ≠ 1)에서 정의역은 실수의 집합이고, 치역은 양수의 집합이었어요. 그리고 일대일 대응이죠.
  2. y = f(x)를 x에 대하여 푼다. → x = f-1(y)
    로그의 정의에 따르면 y = ax → x = logay
  3. x와 y를 바꾼다. → y = f-1(x)
    y = logax
  4. 함수 f의 정의역과 치역을 서로 바꾼다.
    정의역은 양수의 집합, 치역은 실수의 집합

지수함수의 역함수를 구했더니 a를 밑으로 하는 로그가 되었죠? 이 로그를 로그함수라고 해요.

로그함수
y = logax (a > 0, a ≠ 1)
지수함수 y = ax (a > 0, a ≠ 1)의 역함수
정의역은 양수 전체의 집합, 치역은 실수 전체의 집합

로그함수의 그래프

로그함수의 그래프를 한 번 그려보죠.

로그함수는 지수함수의 역함수예요. 역함수의 그래프는 y = x에 대하여 대칭이에요. 지수함수 y = ax의 그래프를 y = x에 대칭이동한 그래프가 로그함수 y = logax의 그래프죠.

지수함수 y = ax (a > 0, a ≠ 1)의 그래프는 (0, 1), (1, a)를 지나고 x축이 점근선이었어요.

그리고 a의 범위에 따라 두 가지 형태가 있었죠. a > 1일 때는 x가 증가할 때, y도 증가하고, 0 < a < 1일 때는 x가 증가하면 y는 감소해요.

로그함수의 그래프 - a > 1일 때      로그함수의 그래프 - 0 < a < 1일 때

왼쪽이 a > 1일 때로 얇은 빨간선이 y = ax의 그래프, 두꺼운 파란선이 y = logax의 그래프예요. 로그함수의 그래프도 x가 증가하면 y가 증가하네요. 로그함수의 그래프는 y축에 점점 가까워지니까 y축이 점근선이에요.

오른쪽이 0 < a < 1일 때로 지수함수와 로그함수의 그래프에서 x가 증가하면 y가 감소해요.

지수함수 y = ax, 로그함수 y = logax (a > 0, a ≠ 1)를 비교해보죠.

지수함수 y = ax와 로그함수 y = logax의 그래프 비교
a > 0, a ≠ 1 y = ax y = logax
정의역 {x|x는 실수} {x|x > 0인 실수}
치역 {y|y > 0인 실수} {y|y는 실수}
(0, 1) (1, 0)
(1, a) (a, 1)
점근선 x축 y축
증가, 감소 a > 1일 때, x가 증가하면 y도 증가
0 < a < 1일 때, x가 증가하면 y는 감소
역함수 두 함수는 서로 역함수로 그래프는 y = x에 대하여 대칭

함께 보면 좋은 글

지수함수, 지수함수의 그래프
로그함수 그래프의 평행이동과 대칭이동
역함수, 역함수 구하는 법
역함수의 성질, 역함수의 그래프

정리해볼까요

로그함수와 그래프

  • y = logax (a > 0, a ≠ 1)
  • 지수함수 y = ax (a > 0, a ≠ 1)의 역함수, y = x에 대하여 대칭
  • 정의역은 양수 전체의 집합, 치역은 실수 전체의 집합
  • (1, 0), (a, 1)을 지난다.
  • 점근선은 y축
  • a > 1일 때, x가 증가하면 y도 증가
    0 < x < 1일 때, x가 증가하면 y는 감소
<<    수학 1 목차    >>
 
그리드형

고등학교 수학 1 목차

2014. 2. 3. 18:00

고등수학 교육과정이 자주 바뀌어 학년별 구분보다 단원별 구분이 더 효율적이라고 판단되어 목차를 일부 수정합니다. 아래 나와있는 목차에서 필요한 단원의 글만 골라서 공부하세요.

수학 목차

  1. 행렬
  2. 지수함수와 로그함수
  3. 수열
  4. 수열의 극한
    • 무한수열의 극한
    • 무한급수
그리드형

+ 최근글