그래프와 행렬의 관계에 대해서 알아보죠.
그래프를 행렬로 바꿔볼 거예요. 그래프를 행렬로 바꿨을 때 행렬이 그래프의 특징들을 잘 드러내는지도 알아볼 거예요. 행렬이 나타내는 그래프의 특징을 보고 그래프를 예상할 수 있어야 해요.
정말 어려울 것 같지만 따지고 보면 별거 아닌 내용이에요.
행렬과 그래프 - 그래프를 행렬로 나타내기
다음과 같은 그래프가 있다고 해보죠.
한 점이 다른 점과 변으로 연결되어 있으면 1, 연결되어 있지 않으면 0이라고 써서 표로 나타내 보죠. 예를 들어 A는 B와 변으로 연결되어 있으니까 1, D와는 변으로 연결되어 있지 않으니까 0이라고 쓰는 거예요.
A | B | C | D | |
A | 0 | 1 | 1 | 0 |
B | 1 | 0 | 1 | 0 |
C | 1 | 1 | 0 | 1 |
D | 0 | 0 | 1 | 0 |
이번에는 이 표를 행렬로 나타내보죠.
4차 정사각형렬이네요. (꼭짓점의 개수) × (꼭짓점의 개수) 행렬이죠.
이 행렬은 왼쪽 위에서 오른쪽 아래로 그어지는 대각선에 대해서 대칭이에요. A와 B가 변으로 연결되어 있으면 B와 A도 연결되어 있어서 같은 값을 가지니까요.
행렬의 성분으로 표현하자면 (i, j)의 성분 = (j, i)의 성분이 되는 거예요.
반대로 행렬만 보고 그래프의 특징을 알아낼 수 있나요?
예를 들어 이 행렬은 4차 정사각행렬이에요. 꼭짓점이 4개 있다는 뜻이에요.
변의 개수를 알 수 있을까요? 변은 꼭짓점과 꼭짓점을 연결한 선이에요. 행렬에서 1이 의미하는 건 두 꼭짓점 사이가 변으로 연결되어 있다는 뜻이죠? 그래서 행렬에 있는 1을 모두 더하면 돼요. 하지만 AB와 BA를 모두 1로 나타냈으니까 중복되는 걸 빼려면 행렬에서 1을 모두 더한 값을 2로 나눠줘야 하죠.
변의 개수 = (행렬의 모든 성분의 합) ÷ 2
한 꼭짓점에서 다른 꼭짓점에 연결된 변의 개수도 구할 수 있어요. 행렬에서 1은 다른 꼭짓점과 연결되었는지를 나타내는 거니까 A에서 다른 꼭짓점으로 연결된 변의 개수는 A가 있는 제 1 행의 모든 성분을 다 더한 값과 같아요.
꼭짓점에 연결된 변의 개수 = 해당 꼭짓점이 나타내는 행(또는 열)의 모든 성분의 합
A에 연결된 변의 개수는 A를 나타내는 제 1 행 (또는 제 1 열)의 성분을 모두 더한 2가 되는 거죠.
행렬의 성분과 경우의 수
행렬을 P라고 해볼게요.
P =
p12 = 1이 의미하는 건 A와 B가 변으로 연결되어 있다는 뜻이죠.
P를 제곱했더니 위와 같은 행렬이 만들어졌어요. P는 두 꼭짓점이 서로 변으로 연결되어 있는지 아닌지를 나타내요. 즉 1이면 한 꼭짓점에서 다른 꼭짓점으로 이동할 때 변을 하나만 지나는 된다는 걸 말하죠. P2은 한 꼭짓점에서 다른 꼭짓점으로 이동할 때 변을 두 번 지나면 된다는 걸 의미해요. 여기서는 1이 아닌 2, 3이라는 숫자도 있죠? 이건 경우의 수를 말해요.
p11 = 2죠? A에서 변을 두 개 지나서 A로 오는 방법이 두 가지가 있다는 얘기예요. A - B - A, A - C - A의 두 가지예요.
p21 = 1이죠? B에서 변을 두 개 지나서 A로 가는 방법이 한 가지가 있다는 얘기예요. B - C - A뿐이네요.
Pn의 pij = k (n, k는 자연수)
→ i에서 n개의 변을 지나서 j로 가는 방법은 k가지이다.
그래프와 행렬 1 - 그래프에서 경로에는 한 번 지나간 변은 다시 지나지 않는 것으로 한다고 했는데 행렬에서는 한 번 더 지나는 것도 포함된다는 차이가 있어요.
다음 그래프를 보고 물음에 답하여라.
(1) 그래프를 행렬로 나타내어라.
(2) A에서 변을 두 개 지나서 B까지 가는 방법의 수를 구하여라.
표 그리는 건 그냥 생략하고 바로 행렬를 나타내보죠. 두 점이 변으로 연결되어 있으면 1, 연결되어 있지 않으면 0을 넣어요.
(2) A에서 B까지 변을 두 개 지난다고 했으니까 행렬을 제곱해야겠네요.
A에서 B까지 이동하는 걸 나타내는 성분은 1행 2열의 성분이니까 2이네요. A - C - B, A - D - B의 두 가지 방법이 있어요.
함께 보면 좋은 글
그래프와 행렬 1 - 그래프
역행렬과 연립일차방정식
역행렬, 역행렬 공식
행렬의 곱셈, 행렬의 거듭제곱
행렬의 곱셈에 대한 성질