y절편

이제부터는 이차함수를 공부할 건데요. 이차함수뿐 아니라 이차함수를 중심으로 해서 이차방정식, 이차부등식 등 다른 이차식과의 관계를 공부할 거예요. 그래서 그 전에 공부했던 이차식들에 대해서 정확히 이해하고 있어야 해요. 이차방정식과 이차부등식은 고등학교에 올라와서 공부했으니까 이 글에서는 중학교 3학년 때 공부했던 이차함수의 내용에 대해서 간단히 총정리를 해보죠.

중요한 내용만 요약할 건데, 생각나지 않는 내용이나 이런 결과가 나오는 이유를 모르겠다면 관련 글을 보면서 이해해보세요. 다음 단원을 공부하려면 이 내용이 필수니까 절대로 잊어버려서는 안 돼요.

이차함수

함수 y = f(x)에서 우변 f(x)가 x에 관한 이차식일 때 이 함수를 이차함수라고 해요.(이차함수의 뜻)

  • 일반형: y = ax2 + bx + c (a ≠ 0)
  • 표준형: y = a(x - p)2 + q (a ≠ 0)

x의 이차항의 계수 a > 0이면 아래로 볼록한 그래프이고, a < 0이면 위로 볼록한 그래프죠. |a|가 커질수록 그래프의 폭이 좁아지고요. (이차함수 그래프의 특징)

표준형에서 꼭짓점의 좌표는 (p, q)예요. 축의 방정식은 x = p이고, y값의 범위는 y ≥ q이에요. (이차함수 그래프, y = a(x - p)2 + q)

일반형은 표준형으로 바꾼 후에 꼭짓점을 찾죠. 축의 방정식과 y값의 범위도 마찬가지고요. 일반형에서는 x, y절편을 찾기 쉬워요 x절편은 ax2 + bx + c = 0의 해이고, y절편은 c예요. (y = ax2 + bx + c의 그래프, 이차함수 일반형)

이차함수의 그래프를 보고 계수의 부호를 구하는 것도 했어요. (이차함수 계수 부호 찾기)

표준형 y = a(x - p)2 + q에서

  • a의 부호는 그래프가 볼록한 방향을 보고 판단해요.
    • 아래로 볼록이면 a > 0
    • 위로 볼록이면 a < 0

    이차함수 계수 부호 확인 - a 부호
  • p와 q의 부호는 꼭짓점의 좌표를 보고 판단해요.
    • 꼭짓점이 제 1 사분면에 있으면 p > 0, q > 0
    • 꼭짓점이 제 2 사분면에 있으면 p < 0, q > 0
    • 꼭짓점이 제 3 사분면에 있으면 p < 0, q < 0
    • 꼭짓점이 제 4 사분면에 있으면 p > 0, q < 0

    이차함수 계수 부호 확인 - p, q 부호

일반형 y = ax2 + bx + c에서 a, b, c의 부호를 구하는 방법이에요.

  • a의 부호는 그래프가 볼록한 방향을 보고 판단해요. 표준형에서와 똑같아요.
    • 아래로 볼록이면 a > 0
    • 위로 볼록이면 a < 0

    이차함수 계수 부호 확인 - a 부호
  • b의 부호는 좌동우이
    • 그래프의 대칭축이 y축의 왼쪽에 있으면 a와 b의 부호가 같고
    • 그래프의 대칭축이 y축의 오른쪽에 있으면 a와 b의 부호가 달라요.

    이차함수 계수 부호 확인 - b 부호
  • c는 y절편의 위치를 보고 판단해요.
    • y절편이 x축 위에 있으면 c > 0
    • y절편이 x축 아래에 있으면 c < 0

    이차함수 계수 부호 확인 - c 부호

이차함수의 식을 구하는 방법도 했어요. (이차함수 식 구하기)

  • 꼭짓점의 좌표(p, q)와 다른 한 점 (m, n)을 알려줬을 때: y = a(x - p)2 + q에 (m, n) 대입
  • 축이 방정식 x = p와 다른 두 점의 좌표 (x1, y1), (x2, y2)를 알려줬을 때: y = a(x - p)2 + q에 두 점의 좌표 대입
  • 세 점의 좌표(x1, y1), (x2, y2), (x3, y3)를 알려줬을 때: y = ax2 + bx + c에 세 점의 좌표를 대입
  • x축과의 교점(α, 0), (β, 0)과 다른 한 점 (m, n)을 알려줬을 때: y = a(x - α)(x - β)에 (m, n)을 대입

이차함수에서 최댓값과 최솟값은 꼭짓점의 y좌표에서 정해져요. 보통은 실수 전체에서 구하니까 최댓값과 최솟값 중 하나만 갖게 되지요. (이차함수의 최댓값과 최솟값)

  • a > 0이면 꼭짓점의 y좌표가 최솟값
  • a < 0이면 꼭짓점의 y좌표가 최댓값

여기까지가 중학교 3학년 때 공부했던 이차함수에요. 정리해놓으니까 양이 별로 안되네요. 그러니까 절대로 잊어버려서는 안돼요.

함께 보면 좋은 글

이차함수의 뜻, 이차함수란?
이차함수 그래프 그리기
이차함수 그래프의 특징
이차함수 그래프의 평행이동, y = ax2 + q
이차함수 그래프의 평행이동, y = a(x - p)2
이차함수 그래프, y = a(x - p)2 + q
이차함수 그래프의 대칭이동
y = ax2 + bx + c의 그래프, 이차함수 일반형
이차함수 식 구하기
y = ax2 + bx + c에서 a, b, c 부호 구하기, 이차함수 계수 부호 찾기
이차함수의 최댓값과 최솟값, 이차함수의 최대 최소
이차함수의 활용

 

두 직선의 위치관계는 중학교 1학년 때 두 직선의 위치관계에서 공부했어요. 이때는 그냥 위치 관계의 종류에 대해서만 공부했죠. 평행, 일치, 수직, 한 점에서 만나는 경우요.

이 글에서는 직선의 방정식과 위치관계 사이의 관계를 알아볼 거예요. 식을 보고 위치관계를 알아내고, 반대로 위치관계를 보고 직선의 방정식을 구할 수 있게요.

증명 과정이 약간 복잡할 수 있는데, 결론은 간단하니까 결론만 잘 외워두세요.

두 직선의 위치관계 - 평행, 일치

두 직선의 위치관계 - 평행

평행한 두 직선 y = mx + n, y = m'x + n'가 있어요. x축과 만나는 점을 각각 A, A'라고 해보죠. y축에 평행한 직선을 긋고 교점을 B, B'라고 하고요. 이 직선과 x축과의 교점을 H라고 하죠.

두 개의 직각삼각형이 생겨요. △ABH, △A'B'H

∠ABH = ∠A'B'H (평행선에서 동위각)
∠AHB = ∠A'HB' = 90°

두 직각삼각형은 AA 닮음이에요. 대응변의 길이를 비례식으로 표현해보죠.

으로 y = mx + n의 기울기 즉 m이에요. 는 y = m'x + n'의 기울기 즉 m'이고요. 두 직선이 평행하면 기울기가 같다는 것을 알 수 있어요.

m = m'일 때, n = n'이라면 어떨까요? 두 직선은 겹쳐지겠죠? 일치하게 되는 거예요. n ≠ n'이라면 그냥 평행하기만 하고 겹치지는 않고요.

두 직선의 위치관계 - 수직

두 직선의 위치관계 - 수직

y = mx + n과 y = m'x + n'이 수직으로 만날 때에요. 왼쪽 그림의 수직으로 만나는 두 그래프를 교점이 원점이 되도록 그대로 평행이동 시켜보죠. 평행이동 시킨다고 해도 두 직선이 수직으로 만나는 건 바뀌지 않으니까요. y = mx + n은 y = mx가 되고, y = m'x + n'은 y = m'x가 돼요.

여기에 x = 1이라는 직선을 그렸어요. x = 1과 y = mx의 교점을 A, x = 1과 y = m'x의 교점을 B라고 하면 △OAB가 생기는 데 직각삼각형이에요.

좌표평면 위의 두 점 사이의 거리를 이용하여 피타고라스의 정리를 적용해보죠. A(1, m), B(1, m'), O(0, 0)

두 직선이 수직일 때는 (두 직선의 기울기의 곱) =  -1이 되는군요.

수직으로 만나는 경우 말고 그냥 만나는 때는 언제일까요? 기울기가 같으면 평행이라고 했어요. 기울기가 같지 않으면 평행하지 않겠죠? 평행하지 않으면 두 직선은 만나게 돼요. 따라서 기울기가 같지 않으면 한 점에서 만나요.

두 직선의 위치관계
y = mx + n,y = m'x + n'
평행 기울기는 같고, y절편은 다르다 m = m', n ≠ n'
일치 기울기가 같고 y절편도 같다. m = m', n = n'
수직 (기울기의 곱) = -1 mm' = -1
한 점에서 만난다 기울기가 다르다 m ≠ m'

y = 2x + 3과 평행하고 (2, 1)을 지나는 직선의 방정식을 구하여라.

두 직선이 평행하려면 기울기가 같고 y절편이 달라야 하죠?

y = 2x + 3과 평행하다고 했으니 구하려는 직선의 방정식의 기울기는 2에요. y = 2x + n

y = 2x + n이 (2, 1)을 지난다고 했으니 식에 대입해보죠.

y = 2x + n
1 = 2 × 2 + n
n = -3

y = 2x - 3이네요.

y = ax + 3과 y = -x + b가 y축 위의 한 점에서 수직으로 만날 때, a + b의 값을 구하여라.

y축 위의 한 점에서 만난다고 했어요. y축 위의 점은 바로 y절편이죠? 따라서 y절편이 같다는 뜻이에요. y = ax + 3에서 y절편은 (0, 3)이므로 b = 3이네요.

두 직선이 수직이려면 (기울기의 곱) = -1이에요. a = 1이네요.

a + b = 1 + 3 = 4

함께 보면 좋은 글

직선의 방정식, 직선의 방정식 구하기
직선의 방정식의 일반형, 직선의 방정식의 표준형
절댓값 기호가 포함된 식의 그래프
좌표평면 위의 두 점 사이의 거리
[중등수학/중1 수학] - 점과 직선의 위치관계, 두 직선의 위치관계
[중등수학/중2 수학] - 직선의 방정식, 일차함수와 일차방정식
[중학수학/중3 수학] - 피타고라스의 정리

정리해볼까요

두 직선의 위치관계

  • y = mx + n, y = m'x + n'
  • 평행: m = m', n ≠ n'
  • 일치: m = m', n = n'
  • 수직: mm' = -1
  • 한 점에서 만난다.: m ≠ m'
<<  수학 1 목차  >>
 

우리 식을 얘기할 때 일반형, 표준형 이런 얘기하죠? 이차함수에서 y = ax2 + bx + c를 이차함수 일반형, y = a(x - p)2 + q를 표준형이라고 했잖아요. 일차방정식은 ax + b = 0, 이차방정식은 ax2 + bx + c = 0 이렇게 썼어요.

직선의 방정식도 마찬가지로 일반형, 표준형이 있어요. 직선의 방정식의 일반형과 표준형을 알아볼텐데, 용어가 크게 중요한 게 아니니까 공식처럼 외우지 말고 그 의미를 잘 이해하세요. 그냥 단순한 용어 정리일 뿐이에요.

직선의 방정식의 일반형

미지수가 x, y 두 개인 일차방정식은 ax + by + c = 0으로 써요. 이 방정식을 직선의 방정식, 직선의 방정식 구하기에서 사용했던 y = ax + b 꼴로 한 번 바꿔보죠.

ax + by + c = 0
by = -ax - c

b ≠ 0이면 양변을 b로 나눌 수 있어요.

기울기는 , y절편은 에요.

이때 a = 0이면 y = 가 되서 x축에 평행한 직선이에요.

b = 0이면 양변을 b로 나눌 수 없지요.

0y = -ax - c
ax = -c
x =

양변을 a로 나눴더니 y축에 평행한 직선이 되는군요.

이때 a = 0이면 어떻게 될까요? b = a = 0이 되어서 c = 0이라는 아무 것도 아닌 게 되어버렸네요.

방정식. ax + by + c = 0
방정식 ax + by + c = 0 a ≠ 0 a = 0
b ≠ 0
기울기는 , y절편은
y =
x축에 평행한 직선
b = 0 x =
y축에 평행한 직선
 

모양을 바꾸고 나니 모두 직선이라는 것을 알 수 있죠?

보통 좌변에 모든 항을 이항하고 우변에 0만 있는 형태를 일반형이라고 해요. 미지수가 2개인 방정식은 미지수가 x, y이고 차수가 1인 방정식인데 그래프가 직선이죠? 그래서 ax + by + c = 0의 꼴을 직선의 방정식의 일반형이라고 해요.

모양을 바꿨던 y = ax + b꼴을 직선의 방정식의 표준형이라고 해요. 기울기와 x, y절편을 쉽게 알아볼 수 있는 형태지요.

함께 보면 좋은 글

직선의 방정식, 직선의 방정식 구하기
[중등수학/중2 수학] - 직선의 방정식, 일차함수와 일차방정식
[중등수학/중2 수학] - 축에 평행한 직선의 방정식
[중등수학/중2 수학] - 일차함수 식 구하기, 직선의 방정식 구하기
[중등수학/중2 수학] - 그래프를 보고 직선의 방정식 구하기

정리해볼까요

직선의 방정식의 일반형

  • x, y에 대한 일차방정식 ax + by + c = 0의 그래프가 직선
  • 직선의 방정식의 일반형: ax + by + c = 0
<<  수학 1 목차  >>
 

직선의 방정식은 중학교 때 공부했던 직선의 방정식, 일차함수와 일차방정식에서 살짝 다뤄본 적이 있어요. 일차함수 그래프의 모양이 평면좌표에서 직선이기 때문에 직선의 방정식이라고 한다고 했죠.

직선의 방정식 구하기는 일차함수 식 구하기, 직선의 방정식 구하기와 방법이 같아요. 다만 이제는 조금 더 세련된(?) 방법으로 직선의 방정식을 구할 수 있어요.

공식이 여러 개 나오는데 어떻게 공식이 유도되는지 잘 보고 잊어버리지 않도록 외워두세요.

직선의 방정식 구하기

직선의 방정식은 일차함수와 모양이 같아요. y = ax + b 꼴이죠. 그러니까 직선의 방정식을 구한다는 말은 a, b를 구한다는 것과 같아요. a는 기울기, b는 y절편이죠?

여러 경우에 a, b를 어떻게 구하는지 방법을 알아보죠.

기울기와 y절편이 주어졌을 때 직선의 방정식 구하기

일차함수의 일반형 y = ax + b에서 기울기는 a, y절편이 b죠. 기울기와 y절편이 주어졌으면 이 내용을 거꾸로 해서 직선의 방정식을 바로 구할 수 있겠죠?

직선의 방정식 구하기 - 기울기와 y절편을 알 때

기울기가 m이고, y절편이 n인 직선의 방정식 ⇒ y = mx + n

기울기와 한 점의 좌표가 주어졌을 때 직선의 방정식 구하기

y = ax + b에서 a를 알려준 거예요. 그럼 b만 구하면 되죠? 알려준 기울기가 m이고, 한 점의 좌표가 A(x1, y1)라고 한다면 이 식에 대입해서 b를 구할 수 있어요.

y = ax + b
y1 = mx1 + b             (∵ 기울기 m과 (x1, y1) 대입)
b = y1 - mx1

y = ax + b
y = mx + (y1 - mx1)   (∵ 기울기 m과 b = y1 - mx1 대입)
y - y1 = mx - mx1
y - y1 = m(x - x1)

직선의 방정식 구하기 - 기울기와 한 점의 좌표를 알 때

기울기가 m이고, 한 점(x1, y1)을 지나는 직선의 방정식 ⇒ y - y1 = m(x - x1)

두 점을 지나는 직선의 방정식 구하기

두 점의 좌표 A(x1, y1), B(x2, y2)를 알면 기울기를 구할 수 있어요.

m = 기울기

기울기를 구했네요. 그럼 기울기와 두 점의 좌표를 알게 되었어요. 위에서 했던 공식에 바로 대입해보죠.

y - y1 = 기울기(x - x1)

직선의 방정식 구하기 - 두 점의 좌표를 알 때

그런데 한 가지 생각해야 할 게 기울기 기울기에서 x1 = x2라면 분모가 0이 되어버리죠? 그러니까 이 공식으로는 x1 = x2일 때 직선의 방정식을 구할 수 없어요.

x1 = x2일 때는 그래프를 보듯이 모든 x좌표가 x1으로 같고, y축에 평행한 x = x1이 돼요.

직선의 방정식 구하기 - 두 점의 좌표를 알 때 - 두 점의 x좌표가 같을 때

y1 = y2라면 어떨까요? 기울기가 0이겠죠? 모든 점의 y좌표가 y1으로 같고, x축에 평행인 y = y1이 돼요.

직선의 방정식 구하기 - 두 점의 좌표를 알 때 - 두 점의 y좌표가 같을 때

y - y1 = 기울기(x - x1)
y - y1 = 0             (∵ y1 = y2)
y = y1

공식을 이용해서 구할 수 있으니 굳이 따로 외울 필요는 없겠네요.

두 점 (x1, y1), (x2, y2)를 지나는 직선의 방정식
x1 ≠ x2일 때, y - y1 = 기울기(x - x1)
x1 = x2일 때, x = x1

x절편과 y절편이 주어졌을 때 직선의 방정식 구하기

x절편의 좌표 (a, 0), y절편의 좌표 (0, b)이 주어졌다고 해보죠. x절편과 y절편도 두 점의 좌표에요. 그러니까 위의 두 점을 지나는 직선의 방정식 공식에 넣어보죠.

여기서 a, b가 분모니까 a와 b는 0이 아니에요. a, b 중 하나라도 0일 때는 두 점을 지나는 직선의 방정식 구하는 방법으로 구하세요. 참고로 a = b = 0이면 (0, 0)인 점 하나만 알려준 거라서 직선의 방정식을 구할 수 없어요.

직선의 방정식 구하기 - x, y절편을 알 때

x절편이 (a, 0), y절편이 (0, b)인 직선의 방정식 ⇒  (단, ab ≠ 0)

다음을 보고 직선의 방정식을 구하여라.
(1) 기울기가 3이고 y절편이 5인 직선
(2) 기울기가 2이고 (3, 5)를 지나는 직선
(3) 두 점 (2, 5), (4, 6)을 지나는 직선
(4) x절편이 (3, 0), y절편이 (0, 6)인 직선

(1)은 기울기와 y절편을 알려줬네요.

y = mx + n
y = 3x + 5

(2)는 기울기와 한 점의 좌표를 알려줬고요.

y - y1 = m(x - x1)
y - 5 = 2(x - 3)
y = 2x - 1

(3)은 두 점의 좌표를 알려줬네요. 두 점의 x좌표가 서로 다르니까 공식을 이용할 수 있어요.

(4)는 x,y 절편을 알려줬는데 둘 다 0이 아니에요. 공식에 대입해보죠.

함께 보면 좋은 글

직선의 방정식의 일반형과 표준형
두 직선의 위치관계 - 평행, 일치, 수직
두 직선의 위치관계와 일차방정식의 해
교점을 지나는 직선의 방정식
[중등수학/중2 수학] - 일차함수 식 구하기, 직선의 방정식 구하기
[중등수학/중2 수학] - 그래프를 보고 직선의 방정식 구하기

정리해볼까요

직선의 방정식 구하기

  • 기울기가 m이고 y절편이 n인 직선의 방정식 ⇒ y = mx + n
  • 기울기가 m이고, 한 점(x1, y1)을 지나는 직선의 방정식 ⇒ y - y1 = m(x - x1)
  • 두 점 (x1, y1), (x2, y2)를 지나는 직선의 방정식
    • x1 ≠ x2일 때, y - y1 = 기울기(x - x1)
    • x1 = x2일 때, x = x1
  • x절편이 (a, 0), y절편이 (0, b)인 직선의 방정식 ⇒  (단, ab ≠ 0)
<<  수학 1 목차  >>
 

일차함수의 식이 주어지면 그래프를 그릴 수 있나요? 거꾸로 이제는 그래프를 보고 또는 그래프의 특징만 보고 일차함수 식을 유추해내야합니다.

이제까지 공부했던 내용들을 총동원해야해요. 일차함수 그래프의 특징, x, y 절편, 기울기 등이요. 또 일차함수 그래프 그리기에서 공부했던 내용도 이해하고 있어야 해요

일차함수식을 구하는 것과 직선의 방정식을 구하는 것은 이름은 다르지만 사실상 같은 얘기라는 것도 알고 있어야하고요.

일차함수 식은 y = ax + b 꼴이므로 기울기와 y절편을 구하는 게 핵심이에요. 여러 경우에 어떻게 일차함수식을 구하는 지 알아보죠.

기울기와 y절편을 알 때 일차함수 식 구하기

y = ax + b라는 일차함수가 있을 때, a는 기울기, b는 y절편이에요.

따라서 함수를 모르더라도 기울기와 y절편을 알면 함수를 바로 구할 수 있겠죠?

기울기와 y절편을 알 때 직선의 방정식 구하기

기울기가 -3이고, y절편이 1인 일차함수를 구하여라.

기울기가 -3, y절편이 1인 일차함수는 y = -3x + 1입니다.

기울기와 한 점의 좌표를 알 때 일차함수 식 구하기

기울기는 함수식에 그대로 대입해보죠. y = ax + b에서 a는 알고 있으니까 b만 구하면 되겠네요.

함수의 그래프가 한 점을 지난다는 얘기는 그 점의 좌표를 함수식에 대입하면 식이 참이 된다는 뜻이죠? 점의 좌표를 y = ax + b에 대입하면 돼요. x와 y는 점의 좌표로 알고 있고, a는 기울기로 주어졌으니까 b를 구할 수 있어요.

기울기와 한 점의 좌표를 알 때 직선의 방정식 구하기

일차함수 y = 3x + 1 그래프와 평행하고 (3, 2)를 지나는 일차함수를 구하여라.

일차함수 그래프의 평행과 일치에서 그래프가 평행이라면 기울기가 같고 y절편이 달라야 한다고 했어요. 구하고자 하는 일차함수의 그래프가 y = 3x + 1과 평행하니까 기울기는 3이에요. 따라서 구하는 식은 y = 3x + b의 식이겠네요.

y = 3x + b 식이 (3, 2)를 지나니까 점의 좌표를 식에 대입해 보죠.
2 = 3 × 3 + b
b = -7

(3, 2)를 대입해서 b를 구했어요. 결국 구하는 일차함수는 y = 3x – 7이네요.

두 점의 좌표를 알 때 직선의 방정식 구하기

두 점의 좌표만 알고 있을 때는 먼저 기울기를 구해야 해요. 기울기 구하는 방법은 일차함수와 그래프 - 기울기에 나와 있어요.

이차함수 그래프의 기울기 공식

기울기는 위 방법으로 구할 수 있고, 원래 문제에서 줬던 두 점의 좌표까지 알고 있어요. 그러면 바로 앞에서 했던 기울기와 한 점의 좌표를 알 때 사용했던 방법 그대로 기울기와 점의 좌표를 이용해서 일차함수 식을 구할 수 있어요.

두 점의 좌표를 알 때 일차함수 구하기

두 점 (1, 2), (-2, 17)을 지나는 일차함수 식을 구하여라.

먼저 두 점의 좌표를 이용해서 기울기를 구해보죠.
기울기 = (17 - 2) ÷ (-2 - 1) = 15 ÷ (-3) = -5

기울기가 -5니까 y = -5x + b 라고 놓을 수 있고, 이 그래프가 (1, 2)를 지나니까 대입해보면
2 = -5 × 1 + b
b = 7

따라서 구하고자 하는 일차함수 식은 y = -5x + 7입니다.

x절편, y절편을 알 때 직선의 방정식 구하기

x절편과 y절편을 안다는 건 x, y축과 만나는 두 점의 좌표를 안다는 뜻이고, 이건 그래프 위의 두 점의 좌표를 알려준 것과 같아요. 따라서 바로 위에서 했던 두 점의 좌표를 알 때 직선의 방정식 구하기 방법에서 했던 것처럼 기울기를 구해야 해요. 기울기를 구하고 거기에 x절편과 y절편을 알고 있으니까 첫 번째 "기울기와 y절편을 알 때 일차함수" 구하기 방법을 사용하면 되겠죠?

두 점의 좌표를 알 때 + 기울기와 y절편을 알 때를 섞어서 사용하면 돼요.

x절편, y절편을 알 때 직선의 방정식 구하기

(-1, 0), (0, 2)를 지나는 직선의 방정식을 구하여라.

두 점의 좌표를 줬는데, 자세히 보니까 각각 x, y의 좌표가 0일 때로 x절편, y절편이네요. 이 내용을 먼저 알아두세요.

두 점의 좌표를 줬으니까 기울기를 구해야겠죠?
기울기 = {2 - 0} ÷ {0 - (-1)} = 2 ÷ 1 = 2

기울기가 2니까 y = 2x + b라고 할 수 있겠고 두 점 (-1, 0), (0, 2)를 지나니까 한 점의 좌표를 식에 넣어서 b를 구할 수 있어요. 하지만 그보다는 y절편이 b라는 사실을 알고 있으니까 (0, 2)를 이용해서 바로 y = 2x + 2를 구할 수 있겠죠?

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식

정리해볼까요

일차함수 식 구하기 = 직선의 방정식 구하기

  • 기울기가 a이고 y 절편이 (0, b)일 때: y = ax + b
  • 기울기가 a이고, 한 점 (x1, y1)를 지날 때
    y = ax + b에 x = x1, y = y1을 대입해서 b를 구하여 식 완성
  • 두 점 (x1, y1), (x2, y2)를 지날 때
    a = 기울기
    y = ax + b에 둘 중 한 점의 좌표를 대입해서 b를 구하여 식 완성
  • x 절편, y 절편을 알 때 (m, 0), (0, n):
    a = 기울기 구하기
    기울기와 y 절편을 알고 있으므로 y = -기울기x + n
 

일차함수의 그래프에서 웬만한 건 다 다루었어요. 일차함수 y = ax + b 그래프에서 a가 무엇을 의미하는지, a의 부호에 따라서 그리고 b의 부호에 따라서 그래프의 모양이 어떻게 바뀌는 지 등이요.

일차함수 y=ax+b 그래프의 특징

일차함수를 보면 기울기와 y절편이 바로 눈에 띄죠? 두 개의 일차함수 y = ax + b, y = cx + d가 있다고 할 때, 기울기와 y절편을 비교해서 두 일차함수의 그래프가 평행한지 일치하는지 알아보죠.

일차함수 그래프의 평행

평면에서 두 직선이 서로 만나지 않는 걸 평행이라고 해요. 그러니까 일차함수 그래프가 평행하다는 말은 서로 만나지 않는다는 뜻이죠.

y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평행이동한 것이라고 했어요. 두 그래프는 서로 만나지 않아요. 그럼 두 그래프는 평행한 것이죠. 사실 평행이동을 했으니까 당연히 평행할 수밖에 없어요.

두 함수를 비교해볼게요. x, y는 변수니까 바뀔 수 있어서 비교할 수가 없어요. a, b는 상수라서 일정하죠. 두 그래프에서 기울기가 모두 a로 같아요. 그리고 y 절편이 b와 0으로 달라요. 여기서 일차함수의 그래프가 평행하려면 어떤 조건인지 알 수 있어요.

두 일차함수 그래프가 평행하려면: 기울기가 같고, y 절편은 다르다
y = ax + b와 y = cx + d에서 a = c이고 b ≠ d → 평행

일차함수 그래프의 평행

일차함수 그래프의 일치

일차함수의 그래프가 일치한다는 건 그래프가 포개진다는 뜻이죠. 포개진다는 건 그래프에서 같은 점 위에 있다는 뜻이고요. 함수식이 같다는 얘기예요.

y = ax + b와 y = cx + d라는 두 일차함수가 일치하려면 a = c, b = d라는 것이죠.

두 일차함수의 그래프가 일치하려면: 기울기가 같고, y 절편이 같다.
y = ax + b와 y = cx + d 에서 a = c 이고 b = d → 일치

일차함수 그래프의 일치

일차함수 y = 2x + 1의 그래프와 평행인 일차함수와 일치하는 일차함수를 각각 1개씩 적으시오.

먼저 문제에서 주어진 함수에서 기울기는 2, y절편은 1이네요. 평행한 것은 기울기가 같고 y절편이 다른 함수니까 기울기는 2일 테고, y 절편은 1만 아니면 돼요. y = 2x + 2도 될 수 있고, y = 2x - 1도 될 수 있겠네요. 그 개수가 매우 많아요.

일치하는 함수는 기울기도 같고, y 절편도 같아요. 같은 식이라는 거죠. y = 2x + 1이 되겠네요. 일치하는 일차함수는 딱 한 개예요.

함께 보면 좋은 글

일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기

정리해볼까요

두 일차함수 그래프

  • 기울기가 같고, y절편이 다르면: 평행
  • 기울기가 같고, y절편도 같으면: 일치
 

y = ax + b 그래프에서 a는 기울기이고, b는 y 절편이라는 사실을 알 수 있어요. 이제 이 두 가지에 따라 그래프가 어떻게 달라지는 지 알아볼 거예요.

일차함수의 그래프에서 간략하게 이야기하기는 했는데, 좀 더 자세히 알아보죠.

먼저 y = ax의 특징을 정리해보죠.

  • 원점(0, 0)을 지난다.
  • a의 절댓값이 커질수록 그래프는 y축에 가까워진다.
  • a > 0
    • x 증가 → y 증가
    • 오른쪽 위로 향하는 직선
    • 1, 3 사분면을 지난다.
  • a < 0
    • x 증가 → y 감소
    • 오른쪽 아래로 향하는 직선
    • 2, 4 사분면을 지난다.

y = ax와 y = ax + b의 차이는 b가 있고 없고의 차이에요. 사실은 y = ax + b에서 b = 0일 때가 y = ax이에요.

y = ax + b 그래프의 특징

y = ax와 y = ax + b의 차이는 b니까 b의 영향을 받는 부분만 다르고 나머지는 똑같아요.

원점(0, 0)을 지나는 대신 (0, b)를 지나고요.

그래프가 지나는 사분면은 y절편인 b의 부호에 따라서 달라져요.

y = ax + b의 그래프
y=ax+b 그래프의 특징 (a > 0, b > 0)y=ax+b 그래프의 특징 (a > 0, b < 0)
a > 0, b > 0a > 0, b < 0
y=ax+b 그래프의 특징 (a < 0, b > 0)y=ax+b 그래프의 특징 (a < 0, b < 0)
a < 0, b > 0a < 0, b < 0
일차함수 y = ax + b 그래프의 특징
a > 0 a < 0
같은 점 (0, b)를 지난다
a의 절댓값(|a|)의 절댓값이 커질수록 y축에 가까워진다.
다른 점 x 증가 → y 증가
오른쪽 위로 향하는 직선
b > 0이면 제 1, 2, 3 사분면
b < 0이면 제 1, 3, 4 사분면
x 증가 → y 감소
오른쪽 아래로 향하는 직선
b > 0이면 제 1, 2, 4 사분면
b < 0이면 제 2, 3, 4 사분면

다음 y = ax + b의 그래프를 보고, a와 b의 부호를 구하여라.
y=ax+b 그래프에서 a, b의 부호 구하기

a는 그래프의 기울기인데, 그래프가 오른쪽 아래로 향하는 직선이니까 a < 0이겠네요. 그리고 b는 y 절편이니까 y축과 그래프가 만나는 곳의 부호를 보면 되겠죠. x 축보다 윗부분 즉, 양수인 곳에서 만나니까 b > 0이 되는군요.

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기

정리해볼까요

y = ax + b 그래프의 특징

  • (0, b)를 지난다.
  • a의 절댓값이 커질수록 y축에 가까워진다.
  • a > 0
    • x 증가 → y 증가
    • 오른쪽 위로 향하는 직선
    • b > 0 : 1, 2, 3 사분면을 지난다.
      b < 0 : 1, 3, 4 사분면을 지난다.
  • a < 0
    • x 증가 → y 감소
    • 오른쪽 아래로 향하는 직선
    • b > 0: 1, 2, 4 사분면을 지난다.
      b < 0: 2, 3, 4,사분면을 지난다.
 

이제 일차함수의 그래프를 직접 그려볼까요?

일차함수의 그래프를 그리는 방법은 이미 1학년 때 배워봤어요. 함수식이 주어지면 그 식에, x = 1, 2, 3, …을 넣어서 그때의 y값을 구했죠. 그리고 순서쌍을 이용해서 좌표평면에 점을 찍은 다음 그 점들을 이어서 그래프를 그려요. 함수 그래프, 함수의 그래프 특징 비교

기본 원리는 점들의 좌표를 구해서 점을 찍고, 선으로 연결하는 겁니다. 그런데 사실 점의 좌표가 많이 필요하지 않아요. 그냥 두 개만 있으면 직선을 그을 수 있거든요.

두 점을 이용해서 일차함수 그래프 그리기

직선이라는 게 점을 여러 개 연결해도 되지만 두 점을 연결해도 직선이 돼요. 따라서 1학년 때처럼 점들의 좌표를 여러 개 구할 필요 없이 딱 두 개만 구해서 직선으로 연결하면 돼요.

두 점의 좌표가 주어졌다면 점을 찍어서 직선을 그으면 되고, 점이 주어지지 않고, 함수식만 주어졌다면 x = 1, 2처럼 임의의 값을 두 개 넣어서 좌표를 구해서 점을 찍고, 선을 그어주면 돼요.

두 점 (1, 1)과 (3, 2)를 지나는 함수의 그래프를 그려라.

좌표평면 위에 두 점을 찍고 그냥 이어서 연결하세요.

두 점을 이용해서 일차함수의 그래프 그리기 1두 점을 이용해서 일차함수의 그래프 그리기 2

x절편, y절편을 이용해서 일차함수 그래프 그리기

마찬가지로 두 점의 좌표를 이용해서 그래프를 그리는 방법이에요.

두 개의 점의 좌표를 구할 때 아무 점이나 상관없지만 x절편, y절편을 구하는 방법도 좋아요. y 절편은 y = ax + b라는 함수식에서 b라는 걸 바로 알 수 있지요? 한 점의 좌표(0, b)를 금방 알아낼 수 있잖아요. 그럼 나머지 한 점의 좌표만 구하면 되는데, y = 0을 넣어서 구하면 x 절편이 나오죠.

문제에서 x, y 절편을 미리 알려주면 좋은 거고, 알려주지 않아도 다른 점의 좌표에 비해서 구하기가 쉬워서 많이 이용하는 방법이에요.

y = x + 2의 그래프를 그려라. (x절편과 y절편을 이용)

y = x + 2의 y 절편이 2이므로 y축과 만나는 점은 (0, 2), x 절편이 –2이므로 x축과 만나는 점은 (-2, 0)이네요. 두 점의 좌표를 구했으니 그래프를 그려보죠.

x절편, y절편을 이용해서 일차함수의 그래프 그리기 1x절편, y절편을 이용해서 일차함수의 그래프 그리기 2

y절편과 기울기를 이용해서 일차함수 그래프 그리기

y 절편은 함수식에서 바로 구할 수 있지요?

일차함수와 그래프에서 기울기가 나타내는 게 뭐죠?

일차함수의 그래프 - 기울기 공식

y = ax + b에서 y 절편이 b이므로 이 그래프는 (0, b)를 지나요. 기울기 a가 나태나는 건 x가 1 증가할 때, y는 a만큼 증가한다는 뜻이잖아요. 그래서 x가 0 → 1로 될 때, b → b + a 가 된다는 뜻이지요? 따라서 (0, b)와 (1, b + a)라는 점의 좌표를 구할 수 있다는 거예요. 물론 (1, b + a)가 아니라 (2, b + 2a), (3, b + 3a)라는 좌표를 구할 수도 있는 거지요. 어차피 두 점의 좌표만 있으면 되니까 아무거나 구해도 상관없어요.

두 점을 구했으니 좌표평면에 점을 찍고, 직선으로 연결하면 되겠지요?

y = 2x + 2의 그래프를 그려라. (기울기와 y절편을 이용)

y절편이 2이므로 이 그래프는 (0, 2)를 지나고 기울기가 2니까 x가 1 증가하면 y는 2 증가한다는 뜻이에요. x가 0 → 1이 되면, y는 2만큼 증가하니까 2 → 4가 되겠지요. 그래프가 지나는 두 점 (0, 2)와 (1, 4)를 구할 수 있어요.

y절편과 기울기를 이용해서 일차함수의 그래프 그리기 1y절편과 기울기를 이용해서 일차함수의 그래프 그리기 2

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
함수 그래프, 함수의 그래프 특징 비교

정리해볼까요

일차함수의 그래프 그리기

  • 두 점의 좌표를 구해서 좌표평면에 표시한 다음, 직선으로 연결
  • 두 점을 구하는 방법
    • 임의의 값을 이용한 두 점
    • x, y 절편
    • y절편과 기울기를 이용한 다른 한 점
 

일차함수의 그래프에서 또 한가지 알아야 할 내용이 기울기에요.

일차함수 y = ax 그래프에서 a의 부호에 따라 그래프가 어떤 특징을 가졌는지 알아봤지요? 바로 a가 기울기입니다. 그래프의 특징에 아주 큰 영향을 미치니까 기울기에 대해서 꼭 알고 있어야겠죠?

함수식이 주어진 경우라면 a를 바로 구할 수 있지만, 식이 주어지지 않았다면 어떻게 a를 구하는지 알아볼까요.

일차함수의 기울기

기울기는 말 그대로 그래프가 기울어진 정도를 나타내는 용어에요. 그런데 얼마나 기울어졌는지를 각도로 표현하지 않고 숫자로 표현해요.

이 숫자를 구하는 방법이에요.

일차함수의 그래프 - 기울기 공식

그럼 x, y값의 증가량은 어떻게 구하느냐? 그래프에서 임의의 두 점 A(x1, y1), B(x2, y2)를 고르세요. 직선 위에 있는 점이면 아무 점이나 괜찮아요. 두 점의 (B점의 x 좌표 - A점의 x 좌표) 가 x의 증가량 (B점의 y 좌표 - A점의 y 좌표)가 y의 증가량입니다.

x, y의 증가량을 구할 때 주의해아 할 것은 x의 증가량을 구할 때 B에서 A를 뺐다면 y의 증가량을 구할 때도 B에서 A를 빼야 한다는 거예요. 큰 수에서 작은 수를 빼는 게 아니에요. 증가량이라고 표현했지만 실제로는 x, y이 변한 정도를 나타내는 말로 감소량을 포함하고 있는 거예요. 따라서 x, y의 증가량은 부호가 (-)일 수도 있고 둘의 부호가 다를 수도 있다는 점을 알아두세요.

다음 일차함수의 그래프를 보고 기울기를 구하여라.
x절편, y절편 구하기

위 그래프에는 기울기가 표시되어 있지만 직접 구해보죠. 그래프가 x축과 만나는 점, y축과 만나는 점의 좌표를 구할 수 있죠? (2, 0)과 (0, 2)입니다.

일차함수의 그래프 - 기울기 예제 풀이

두 점의 좌표를 이용해서 구한 기울기가 문제에서 주어진 함수식에서의 기울기와 같죠?

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징

정리해볼까요

일차함수 그래프의 기울기

  • 함수식의 x의 계수
  • (y 값의 증가량) ÷ (x 값의 증가량)
  • (y2 - y1) ÷ (x2 - x1)
 

일차함수 y = ax의 그래프의 특징에 대해서 이해했나요?

  • 원점 (0, 0)을 지난다.
  • 기울기의 절댓값이 커질수록 y축에 가깝다.
  • a > 0 이면
    • 오른쪽 위로 향하는 직선
    • x 증가 → y 증가
    • 1, 3 사분면
  • a < 0이면
    • 오른쪽 아래로 향하는 직선
    • x 증가 → y 감소
    • 2, 4 사분면

y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평형이동한 그래프라는 것까지는 알고 있어야 해요.

오늘은 그래프를 읽는 법을 공부할 겁니다. 그래프는 통해서 무엇을 알 수 있는지요. 나중에는 반대로 특정한 정보를 주고, 그래프를 그리는 법도 공부할 거예요.

x절편

함수의 그래프에서 절편은 함수의 그래프가 x축, y축과 만나는 점의 좌표를 말해요. x축과 만나는 점의 x좌표를 x 절편, y축과 만나는 점의 y좌표를 y절편이라고 하지요.

일차함수와 그래프 - x절편&#44; y절편

x축의 y좌표는 0이니까 그래프가 x축과 만나는 점의 y 좌표도 0이죠. 이거는 그래프를 통해서 확인할 수 있어요. 그래서 x 절편을 다른 말로 y = 0일 때의 x값이라고도 해요. 어차피 같은 얘기예요. 중요한 건 x축과 만나는 점의 x좌표인데 이 점의 y 좌표가 0이니까 함수식에 y = 0을 대입해서 그때의 x값을 구하면 돼요

y = 2x + 2라는 함수가 있고 이 함수 그래프의 x절편을 구해보죠. y = 0을 대입하면,

0 = 2x + 2
2x = -2
x = -1

y = 0일 때의 x값이 -1이죠? 이 -1을 x 절편이라고 해요.

y절편

x절편이 그래프가 x축과 만나는 점의 x좌표라면 그래프가 y축과 만나는 점의 y좌표가 y 절편이에요. 그래프가 y축과 만나니까 x 좌표가 0이겠죠. 그래서 다른 말로 x = 0일 때의 y좌표라고도 해요.

함수식에 x = 0을 넣어서 y절편을 구해요.

y = 2x + 2
y = 2

x = 0을 대입했더니, y = 2라는 값이 나왔네요. 이 함수의 y절편은 2입니다.

다음 그래프를 보고, x절편과 y절편을 구하여라.
x절편&#44; y절편 구하기

그래프가 x축과 만나는 점의 좌표는 (2, 0)이고, y축과 만나는 점의 좌표는 (0, 2)이네요. 따라서 x절편은 2, y절편은 2입니다.

그래프를 통해서 구할 수도 있고, 아니면 앞에서 했던 방법처럼 x = 0, y = 0을 대입해서 값을 구할 수도 있어요.

y = ax+b의 x절편, y절편

일차함수 y = ax + b (a ≠ 0, a, b는 상수)에서의 x절편, y절편을 구해볼까요?

x절편을 구할 때는 y = 0을 대입한다고 했어요. 대입해 볼게요.
y = ax + b
0 = ax + b
-ax = b
x = 

x 절편은 네요. 그래서 그래프가 x축과 만나는 점의 좌표는 (, 0)이고요.

y절편은 x = 0을 대입해서 구해요.
y = ax + b
y = a × 0 + b
y = b

y 절편은 b고, 그때 점의 좌표는 (0, b)예요. 사실 y 절편은 굳이 x = 0을 대입할 필요가 없어요. 왜냐하면 y = ax + b에서 b니까요. 식만 봐도 바로 알 수 있어요.

  • x 절편
    • 그래프가 x축과 만나는 점의 x좌표
    • y = 0일 때의 x 값
    • y = ax + b에서는 x = 
    • 그래프가 x축과 만나는 점의 좌표: (, 0)
  • y절편
    • 그래프가 y축과 만나는 점의 y좌표
    • x = 0일 때의 y 값
    • y = ax + b에서는 b
    • 그래프가 y축과 만나는 점의 좌표: (0, b)

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징

정리해볼까요

y = ax + b에서 x절편과 y절편

  • x 절편
    • 그래프가 x축과 만나는 점의 x좌표
    • y = 0일 때의 x 값
    • y = ax + b에서는 x = 
    • 그래프가 x축과 만나는 점의 좌표: ( , 0)
  • y절편
    • 그래프가 y축과 만나는 점의 y좌표
    • x = 0일 때의 y 값
    • y = ax + b에서는 b
    • 그래프가 y축과 만나는 점의 좌표: (0, b)
 

+ 최근글