중등수학

앞서 원주각과 중심각의 크기에서는 원주각은 중심각의 절반이고, 중심각은 원주각의 두 배라는 걸 공부했어요.

1학년 때, 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴 중심각의 크기와 부채꼴 호의 길이, 부채꼴 중심각의 크기와 부채꼴의 넓이가 정비례한다는 걸 공부했어요. 현의 길이는 중심각의 크기와 전혀 상관이 없다는 것까지요.

이 글에서는 원주각과 중심각의 관계, 부채꼴 중심각의 크기와 부채꼴 호의 길이는 정비례한다는 사실 두 가지를 하나로 합쳐서 원주각의 크기와 호의 길이는 서로 어떤 관계가 있는지 알아볼 거예요.

원주각의 크기와 호의 길이

원주각의 크기와 호의 길이

원주각과 중심각의 크기에서 원주각의 크기는 중심각 크기의 절반이라고 했어요. 서로 다른 두 호에 대한 원주각의 크기가 같으면 중심각의 크기도 서로 같아져요. 1학년 때 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴의 중심각의 크기가 같으면 호의 길이도 같다는 걸 공부했어요.

이 두 가지를 정리해보면, 서로 다른 두 호에 대한 원주각의 크기가 같으면 중심각이 같고, 중심각이 같으면 호의 길이가 같아요. 즉 크기가 같은 원주각에 대한 호의 길이가 같아지죠.

서로 다른 두 호에서 원주각의 크기가 같다. → 중심각의 크기가 같다. → 호의 길이가 같다.

원주각의 크기와 호의 길이 2

∠APB = ∠CQD
  → ∠AOB = ∠COD   (∵ 2∠APB = ∠AOB, 2∠CQD =  ∠COD)
  → 호AB = 호CD

이 명제의 역도 성립해요. 호의 길이가 같으면 이에 대한 원주각의 크기도 같아요.

한 원 또는 지름이 같은 원에서
크기가 같은 원주각에 대한 호의 길이는 같다.
길이가 같은 호에 대한 원주각의 크기는 같다.

원주각의 크기와 호의 길이는 정비례

원주각의 크기와 호의 길이는 정비례

1학년 때 원과 부채꼴, 호, 현, 활꼴, 중심각에서 부채꼴의 중심각과 호의 길이는 정비례한다는 걸 공부했어요. 호에 대한 중심각은 원주각의 두 배니까 중심각 자리에 원주각을 넣으면 역시 비례가 성립하지요. 

원주각의 크기와 호의 길이는 정비례 2

∠AOB : ∠COD = 호AB : 호CD
 → 2∠APB : 2∠CQD = 호AB : 호CD  ( ∵  2∠APB = ∠AOB, 2∠CQD = ∠COD)
 → ∠APB : ∠CQD = 호AB : 호CD

한 원 또는 지름이 같은 원에서
원주각의 크기 ∝ 호의 길이
중심각의 크기 ∝ 호의 길이
현의 길이는 중심각, 원주각의 크기와 비례하지 않는다.

그림처럼 원 위에 8개의 점이 있다. 이 점들 간의 거리가 모두 같을 때, 다음을 구하여라.
(1) 호EF의 중심각과 크기가 같은 원주각을 갖는 호를 모두 찾아라.
(2) ∠DBE와 같은 길이의 호를 갖는 원주각을 모두 찾아라.

우선 각 점들 간의 거리가 같다고 했으니 각 점들로 이루어진 호의 길이가 같겠죠? 이 호의 길이를 a라고 놓아보죠. 또 각 호의 길이가 같으니까 이 호의 길이에 대한 원주각의 크기도 같은데, 이 각을 x라고 놓아보죠.

(1) 호EF의 길이는 a이고, 원주각의 크기는 x에요. 중심각의 크기는 2x겠네요.
즉, 문제는 원주각의 크기가 2x인 호를 찾으라는 건데, 크기가 2x인 원주각은 ∠EAG, ∠DBF, ∠AGC이므로 호EG와 호DF, 호AC가 되겠네요.

(2) ∠DBE에 대한 호의 길이는 a이고 원주각의 크기는 x에요. 호의 길이가 같으면 원주각의 크기도 같아요. 각의 크기가 x인 원주각은 ∠EBF, ∠BEA네요.

함께 보면 좋은 글

원주각과 중심각의 크기, 원주각의 성질
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각

정리해볼까요

원주각의 크기와 호의 길이

  • 크기가 같은 원주각에 대한 호의 길이는 같다.
  • 길이가 같은 호에 대한 원주각의 크기는 같다.
  • 원주각의 크기 ∝ 호의 길이
  • 중심각의 크기 ∝ 호의 길이
 
그리드형

이 글에서는 원주각과 중심각에 대해서 공부합니다.

1학년 때 원과 부채꼴, 호, 현, 활꼴, 중심각에서 중심각이 뭔지는 공부했어요. 중심각은 부채꼴에서 호와 반지름 두 개로 이루어진 각을 말했는데요.

이 글에서는 부채꼴이 아니라 호에 관해서 배우기 때문에 호의 중심각이라고 합니다. 호의 중심각과 부채꼴의 중심각은 그림이 똑같아요. 다만 기준을 어디에 두고 보느냐에 따라 이름이 달라지는 것 뿐이죠.

원주각의 뜻과 성질, 그리고 원주각과 중심각의 관계에 대해서 알아보죠.

원주각과 중심각의 크기

원주각은 이름 그대로 원주에 있는 각 이에요. 원주는 원의 둘레를 말하죠? 그러니까 원 위에 있는 각인데, 그냥 원 위에 있는 게 아니에요. 원 위에 가 있다면 그 나머지 부분이 있잖아요. 그 나머지 부분 위에 임의의 한 점 P를 잡고, 호의 양 끝점인 점 A, 점 B와 점 P를 연결해서 만들어진 ∠APB를 에 대한 원주각이라고 해요.

중심각에서 양 끝점인 점 A, 점 B와 원의 중심 점 O를 연결해서 만든 ∠AOB를 말합니다.

원주각과 중심각

2 × 원주각 = 중심각
원주각 = ½ 중심각

중심각은 원주각의 두 배에요. 증명해볼까요? 세 가지 경우로 나누어서 증명해보죠.

원의 중심 O가 ∠APB 내부에 있을 때

원주각과 중심각의 크기 증명 1

점 P와 점 O를 연결하는 선을 하나 그어보죠. 이 선이 원주와 만나는 점을 점 Q라고 할게요.

△OAP와 △OBP가 생기는데요.

△OAP에서  = 반지름 r이므로 △OAP는 이등변삼각형이에요. 이등변삼각형의 성질에 따라 두 밑각의 크기가 같으니까 ∠OAP = ∠OPA죠.

삼각형 외각의 크기에서 (한 외각의 크기) = (다른 두 내각의 합)이라는 걸 공부했죠? ∠AOQ = ∠OAP + ∠OPA = 2∠OPA

△OBP에서  = 반지름 r이므로 △OBP는 이등변삼각형이에요. ∠OBP = ∠OPB

한 외각의 크기 = 다른 두 내각의 합이므로 ∠BOQ = ∠OBP + ∠OPB = 2∠OPB

중심각 ∠AOB = ∠AOQ + ∠BOQ = 2∠OPA + 2∠OPB = 2(∠OPA + ∠OPB) = 2∠APB입니다.

따라서 ∠AOB = 2∠APB.   (증명 끝.)

원의 중심 O가 ∠APB 외부에 있을 때

원주각과 중심각의 크기 증명 2

점 P와 점 O를 연결하는 선을 하나 긋고 이 선이 원주와 만나는 점을 점 Q라고 할게요.

△OAP와 △OBP가 생기는데요.

△OAP에서  = 반지름 r이므로 △OAP는 이등변삼각형이에요. 이등변삼각형의 성질에 따라 두 밑각의 크기가 같으니까 ∠OAP = ∠OPA죠.

삼각형 외각의 크기에서 한 외각의 크기 = 다른 두 내각의 합이므로 ∠AOQ = ∠OAP + ∠OPA = 2∠OPA

△OBP에서  = 반지름 r이므로 △OBP는 이등변삼각형이에요. ∠OBP = ∠OPB

한 외각의 크기 = 다른 두 내각의 합이므로 ∠BOQ = ∠OBP + ∠OPB = 2∠OPB

중심각 ∠AOB = ∠BOQ - ∠AOQ = 2∠OPB - 2∠OPA = 2(∠OPB - ∠OPA) = 2∠APB입니다.

따라서 ∠AOB = 2∠APB.   (증명 끝.)

원의 중심 O가 위에 있을 때

증명이 제일 쉬운데요.

원주각과 중심각의 크기 증명 3

△OBP에서  = 반지름 r이므로 △OBP는 이등변삼각형이에요. ∠OBP = ∠OPB

한 외각의 크기 = 다른 두 내각의 합이므로 ∠AOB = ∠OBP + ∠OPB = 2∠OPB = 2∠APB

∠AOB = 2∠APB    (증명 끝.)

원주각의 성질

한 원에서 한 호에 대한 원주각의 크기는 같다.

위 증명에서 세 가지 경우를 봤는데, 모두 원주각의 크기는 중심각의 절반이었어요. 세 원주각이 같다는 얘기잖아요. 원주각의 위치에 상관없이 원과 호가 같으면 원주각의 크기도 같아요.

원주각의 성질 1

지름에 대한 원주각의 크기는 90°

원주각의 성질 2

이번에는 중심각이 평각인 180°일 경우를 보죠.

중심각이 평각이 되는 경우는 지름일 때 또는 반원일 때에요. 원주각은 중심각 크기의 절반이니까 이때의 원주각은 90°가 되겠죠?

원주각의 크기가 90°라는 건 지름을 빗변으로 하는 직각삼각형이 만들어진다는 거예요. 삼각비, sin, cos, tan피타고라스의 정리와 연관된 문제가 출제된다는 것도 예상할 수 있겠죠?

함께 보면 좋은 글

원주각의 크기와 호의 길이
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중1 수학] - 삼각형 내각의 합과 외각의 크기, 외각의 합

정리해볼까요

원주각과 중심각의 크기

  • 원주각: 원에서 주어진 호를 제외한 원주 위의 한 점과 호의 양 끝점을 연결하여 얻은 각
  • 중심각: 원에서 호의 양 끝점과 원의 중심을 연결하여 얻은 각
  • 2 × 원주각 = 중심각

원주각의 성질

  • 한 원에서 한 호에 대한 원주각의 크기는 모두 같다.
  • 지름에 대한 원주각의 크기는 90°
 
그리드형

삼각형의 내접원을 했으니 이제는 사각형의 내접원을 할 차례에요.

그런데 내접원을 공부하면서 삼각형에서의 내접원만 배웠지요? 사각형에서는 내접원이 없는 경우도 있기 때문에 따로 배우지 않았어요.

이 글에서 사용하는 용어도 사각형의 내접원이 아니라 원의 외접사각형이에요. 일단 원이 중심이 되고, 사각형은 부수적인 거예요. 원에 외접하는 사각형은 얼마든지 그릴 수 있으니까요.

원의 외접사각형의 성질을 알아보죠.

원의 외접사각형

원의 외접사각형은 이름만 들어도 뭘 말하는 지 알 수 있겠죠? 어떤 원이 있고, 그 원에 외접하는 사각형이에요.

원의 외접사각형에는 한 가지 성질이 있어요. 그 성질에 대해서 알아보고 증명해 보죠. 이 한 가지 성질의 역도 성립한다는 걸 미리 얘기해 둘게요.

원의 외접사각형은 두 대변의 길이의 합이 서로 같다.

원의 외접사각형의 성질

원의 접선, 원의 접선의 길이에서 원 밖의 한 점에서 원에 그은 두 접선의 길이는 서로 같다고 했어요.

사각형의 각 꼭짓점을 원 밖의 한 점으로 보면 각 꼭짓점에서 원에 그은 두 접선의 길이가 서로 같아요. 길이가 같은 접선에 번호를 매겨봤어요.

= ① + ②
= ② + ③
= ③ + ④
= ① + ④

두 대변의 길이의 합을 구해보면
 +   = ① + ② + ③ + ④
 + = ① + ④ + ② + ③

두 대변의 길이의 합이 서로 같아요.

이 성질의 역도 성립합니다. 두 대변의 길이의 합이 서로 같으면 이 사각형은 원의 외접사각형이라고 할 수 있어요.

다음 그림을 보고 x를 구하여라.

두 대변의 길이의 합이 같으므로 5 + (5 + x) = 8 + 6이에요. x = 4(cm)

함께 보면 좋은 글

현의 수직이등분선
현의 길이
원의 접선, 원의 접선의 길이
삼각형의 내접원, 삼각형의 둘레의 길이, 삼각형의 넓이

정리해볼까요

원의 외접사각형

  • 두 대변의 길이의 합이 서로 같다.
  • 두 대변의 길이의 합이 같은 사각형 → 원의 외접사각형
 
그리드형

내접원은 삼각형의 내심, 삼각형 내심의 성질에서 공부했어요. 여기서는 내접원의 성질이나 내심과 관련된 내용이 중요한 건 아니니까 내심이 잘 기억나지 않는다고 해서 겁내지 마세요. 이 글에서 필요한 건 내접원은 그냥 삼각형의 안쪽에 접한다는 것과 내심에서 각 변에 이르는 거리가 같다는 정도니까요.

하지만 삼각형의 외심과 내심은 아주 중요한 내용이니까 나중에라도 꼭 확인하고 이해할 수 있도록 하세요.

삼각형의 내접원과 접선의 길이를 이용해서 삼각형 둘레의 길이삼각형의 넓이를 구하는 방법을 알아보죠.

삼각형의 내접원

삼각형의 내접원을 이용해서 삼각형 둘레의 길이와 넓이를 구할 수 있어요.

삼각형의 내접원

삼각형의 둘레의 길이 = a + b + c = 2(x + y + z)

삼각형 세 변의 길이가 a, b, c라면 둘레의 길이는 a + b + c에요.

원의 접선의 길이에서 원 밖의 한 점에서 원에 그은 두 접선의 길이는 같다고 했죠? 위 그림에서는 삼각형의 각 꼭짓점이 원 밖의 한 점에 해당해요. 각 꼭짓점에서 원에 접선을 그었을 때 접점이 바로 점 D, 점 E, 점 F가 되는 거죠.

접선의 길이를 각각 x, y, z라고 했을 때
a = y + z
b = z + x
c = x + y
a + b + c = 2(x + y + z)입니다.

삼각형의 넓이 = r(a + b + c)

원의 중심 O에서 세 꼭짓점으로 선을 그으면 세 개의 삼각형으로 나뉘어요. △OAB, △OBC, △OCA

삼각형의 내접원 - 삼각형의 넓이

△ABC = △OAB + △OBC + △OCA

각각의 삼각형 넓이는 각 변을 밑변으로 하고, 내접원의 반지름을 높이로 하면 구할 수 있죠? 원의 중심에서 접점에 내린 반지름은 각 변에 수직이니까요. (원의 접선의 성질)

△OAB = cr

△OBC = ar

△OCA = br

△ABC = △OAB + △OBC + △OCA
        = cr + ar + br

        = r(a + b + c)

다음 그림에서 △ABC는 ∠B = 90°인 직각삼각형이고, 원 O는 △ABC의 내접원, 각 변의 접점이 D, E, F일 때 물음에 답하여라.
(1) 의 길이를 구하여라.
(2) 원의 넓이를 구하여라.
삼각형의 내접원 예제

(1)  = x라고 해보죠. 원 밖의 한 점에서 내린 두 접선의 길이는 같기 때문에, 꼭짓점과 접점 사이의 거리는 아래처럼 표현할 수 있어요.

삼각형의 내접원 예제 2

빗변 = (12 - x) + (9 - x) = 15
2x = 6
x = 3(cm)

(2) □ODBE를 보세요(원의 중심이 O입니다.) 이 사각형은 이웃한 두 각의 크기의 합이 180° (∠DBE + ∠OEB)이므로 평행사변형이에요. 평행사변형은 대변의 길이가 같으니까 x = 3cm이면 대변인 반지름 r = 3cm가 되지요.

사실 이 □ODBE는 정사각형이에요. 자세한 건 사각형의 정의와 성질, 조건를 참고하세요.

내접원의 반지름의 길이가 3cm이니까 넓이는 πr2 = 9π(cm2)

함께 보면 좋은 글

현의 수직이등분선
현의 길이
원의 접선, 원의 접선의 길이
[중등수학/중2 수학] - 삼각형의 내심, 삼각형 내심의 성질
[중등수학/중2 수학] - 삼각형 내심의 활용
[중등수학/중2 수학] - 삼각형의 외심과 내심, 삼각형의 내심과 외심 비교

정리해볼까요

삼각형의 내접원에서 세 변의 길이가 a, b, c이고, 접선의 길이가 x, y, z일 때

  • △ABC의 둘레의 길이 = 2(x + y + z)
  • △ABC의 넓이 = r(a + b + c)
 
그리드형

현에 대한 두 번째로 현의 길이에 대한 내용입니다.

원에 대해서 계속하고 있는데, 생각보다 어렵지 않죠? 새 단원의 시작이라서 그래요. 이 글도 별로 어렵지 않아요.

이번에는 현과는 조금은 다른 접선에 대해서 알아볼 거예요. 1학년 때 원과 직선의 위치관계, 접점, 접선, 할선에서 접선이 뭔지는 공부했어요. 기억이 정확하지 않다면 얼른 읽어보고 오세요.

이 글에서는 원의 접선의 길이를 구하는 방법과 원의 접선의 성질을 알아볼 거예요.

원의 접선

원 밖의 한 점에서 직선을 그었을 때 직선과 원이 만나는 점을 교점이라고 해요. 이 교점이 하나일 때 원과 직선이 서로 접하므로 그 직선을 접선이라고 하고 이때의 교점을 접점이라고도 해요. 또 원 밖의 한 점과 접점 사이의 거리를 접선의 길이라고 합니다.

이들 사이의 관계를 알아보죠.

원의 접선은 접점을 지나는 반지름에 수직

원의 접선 성질 1

원과 두 점에서 만나는 할선에서 두 교점 사이를 우리는 현이라고 하지요? 현의 수직이등분선에서 공부한 것처럼 반지름은 현을 수직이등분해요.

이 할선을 밑으로 계속 내려보세요. 그러면 한 점에서 만나게 되는데, 이 점이 바로 접점이자 반지름에서 내린 수선의 발이에요.

즉, 접점에서 반지름과 접선이 직교하는 거죠.  ⊥

원 밖의 한 점에서 그은 두 접선의 길이는 서로 같다.

원 밖의 한 점에서는 원에 접선을 두 개 그을 수 있는데 두 접선의 길이가 서로 같아요.

원의 접선 성질 2

증명해볼까요?

한 점 P에서 원에 접선을 두 개 그었어요. 그리고 점 P에서 원의 중심 O에 선을 그어보죠.

△POA와 △POB라는 삼각형 두 개가 생겼어요. 원의 반지름과 접선은 서로 직교하므로 이 두 삼각형은 직각삼각형이죠.

= 반지름 r
∠PAO = ∠PBO = 90°
는 공통

두 직각삼각형은 빗변의 길이가 같고, 한 변의 길이가 같은 RHS 합동이에요. △POA ≡ △POB

대응변의 길이가 같으므로  =      (증명 끝.)

위 그림에서 한 가지 추가로 알 수 있는 게 있어요. 사각형 내각의 합은 360°죠. □PAOB의 내각의 크기도 360°에요. 그런데, ∠PAO = ∠PBO = 90°이므로 남은 두 각의 합이 180°가 되어야겠죠?

접점이 아닌 두 곳의 내각의 크기의 합 = ∠APB + ∠AOB = 180°

다음 그림은 원과 그 접선들이다. x를 구하여라.
원의 접선 예제

접점이 세 개가 있어요. 한 점에서 원에 그은 두 접선은 길이가 같다는 걸 이용해야겠군요.

8cm로 되어 있는 곳은 원과의 접점을 기준으로 두 부분으로 나누어지죠. 아래쪽 부분은 3cm, 위쪽 부분은 xcm입니다. x + 3 = 8이므로 x = 5(cm)네요.

함께 보면 좋은 글

현의 수직이등분선
현의 길이
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중1 수학] - 원과 직선의 위치관계, 원의 할선과 접선, 접점
[중등수학/중2 수학] - 직각삼각형의 합동, 직각삼각형의 합동 조건

정리해볼까요

원의 접선

  • 원의 접선은 접점을 지나는 반지름에 수직
  • 원 밖의 한 점에서 그은 두 접선의 길이는 서로 같다.
 
그리드형

현의 길이

2012. 10. 29. 12:30

현에 대한 두 번째로 현의 길이에 대한 내용입니다.

현의 수직이등분선에서 두 가지 성질을 알아봤는데, 첫 번째는 원의 중심에서 현에 내린 수선은 현을 수직이등분한다였죠. 두 번째는 현의 수직이등분선은 원의 중심을 지난다였고요. 이 글에서도 이 두 가지 성질을 그대로 이용합니다. 따라서 잘 기억하고 있어야 해요.

이 글에서 배울 내용도 그다지 어렵지 않아요. 증명도 쉬울 뿐 아니라 증명만 제대로 이해한다면 문제도 쉽게 풀 수 있어요. 그냥 쭉 한 번 읽어만 봐도 쉽게 알 수 있을 겁니다.

현의 길이

현의 길이도 두 가지 성질이 있어요. 하나는 명제이고 다른 하나는 그 명제의 역이에요. (명제, 명제의 가정과 결론, 명제의 역)

하나라고 해도 상관없으니까 한 가지만 제대로 알면 다른 건 그냥 자연스럽게 따라서 이해하게 되어 있어요.

한 원에서 원의 중심에서 같은 거리에 있는 현의 길이는 같다.

원의 중심에서 현까지의 거리가 같으면 두 현의 길이가 같아요.

현의 길이 1

점 O에서 점 A와 점 C에 선을 그어보죠.

 

현의 길이 1 증명

직각삼각형이 두 개 생겼어요.

△OMA와 △ONC에서

=     (원의 중심에서 같은 거리에 있는 현, 가정)
∠AMO = ∠CNO = 90°
= = 반지름 r

직각삼각형에서 빗변의 길이가 같고, 한 변의 길이가 같은 RHS 합동이에요. △OMA ≡ △ONC

대응변의 길이는 같으므로  = 죠. 현의 수직이등분선에서 원의 중심에서 현에 내린 수선은 현을 수직이등분한다고 했어요. = 2, = 2

따라서  =      (증명 끝.)

다음 그림을 보고 △OCD의 넓이를 구하여라.
현의 길이 1 예제

삼각형의 넓이를 구하려면 밑변의 길이, 높이를 알아야 하는데, 높이는 4cm라고 나와 있네요.

밑변의 길이는 인데, 는 이 원의 현이고, 원의 중심으로부터 거리가 4cm에요. 도 원의 중심에서 4cm 떨어진 현이고요. 원의 중심에서 같은 거리에 있는 현의 길이는 같으므로  = 에요. 의 길이를 구해보죠.

원의 중심에서 현에 내린 수선은 현을 수직이등분하므로  = 이에요.  = 2 = 8cm이죠.

△OCD = ½ × 4 × 8 = 16cm2

한 원에서 길이가 같은 현은 원의 중심에서 같은 거리에 있다.

이번에는 위와 반대에요. 현의 길이가 같으면 원의 중심으로부터의 거리가 같아요.

현의 길이 2

점 O에서 점 A와 점 B에 선을 그어보죠.

 

현의 길이 2 증명

△OMA와 △ONC에서

 =     (가정에서  = 이고, = 2, = 2현의 수직이등분선)
∠AMO = ∠CNO = 90°
= = 반지름 r

직각삼각형에서 빗변의 길이가 같고, 한 변의 길이가 같은 RHS 합동이에요. △OMA ≡ △ONC

대응변의 길이는 같으므로 =      (증명 끝.)

함께 보면 좋은 글

현의 수직이등분선
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중2 수학] - 직각삼각형의 합동, 직각삼각형의 합동 조건
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건

정리해볼까요

현의 길이

  • 한 원에서 원의 중심에서 같은 거리에 있는 현의 길이는 같다.
  • 한 원에서 길이가 같은 현은 원의 중심에서 같은 거리에 있다.
<<    중3 수학 목차    >>
 
그리드형

현의 수직이등분선

2012. 10. 28. 12:30

1학년 때 여러 가지 도형의 종류와 정의에 대해서 배웠다면 2학년, 3학년 때는 각 도형의 성질을 배워요. 2학년 때는 여러 가지 사각형과 삼각형의 닮음에 대해서 배웠지요?

3학년 때는 에 대해서 자세히 알아볼 거예요. 원에 대한 내용 중 첫 번째로 현에 관한 내용이에요. 현은 1학년 원과 부채꼴, 호, 현, 활꼴, 중심각에서 공부한 적이 있어요. 현의 정의에 대해서는 위 글을 참고하세요.

여기에서는 현의 수직이등분선의 성질에 대해서 알아보고, 그 성질을 증명해보죠.

현의 수직이등분선

현은 원 위의 두 점을 이은 직선을 말하죠? 원의 중심과 현 사이에는 한 가지 성질이 있어요. 이 한 가지 성질을 이렇게도 말하고 반대로도 말해요.

이 성질을 증명하기는 별로 어렵지 않아요. 그리고 나오는 문제들도 매우 쉽고요. 짧게 설명하고 넘어갈게요.

원의 중심에서 현에 내린 수선은 현을 수직이등분한다.

원의 중심 O에서 에 수선을 내리면 를 수직이등분해요. 수선이니까 당연히 수직이겠죠. 이등분하는지만 증명해보면 되겠네요.

현의 수직이등분선 성질

점 O에서 점 A와 점 B로 선을 그어보죠.

현의 수직이등분선 성질 증명

△OAH와 △OBH가 생겨요. 두 삼각형에서

∠OHA = ∠OHB = 90°    (는 수선)
는 공통
 = 반지름 r

따라서 두 삼각형은 RHS 합동이에요. 대응변의 길이가 같으므로 이죠.    (증명 끝.)

다음 그림을 보고 의 길이를 구하여라.

△OAH가 직각삼각형이에요. 피타고라스의 정리를 이용하면 = 4cm고요.  = 2 = 8cm입니다.

현의 수직이등분선은 원의 중심을 지난다.

명제의 결론인 원의 중심을 지나는지를 증명하기는 까다로워요. 그래서 다른 방법으로 증명하지요. 현의 중점과 원의 중심을 연결해요. 그리고 이 선이 현에 수직인지를 증명하는 거죠.

현의 수직이등분선 성질 증명

의 중점을 H라고 하고 원의 중심 O와 점 H을 연결해요. 가 수직인지를 증명해보죠.

점 O에서 점 A와 점 B로 선을 그어요.

△OAH와 △OBH에서

    (점 H는 의 중점)
는 공통
 = 반지름 r

따라서 두 삼각형은 SSS 합동이에요. 대응각의 크기가 같으므로 ∠OHA = ∠OHB이죠. ∠OHA + ∠OHB = 180°(평각)이므로 ∠OHA = ∠OHB = 90°에요.  (증명 끝.)

함께 보면 좋은 글

[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
현의 길이
접선과 현이 이루는 각

정리해볼까요

현의 수직이등분선

  • 원의 중심에서 현에 내린 수선은 현을 수직이등분한다.
  • 현의 수직이등분선은 원의 중심을 지난다.
 
그리드형

닮은 도형의 활용

2012. 10. 27. 12:30

중2 수학 마지막 글입니다. 벌써 끝이라니 ㅠㅠ. 2학년 과정을 다 마친 다음에는 중3 수학을 미리 예습해보세요.

닮은 도형의 활용에서 제일 중요한 건 닮음비에요. 닮음비는 비니까 계산할 때도 비례식을 세워서 계산하는 게 핵심이죠. 비례식 세우는 건 그렇게 어려운 일은 아니잖아요. 계산도 그렇고요.

그런 면에서 닮은 도형의 활용은 다른 단원에서 나오는 활용문제보다 조금은 쉬운 편이라고 할 수 있어요.

문제 유형에 따라 조금 더 쉬운 방법이 있을 수는 있겠지만, 굳이 유형별 문제 풀이법을 따로 익히기보다는 쉽고 공통으로 사용할 수 있는 비례식을 사용하는 게 제일 좋아요.

닮은 도형의 활용

지도에서 거리 구하기

지도는 실제 지형을 작게 표시해서 평면에 나타낸 거예요. 작게 표시할 때 그냥 작게 표시하는 게 아니라 실제 거리를 일정한 비율로 줄이죠. 작게 줄일 때 사용하는 일정한 비율을 바로 축척이라고 하고요. 바로 이 축척이 닮은 도형의 닮음비에 해당합니다.

지도의 축척은 보통 비례식이나 분수로 나타내요. 1 : 50,000이나 으로요. 여기서 1은 지도상에서의 거리, 50,000은 실제 거리로 지도의 1cm는 실제 50,000cm라는 걸 의미해요.

지도의 축척을 주고, 지도상의 거리가 실제로는 몇 m인지 구하거나 반대로 실제 거리가 지도에는 몇 cm로 표시되는지 묻는 문제가 많이 나와요. 실제 거리를 구할 때와 지도상의 거리를 구할 때 모두 공식으로 외워서 문제를 풀기도 하지만 딱히 추천하지는 않아요. ", 지도상의 거리 = 실제 거리 × 축척"이라는 공식이 있는데, 외우려면 헷갈려요.

축척은 비례니까 계산할 때도 "1 : 50,000 = 지도상의 거리 : 실제 거리"처럼 비례식을 세우는 게 더 나은 방법이에요. 좌변은 축척, 우변에는 거리를 쓰는 거죠. 물론 위 공식은 이 비례식을 계산해서 나온 것이긴 하지만 보다 확실하고 안전한 게 좋죠.

축척이 주어진 지도에서 실제 거리 구하기
축척 = 닮음비
공식을 이용하기보다는 비례식을 세워서 계산
문제에서 요구하는 단위에 맞게 숫자 변환

단위를 변환할 때, 가지 주의해야 할 게 있어요.

1m = 100cm, 1km = 1,000m = 100,000cm인 건 다 알고 있을 거예요. 거리를 하는 건 별로 어렵지 않아요. 넓이를 변환하는 게 문제죠.

1m2 = 10,000cm2, 1km2 = 1,000,000m2이에요. 단위만 제곱하는 게 아니라 숫자도 제곱을 해줘야 해요.

축척이 인 지도에서 다음을 구하여라.
(1) 두 지점 사이의 거리가 10cm일 때 실제 두 지점 사이의 거리는 몇 km인지 구하여라.
(2) 지도에서 넓이가 2cm2인 부분의 실제 넓이는 몇 m2인지 구하여라.

(1) 은 비례식으로 나타내면 1 : 50,000이에요. 지도에서 1cm는 실제 거리로는 50,000cm라는 거지요. 문제에서 구하는 건 10cm가 실제로 몇 km인지를 구하는 거잖아요. 구하라고 하는 값을 x라고 놓고 비례식으로 써보면 1 : 50,000 = 10cm : x cm라는 비례식을 세울 수 있어요.

1 : 50,000 = 10cm : x cm
x = 50,000 × 10 = 500,000(cm)

문제에서는 몇 km냐고 물어봤으니 단위에 맞게 숫자를 고쳐줘야겠죠?

500,000cm = 5,000m = 5km네요.

(2) 넓이에요. 일단 비례식을 세워보죠. 실제 넓이를 ycm2이라고 놓죠.

닮은 도형의 넓이의 비와 부피의 비 1에서 넓이의 비는 닮음비의 제곱이라고 했어요. 따라서 1 : 50,000이 아니라 12 : (50,000)2라는 비를 사용해야 해요. (50,000)2 = (5 × 104)2 = 25 × 108이네요.

1 : 25 × 108 = 2cm2 : ycm2
y = 2 × 25 × 108 = 50 × 108 = 5 × 109(cm2)

우리가 구한 값은 단위가 cm2이고, 문제에서 요구하는 단위는 m2이에요. 변환할 때 주의하세요.
1m2 = 10,000cm2이니까 5,000,000,000cm2 = 500,000m2입니다.

높이 구하기

건물, 나무의 높이 구하기는 축척 문제보다 조금 더 쉬워요. 그림이 함께 있으니까요. 나무 그림을 그려주고 그 옆에는 닮은 도형인 삼각형이 함께 나와요.

이런 유형은 나무가 있는 그림에서 삼각형을 찾아서 옆의 삼각형과 닮음비를 이용해서 높이를 구하면 돼요.

높이 구하기
닮은 삼각형을 찾아서 대응변의 비례식을 세워서 계산

죠스 나무의 높이를 구하기 위해 삼각형을 그리고, 그 삼각형을 축소하여 오른쪽에 나타내었다. 죠스 나무의 높이를 구하여라.
닮은 도형의 활용

축소해서 그렸으니까 두 삼각형은 닮은 도형이에요. 죠스나무의 높이를 x m라고 하지요. 그리고 m 단위를 사용할 거니까 오른쪽 삼각형의 높이도 m로 바꿔줘야 해요. 80cm = 0.8m네요

5m : xm = 1m : 0.8m
x = 5 × 0.8 = 4(m)

함께 보면 좋은 글

닮은 도형의 성질
닮은 도형의 넓이의 비와 부피의 비 1
닮은 도형의 부피의 비와 넓이의 비 2

정리해볼까요

닮음 도형의 활용

  • 지도 문제
    축척 = 닮음비임을 이용해서 비례식을 세워 계산
    문제에서 요구하는 단위에 맞게 숫자 변환
  • 높이 구하기
    닮은 삼각형과 대응변의 비례식을 세워서 계산
 
그리드형

닮은 도형의 겉넓이비와 부피비예요. 겉넓이와 부피를 구하는 거니까 당연히 입체도형이라는 얘기죠.

입체도형에서 닮은 도형의 성질을 먼저 정리해볼까요? 입체도형에서는 대응하는 모서리의 길이의 비가 모두 일정해요. 이 일정한 비가 바로 닮음비지요. 그리고 대응하는 면은 서로 닮은 도형이고요.

닮은 도형의 겉넓이의 비, 닮은 도형의 부피의 비와 대응하는 모서리의 길이의 비, 즉 닮음비 사이에 어떤 관계가 있는지 알아볼까요?

닮은 도형의 겉넓이의 비

닮은 도형의 부피의 비

두 직육면체가 있어요. 두 입체도형에서 대응하는 모서리의 길이의 비는 m : n이죠.

왼쪽 직육면체의 겉넓이를 구해보죠. 각기둥의 부피와 겉넓이 공식에 따라서 구해보면
S1 = 2 × ma × mb + 2 × (ma + mb) × mc
   = 2m2ab + 2m2ac + 2m2bc

여기서 세 항에 모두 2m2이 들어있으니까 이걸 앞으로 빼고 나머지 부분을 전부 괄호로 넣어볼게요. 그러면 2m2(ab + bc + ca)가 되는데, 이걸 분배법칙으로 풀어보면 위 식과 같아지죠?
2m2(ab + bc + ca) = 2m2ab + 2m2bc + 2m2ca

이번에는 오른쪽 직육면체의 겉넓이를 구해보죠. 각기둥의 부피와 겉넓이 공식에 따라서 구해보면
S2 = 2 × na × nb + 2 × (na + nb) × nc
   = 2n2ab + 2n2ac + 2n2bc

여기서 세 항에 모두 2n2이 들어있으니까 이걸 앞으로 빼고 나머지 부분을 전부 괄호로 넣어볼게요. 그러면 2n2(ab + bc + ca)가 되는데, 이걸 분배법칙으로 풀어보면 위 식과 같아져요.
2n2(ab + bc + ca) = 2n2ab + 2n2bc + 2n2ca

두 직육면체의 겉넓이의 비를 구해보죠.
S1 : S2 = 2m2(ab + bc + ca) : 2n2(ab + bc + ca) = m2 : n2

닮음비가 m : n → 겉넓이 비는 m2 : n2

새로운 건 아니죠? 닮은 도형의 넓이의 비와 부피의 비 1에서 닮은 도형의 넓이의 비는 닮음비의 각 항을 제곱한 거라는 걸 이미 공부했잖아요. 겉넓이도 넓이니까 똑같은 거예요.

닮은 도형의 부피의 비

왼쪽 직육면체의 부피를 구해보죠. 각기둥의 부피와 겉넓이 공식에 따라서 구해보면 V1 = ma × mb × mc = m3abc죠.

오른쪽 직육면체의 부피 V2 = na × nb × nc = n3abc고요.

V1 : V2 = m3abc : n3abc = m3 : n3

닮음비가 m : n → 부피의 비는 m3 : n3

이 내용은 직육면체 뿐 아니라 원기둥, 각뿔, 원뿔, 구 등 모든 입체도형의 부피에 똑같이 적용돼요.

닮음비, 겉넓이의 비, 부피의 비

이 세 비의 관계는 단위를 생각해보면 쉽게 이해할 수 있어요. 길이의 단위, 겉넓이의 단위, 부피의 단위를 잘 보세요. 단위가 제곱이면 해당 항목도 제곱, 단위가 세제곱이면 그 항목도 세제곱이에요.

닮음비와 단위의 관계
단위 비율
길이의 비 cm m : n
겉넓이의 비 cm2 m2 : n2
부피의 비 cm3 m3 : n3

반지름이 3cm인 쇠구슬을 녹여서 반지름이 1cm인 쇠구슬을 몇 개 만들 수 있는지 구하시오.

큰 구슬을 녹여서 작은 구슬을 만든다고 했으니까 겉넓이가 아닌 부피의 비를 구해야 하는 문제예요.

작은 쇠구슬의 반지름 : 큰 쇠구슬의 반지름 = 1 : 3이에요. 이게 바로 닮음비죠. 부피의 비는 닮음비를 세제곱하는 거니까 1 : 3의 각 항을 세제곱한 13 : 33 = 1 : 27이네요.

작은 구슬 27개와 큰 구슬 1개의 부피가 같으니까 큰 구슬 1개로 작은 구슬 27개를 만들 수 있어요.

함께 보면 좋은 글

닮은 도형, 도형의 닮음
삼각형의 무게중심과 삼각형의 중선
닮은 도형의 넓이의 비와 부피의 비 1
닮은 도형의 활용

정리해볼까요

닮은 도형의 겉넓이의 비와 부피의 비

  • 닮음비 = m : n
  • 겉넓이의 비 = m2 : n2
  • 부피의 비 = m3 : n3
<<    중2 수학 목차    >>
 
그리드형

이번에는 닮은 도형의 기본으로 다시 돌아가서 두 닮은 도형 사이의 성질에 대해서 알아볼 거예요.

닮은 도형은 대응변의 길이의 비가 같아요. 이 비를 닮음비라고 하며 모든 대응변에서 같죠. 닮은 도형에서는 대응변의 길이뿐 아니라 둘레의 길이와 넓이에도 일정한 비가 성립해요.

닮은 도형의 길이의 비(=닮음비), 닮은 도형의 둘레의 비닮은 도형의 넓이의 비가 서로 어떤 관계가 있는지 알아볼까요?

닮은 도형의 둘레의 길이의 비

닮은 도형의 넓이의 비와 부피의 비 1 - 닮은 도형의 둘레의 길이의 비

닮음비가 m : n인 두 삼각형 △ABC, △DEF가 있어요.

△ABC의 둘레의 길이를 구해보죠. ma + mb + mc인데, 여기서 m을 앞에 쓰고 m을 뺀 나머지 것들을 모두 괄호 안에 넣어서 쓰면 m(a + b + c)이에요. 이걸 분배법칙을 이용해서 괄호를 풀면 ma + mb + mc가 되죠? 그러니까 둘을 같은 거죠?

m(a + b + c) = ma + mb + mc

이번에는 △DEF의 둘레의 길이를 구해보죠. na + nb + nc인데, 여기서 n을 앞에 쓰고 n을 뺀 나머지 것들을 모두 괄호 안에 넣어서 쓰면 n(a + b + c)이에요. 이걸 분배법칙을 이용해서 괄호를 풀면 na + nb + nc가 되니까 둘을 같은 거예요.

n(a + b + c) = na + nb + nc

두 삼각형의 둘레의 길이의 비는 m(a + b + c) : n(a + b + c) 인데, (a + b + c)가 모두 들어있으니까 지우고 나면 m : n이에요. 닮음비와 같아요.

닮은 도형의 닮음비 = 닮은 도형의 둘레의 길이의 비
닮음비가 m : n → 둘레의 길이의 비도 m : n

닮은 도형의 넓이의 비

이번에는 닮은 도형의 넓이의 비를 구해보죠.

닮은 도형의 넓이의 비와 부피의 비 1 - 닮은 도형의 넓이의 비

□ABCD와 □EFGH가 있어요. 두 도형의 닮음비는 m : n이에요.

□ABCD의 넓이 = ma × mb = m2ab
□EFGH의 넓이 = na × nb = n2ab

□ABCD : □EFGH = m2ab : n2ab

두 항 모두에 ab가 들어있으니까 약분하면 m2ab : n2ab = m2 : n2가 되죠.

닮은 도형의 넓이의 비
닮음비가 m : n → 넓이의 비 m2 : n2

두 원이 있다. 큰 원의 반지름은 작은 원의 반지름의 3배이고, 작은 원의 반지름이 2cm일 때, 큰 원의 넓이를 구하여라.

닮은 도형, 도형의 닮음에서 정다각형, 원 등은 항상 닮은 도형이라고 했어요. 따라서 별다른 얘기가 없어도 이런 도형들은 닮은 도형이라는 걸 전제로 하고 문제를 풀어야 해요. 그리고 원에서는 변의 길이 대신에 반지름의 길이의 비를 닮음비로 한다고 했어요.

닮음비가 1 : 3이니까 넓이의 비는 1 : 32 = 1 : 9가 되겠죠?

작은 원의 반지름이 2cm니까 넓이는 πr2 = 4π(cm2)이군요.

큰 원의 넓이는 작은 원 넓이의 9배니까 4π × 9 = 36π(cm2)입니다.

함께 보면 좋은 글

닮은 도형의 부피의 비와 넓이의 비 2
닮은 도형의 활용
삼각형의 무게중심과 삼각형의 중선
닮은 도형, 도형의 닮음

정리해볼까요

닮은 도형의 닮음비, 둘레의 비, 넓이의 비

  • 닮음비 = m : n
  • 둘레의 길이의 비 = m : n
  • 넓이의 비 = m2 : n2
<<    중2 수학 목차    >>
 
그리드형

삼각형의 무게중심은 매우 중요한 내용입니다. 꼭 알고 있어야 해요.

이번에는 삼각형의 무게중심과 삼각형 넓이의 관계를 알아볼 거예요. 언제나 그랬듯이 설명은 거창하지만, 결론은 쉬워요. 이 글에서는 딱 하나의 결론만 나와요.

그렇다고 결론만 보지 말고 설명도 잘 보세요. 설명을 잘 이해하지 못하면 응용문제를 풀 수 없거든요.

삼각형의 외심과 내심에서는 넓이와 관련된 내용이 없었으니 헷갈리지는 않을 거예요.

삼각형의 중선과 넓이

먼저 삼각형의 중선과 삼각형의 넓이에 대해서 알아보지요.

삼각형의 중선과 넓이

삼각형의 중선은 한 꼭짓점과 그 대변의 중점을 연결한 선이에요.

△ABC에 중선을 그어서 △ABD, △ACD의 두 삼각형으로 나눴어요.

평행선과 삼각형의 넓이, 높이가 같은 삼각형의 넓이의 비에서 두 삼각형의 높이가 같으면 밑변의 길이의 비와 넓이의 비가 같다고 했어요. 여기서는 밑변의 길이도 같으니 넓이도 같겠죠.

위 그림에서는 로 밑변의 길이가 같아요. 높이도 같고요. 따라서 두 삼각형 △ABD, △ACD의 넓이는 같아요. 즉, 중선으로 나누어진 두 삼각형의 넓이가 같은 거죠.

△ABC의 중선
△ABD = △ACD = △ABC

삼각형의 무게 중심과 넓이

삼각형의 무게 중심과 넓이

△ABC에 세 중선을 그 교점을 G라고 해보죠. G는 삼각형의 무게중심이에요.

위에서 봤던 것처럼 중선으로 나누어진 삼각형은 넓이가 같아요.

△ABC의 중선 → △ABD  = △ACD ……… ①

이번에는 무게중심 G와 B, C로 이루어진 삼각형을 보죠.

△GBC의 중선  → △GBD = △GCD ……… ②

연립방정식의 풀이법 - 가감법처럼 ① - ②를 해보면

△ABD - △GBD = △ACD - △GCD
△GAB = △GCA

같은 방법으로 계산하면 결국 △GAB, △GBC, △GCA 세 삼각형의 넓이가 모두 같음을 알 수 있어요.

△ABC에서 삼각형의 무게중심이 G일 때,
△GAB = △GBC  = △GCA = △ABC

조금 더 들어가 볼까요?

△GBC의 중선  → △GBD = △GCD = △GBC

△GCA의 중선  → △GCE  = △GAE = △GCA

△GAB의 중선  → △GAF = △GBF = △GAB

△GAB = △ABC이므로 결국 △GAF = △GBF = △GAB = △ABC이에요. 다른 모든 삼각형에서도 똑같아요.

△ABC에서 삼각형의 무게중심이 G이고 각 변의 중점이 D, E, F일 때
△GBD = △GCD  = △GCE  = △GAE = △GAF = △GBF
△GAB = △GBC = △GCA
= △ABC

다음 평행사변형 ABCD에서 점 O는 두 대각선 의 교점, 점 F는 의 중점, 점 E는 의 교점이다. □ABCD의 넓이가 30cm2일 때, □OEFC의 넓이를 구하여라.
삼각형의 무게 중심과 넓이 예제

평행사변형의 성질에 따르면 두 대각선은 서로를 이등분해요. 따라서 죠. 도 △ABC의 중선이라는 거죠. 점 E는 두 중선 , 의 교점이므로 무게중심이에요.

를 그어보세요. □OEFC는 넓이가 같은 두 개의 삼각형으로 나누어지는데, 여기서 하나의 삼각형은 전체 삼각형 △ABC의 넓이의 이에요.

□OEFC = △EFC + △EOC= △ABC + △ABC = △ABC에요.

평행사변형과 넓이에서 평행사변형의 대각선으로 나누어진 두 삼각형의 넓이는 평행사변형의 넓이의 절반이에요. △ABC = □ABCD

자 이제 이 식을 위 식에 대입해보죠.

□OEFC = △EFC + △EOC = △ABC = × □ABCD = × 30 = 5(cm2)

함께 보면 좋은 글

평행선과 삼각형의 넓이, 높이가 같은 삼각형의 넓이의 비
삼각형의 무게중심과 삼각형의 중선
닮은 도형의 넓이의 비와 부피의 비 1

정리해볼까요

삼각형의 무게중심과 넓이

  • 삼각형의 중선으로 나누어진 두 삼각형의 넓이는 같다.
  • 삼각형의 무게중심으로 나누어진 6개의 삼각형의 넓이는 같다. 전체 넓이의
<<    중2 수학 목차    >>
 
그리드형

삼각형의 내심과 외심 기억하고 있죠? 오늘은 또 다른 삼각형의 중심을 공부할 거예요. 바로 삼각형의 무게중심이에요. 너무도 당연한 얘기지만 삼각형의 무게중심은 이름 그대로 무게의 중심입니다.

삼각형의 무게중심은 삼각형의 외심, 삼각형의 내심보다 복잡하지 않고, 내용도 더 적어요. 그래서 더 쉽게 공부할 수 있죠.

무게중심의 정의와 성질을 잘 이해하고, 외심과 내심과 구별할 줄 알아야 합니다.

삼각형의 중선

삼각형의 중선은 이름에서 유추할 수 있어요. 가운데 선이라는 뜻이죠.

삼각형의 중선

삼각형의 중선은 한 꼭짓점과 그 대변의 중점을 연결한 선을 말해요. 삼각형에는 꼭짓점이 세 개니까 중선은 세 개가 있어요.

삼각형의 무게중심

삼각형에는 세 개의 중선이 있죠. 이 세 개의 중선은 한 점에서 만나게 되는데, 이 교점이 바로 삼각형의 무게중심이에요. 보통은 Gravity의 첫 글자를 따서 G라고 써요. (삼각형의 세 중선이 한 점에서 만나는 이유)

삼각형의 외심은 세 변의 수직이등분선의 교점이고, 무게중심은 그냥 이등분선의 교점이에요. 둘의 차이를 잘 구별하세요.

삼각형의 중점에는 중요한 성질이 하나 있어요. 삼각형의 한 중선에는 꼭짓점, 무게중심, 대변의 중점의 세 점이 있죠? 이 세 점 사이의 거리에 관한 성질이에요.

꼭짓점 ~ 무게중심 : 무게중심 ~ 대변의 중점 = 2 : 1
삼각형의 무게중심

왜 그런지 알아볼까요?

삼각형 무게중심의 성질 증명

의 중점 점 E와 점 F를 연결하면, 두 변의 중점을 연결한 직선이므로 삼각형의 중점 연결 정리에 의해 가 됩니다.

△GEF와 △GBC를 보세요.

∠GEF = ∠GBC (이므로 평행선에서 엇각)
∠GFE = ∠GCB (이므로 평행선에서 엇각)

∴ △GEF ∽와 △GBC (AA 닮음)

두 삼각형이 닮음이므로 각 대응변의 길이의 비가 같죠? 이 성립합니다.

여기서 우리가 필요한 부분만 가져오면 이죠.

점 F와 점 D를 연결해서 같은 방법을 이용하면 도 구할 수 있지요.

결국, 꼭짓점에서 무게중심에 이르는 거리와 무게중심에서 대변의 중점까지의 거리는 2 : 1이 성립함을 알 수 있어요.

△ABC의 무게중심이 점 G이고, △GBC의 무게중심이 점 G'다. = 18cm일 때 를 구하여라.

꼭짓점 ~ 삼각형의 무게중심 : 무게중심 ~ 대변의 중점 = 2 : 1이므로 무게중심에서 대변의 꼭짓점까지의 거리는 중선의 1/3이죠.

꼭짓점에서 무게중심까지의 거리는 중선의 2/3이니까

함께 보면 좋은 글

삼각형의 무게 중심과 넓이, 삼각형의 중선과 넓이
삼각형의 중점 연결 정리, 삼각형 중점 연결 정리의 역
삼각형의 세 중선이 한 점에서 만나는 이유
사다리꼴의 중점 연결 정리, 등변사다리꼴의 중점 연결 정리
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교

정리해볼까요

삼각형의 무게중심

  • 삼각형의 중선: 한 꼭짓점과 대변의 중점을 연결한 직선
  • 삼각형의 무게중심: 세 중선의 교점
  • 꼭짓점 ~ 무게중심 : 무게중심 ~ 대변의 중점 = 2 : 1
 
그리드형

삼각형의 중점 연결 정리에 이어 사다리꼴의 중점 연결 정리입니다. 평행사변형, 정사각형, 마름모의 중점 연결 정리는 따로 하지 않으니까 중점 연결 정리는 여기가 끝이에요.

사다리꼴의 중점 연결정리는 사다리꼴에 대각선을 그어서 삼각형을 만든 다음 삼각형의 중점 연결 정리를 적용하는 거예요.

그리고 등변사다리꼴의 중점 연결 정리에는 등변사다리꼴의 정의와 등변사다리꼴의 성질에서 공부했던 내용이 나오니까 기억이 나지 않는다면 미리 읽어두세요.

사다리꼴의 중점 연결 정리

사다리꼴에서 평행하지 않은 두 변의 중점을 각각 M, N이라고 하죠. 그리고 대각선과 중점을 연결한 직선이 만나는 점을 각각 P, Q라고 하고요.

그러면 아래 그림 같은 성질이 성립합니다.

사다리꼴의 중점 연결 정리

중점을 연결한 직선

첫 번째 중점을 연결한 선이 다른 두 변과 평행한지부터 증명해보죠.

의 연장선과 의 연장선이 만나는 점을 점 E라고 해보죠.

사다리꼴의 중점 연결 정리 증명 1

△AND와 △ENC가 생기죠.

두 삼각형에서
점 N은 의 중점이므로
∠AND = ∠ENC (맞꼭지각)
이므로 ∠ADN = ∠ECN (평행선에서 엇각)

따라서 두 삼각형은 ASA 합동이에요. △AND ≡ △ENC

합동인 삼각형에서 대응변의 길이는 같으므로 이죠.

△ABE에서 , 이므로 삼각형의 중점 연결 정리 때문에 이 성립해요.

등변사다리꼴에서는 이므로 결국 이 성립합니다.

중점을 연결한 직선의 길이

이번에는 중점을 연결한 직선의 길이를 구해볼까요?

사다리꼴의 윗변의 길이를 a, 아랫변의 길이를 b라고 해보죠. 점 A에서 점 C로 대각선을 긋고, 중점을 연결한 선과 만나는 점을 Q라고 할게요.

사다리꼴의 중점 연결 정리 증명 2

이므로 둘을 구해서 더하면 되겠죠?

△ABC에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

△ACD에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

중점을 연결한 직선과 대각선의 두 교점 사이의 거리

중점을 연결한 직선과 대각선이 만나는 점을 각각 점 P, Q라고 할게요.

사다리꼴의 중점 연결 정리 증명 3

로 구할 수 있어요.

△ABC에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

△ABD에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

위 그림에서 = 5cm, = 2cm일 때, a, b를 구하여라.

이므로 a = 2= 10(cm)

이고, 이므로 b = 2(5 + 2) = 14(cm)

등변사다리꼴의 중점 연결 정리

사각형의 중점을 연결하여 만든 사각형에서 사다리꼴은 없었지요? 여기서 해보자고요.

등변사다리꼴에서는 두 변의 중점을 바로 연결하는 게 아니라 네 변의 중점을 모두 연결해요. 등변사다리꼴의 네 변의 중점을 각각 E, F, G, H라고 할 때 이 네 점을 연결한 □EFGH는 마름모가 됩니다.

등변사다리꼴의 중점 연결 정리

점 A와 점 C를 연결하는 대각선을 그어보죠.

등변사다리꼴의 중점 연결 정리 증명

△ABC에서 이므로 삼각형의 중점 연결 정리에 의해 에요. △ADC에서 이므로 삼각형의 중점 연결 정리에 의해 에요. 정리해보면

점 B와 점 D를 연결하는 대각선을 그어서 같은 방법을 사용하면 를 구할 수 있어요.

등변사다리꼴의 성질에 따르면 두 대각선의 길이가 같아요. 이므로 결국 가 되어 네 변의 길이가 모두 같은 마름모가 됩니다.

함께 보면 좋은 글

삼각형의 중점연결 정리, 삼각형 중점연결 정리의 역
사다리꼴의 정의와 등변사다리꼴의 성질
사각형의 중점을 연결하여 만든 사각형

정리해볼까요

사다리꼴의 중점 연결 정리

  • 평행하지 않은 두 변의 중점을 연결한 선의 길이 = ½ (윗변 + 아랫변)
  • 등변사다리꼴의 중점 연결 정리: 등변사다리꼴 네 변의 중점을 연결한 도형은 마름모
<<    중2 수학 목차    >>
 
그리드형

삼각형의 중점 연결 정리입니다.

중점이 뭔지는 알죠? 정리가 뭔지도 알고요. (수학에서의 정의, 정리, 증명)

삼각형의 중점 연결 정리는 이름 그대로 삼각형에서 각 변의 중점을 연결했더니 어떤 특징이 있는데, 그 특징을 다른 여러 곳에 쓸 수 있는 거지요.

다른 내용과 달리 두세 개의 삼각형에 선을 여러 개 그어서 문제가 좀 복잡하게 나오기 때문에 기본을 잘 알고 있어야 하는 내용입니다.

삼각형의 중점 연결 정리

삼각형의 중점 연결 정리를 말로 표현하면 삼각형의 두 변의 길이의 중점을 연결한 직선은 나머지 한 변과 평행하고, 길이는 그 절반이라는 거예요.

그림으로 표현하면 훨씬 더 이해하기 쉬울 거예요.

삼각형의 중점 연결 정리

왼쪽 그림을 보세요.

점 M은 선분 AB의 중점, 점 N은 선분 AC의 중점이에요.

△ABC와 △AMN에서 삼각형의 중점 연결 정리 증명 1의 비가 성립하고, ∠A는 공통이에요. 따라서 두 삼각형은 SAS 닮음이에요. △ABC ∽ △AMN

두 삼각형이 닮음이면 대응각의 크기가 같죠? (닮은 도형의 성질) ∠ABC = ∠AMN, ∠ACB = ∠ANM으로 동위각의 크기가 같으므로 평행선의 성질에 의해 삼각형의 중점 연결 정리 증명 2예요. 또 다른 한 대응변에서도 2 : 1의 비가 성립하죠. 삼각형의 중점 연결 정리 증명 3

다음 그림을 보고 x를 구하여라.
삼각형의 중점 연결 정리 예제

삼각형의 양쪽 변의 중점을 연결한 선분은 다른 한 변과 평행하고, 길이는 그 절반이죠. 따라는 x는 16cm입니다.

삼각형의 중점 연결 정리의 역

이번에는 위 정리의 역이에요. 명제, 명제의 가정과 결론, 명제의 역에서 역은 명제의 가정과 결론의 자리를 바꾸는 거라고 했어요.

명제: 삼각형에서 두 변의 중점을 연결한 직선은 나머지 한 변과 평행하고 길이는 그 절반이다.
역 : 삼각형에서 한 변과 평행하고 길이가 절반인 직선은 다른 두 변의 중점을 연결한 선이다

명제와 역이 위처럼 되어야 맞지요? 그런데, 이 삼각형의 중점 연결 정리의 역은 좀 달라요. 내용은 같지만 표현을 다르게 해요. 삼각형에서 한 변의 중점을 지나고 다른 한 변과 평행한 직선은 나머지 한 변의 중점을 지난다.

두 역 사이에 어떤 차이가 있나요? 한 변의 중점을 지난다는 얘기가 추가되었고, 길이가 절반이라는 내용이 빠졌어요. 잘 이해하셔야 해요.

삼각형의 중점 연결 정리의 역

왼쪽 그림을 보세요.

△ABC와 △AMN에서 삼각형의 중점 연결 정리 증명 1이므로 ∠ABC = ∠AMN, ∠ACB = ∠ANM이에요. 두 대응각의 크기가 같으니까 두 삼각형은 AA 닮음이죠. △ABC ∽ △AMN

두 삼각형이 닮음이면 대응변의 길이의 비가 같아요. 삼각형의 중점 연결 정리 증명 3이므로 삼각형의 중점 연결 정리 증명 4이죠. 따라서 삼각형의 중점 연결 정리 증명 5이 됩니다.

삼각형에서 평행선과 선분의 길이의 비 2의 내용을 이용해도 삼각형의 중점 연결 정리 증명 6이 증명되죠.

다음 그림을 보고 x, y를 구하여라.
삼각형의 중점 연결 정리의 역 예제

△ABC에서 삼각형의 중점 연결 정리 예제 풀이 1이에요. 한 변의 중점을 지나고 다른 변과 평행한 직선은 나머지 한 변의 중점을 지나므로 삼각형의 중점 연결 정리 예제 풀이 2입니다. y = 10cm네요.

∠ABC = ∠DNC = 90° → 삼각형의 중점 연결 정리 예제 풀이 3
삼각형의 중점 연결 정리 예제 풀이 4 → N이 삼각형의 중점 연결 정리 예제 풀이 5의 중점

한 변의 중점을 지나는 선이 다른 변과 평행이므로 삼각형 중점 연결정리의 역에 의해 점 D도 삼각형의 중점 연결 정리 예제 풀이 6의 중점이에요. 그런데 그림에서 삼각형의 중점 연결 정리 예제 풀이 7이죠.

따라서 중점 연결정리에 의해 삼각형의 중점 연결 정리 예제 풀이 8이죠. 따라서 x = 10cm입니다.

함께 보면 좋은 글

삼각형에서 평행선과 선분의 길이의 비 1
삼각형에서 평행선과 선분의 길이의 비 2
삼각형의 닮음 조건, 삼각형 닮음의 조건
닮은 도형의 성질

정리해볼까요

삼각형의 중점 연결 정리

  • 삼각형에서 두 변의 중점을 지나는 직선은 나머지 한 변과 평행하고, 길이는 그 절반
  • 삼각형 중점 연결 정리의 역: 삼각형에서 한 변의 중점을 지나고 다른 변과 평행한 직선인 나머지 변의 중점을 지난다.
<<    중2 수학 목차    >>
 
그리드형

닮은 도형을 계속 공부하고 있는데요. 이번에는 조금 응용된 과정이에요. 삼각형의 내각과 외각의 이등분선을 이용해서 변의 길이를 구하는 내용이지요.

이번 내용은 그림이 살짝 이상하게 생겨서 조금은 낯설 수 있어요. 하지만 어차피 도형의 닮음이므로 이상하게(?) 생각할 필요는 없어요.

닮은 삼각형이 눈에 바로 보이지는 않지만, 공식을 유도하는 과정이 아니면 닮은 삼각형을 찾지 못해도 문제를 푸는 데는 전혀 지장이 없어요. 혹시, 유도하는 과정이 이해가 안 되더라도 공식은 꼭 외우길 바랍니다.

삼각형 내각의 이등분선과 닮음

△ABC에서 ∠A의 이등분선가 만나는 점을 점 D라고 했을 때 아래 그림과 같은 길이의 비가 성립해요.

삼각형 내각의 이등분선과 닮음

∠A의 이등분선은 에요. 이등분선의 한쪽 끝인 점 A에서 시작하는 두 변의 길이의 비와 다른 쪽 끝인 점 D에서 시작하는 두 변의 길이의 비가 같지요.

증명해볼까요?

에 평행하고, 점 C를 지나는 선과 의 연장선이 만나는 점을 점 E라고 해보죠.

여기서 가 없다고 생각해보세요. 어떤 그림이죠? 삼각형에서 평행선과 선분의 길이의 비 1에서 봤던 그림이죠?

△ABD와 △ECD가 서로 닮음이에요. △ABD ∽ △ECD (AA 닮음). 두 삼각형 사이에는 길이의 비가 성립하죠. 전부 쓰지 않고 필요한 것만 써볼게요.

이제 가 다시 있다고 생각해 보죠. △ABC에서 는 ∠A의 이등분선이니까 ∠BAD = ∠CAD죠. 그리고 ∠BAD와 ∠CED는 평행선의 엇각으로 크기가 같아요. ∠BAD = ∠CED

∠BAD = ∠CAD = ∠CED로 두 밑각의 크기가 같으므로 이등변삼각형이 되는 조건에 의해 △CAE는 이등변삼각형이에요. △CAE가 이등변삼각형이므로  = 가 됩니다.

△ABD와 △ECD의 닮음비로 만들었던 공식 = 를 대입하면 가 되는 걸 증명할 수 있어요.

다음 그림에서 x를 구하여라.

바로 공식에 대입해보죠.

10 : 15 = 4 : x
10x = 60
x = 6 (cm)

삼각형 외각의 이등분선과 닮음

이번에는 △ABC에서 ∠A의 외각의 이등분선의 연장선이 만나는 점을 점 D라고 했을 때 아래 그림과 같은 길이의 비가 성립해요.

삼각형 외각의 이등분선과 닮음

∠A의 외각의 이등분선은 에요. 이등분선의 한쪽 끝인 점 A에서 시작하는 두 변의 길이의 비와 다른 쪽 끝인 점 D에서 시작하는 두 변의 길이의 비가 같지요.

에 평행하고, 점 C를 지나는 선과 가 만나는 점을 점 E라고 해보죠. 그리고  의 연장선 위의 임의의 점 F를 잡아요.

△ABD와 △ECD는 서로 닮음이에요. △ABD ∽ △ECD. 두 삼각형 사이에는 길이의 비가 성립하죠. 전부 쓰지 않고 필요한 것만 써볼게요.

는 ∠A의 외각의 이등분선이니까 ∠CAE = ∠FAE에요. ∠FAE와 ∠CEA는 평행선의 엇각으로 크기가 같아요. ∠FAE = ∠CEA

따라서 ∠FAE = ∠CAE = ∠CEA죠. △CAE에서 ∠CAE = ∠CEA로 두 밑각의 크기가 같으므로 이등변삼각형이 되는 조건에 의해 △CAE는 이등변삼각형이에요. △CAE가 이등변삼각형이므로  = 가 됩니다.

△ABD와 △ECD의 닮음비로 만들었던 공식 = 를 대입하면 가 되는 걸 증명할 수 있어요.

다음 그림에서 x를 구하여라.

그림에 보면 한 가지 함정이 있어요. △ABC에서 한 외각의 크기의 이등분선이 주어졌는데, 이때 우리가 쓸 수 있는 공식은 에요. 그런데 문제에서는 가 아니라 를 알려줬어요.  = (x - 4)cm에요.

공식에 대입해보죠.

10 : 8 = x : x - 4
8x = 10x - 40
2x = 40
x = 20 (cm)

함께 보면 좋은 글

삼각형에서 평행선과 선분의 길이의 비 1
삼각형에서 평행선과 선분의 길이의 비 2
평행선 사이의 선분의 길이의 비

<<    중2 수학 목차    >>
 
그리드형

+ 최근글