중등수학

평행선 사이의 선분의 길이의 비는 새로운 내용이 아니고, 삼각형에서 평행선과 선분의 길이의 비 1삼각형에서 평행선과 선분의 길이의 비 2를 합친 거예요.

삼각형을 먼저 그려놓고 평행선을 그렸었잖아요. 이번에는 평행선을 먼저 그려놓고 삼각형을 나중에 그리는 것만 달라요.

따라서 두 글의 내용을 제대로 이해하고 있지 않다면 아래 내용을 전혀 알 수 없어요. 이 글을 읽기 전에 두 글을 먼저 읽고 오세요.

두 글의 내용을 다 이해하고 있다면 그리 어렵지 않으니까 추가적인 증명은 최대한 줄이도록 할게요.

평행선 사이의 선분의 길이의 비

평행선 사이의 선분의 길이의 비

선분 l, m, n이 서로 평행해요. 평형한 세 선분을 지나는 두 직선이 있을 때, 두 직선과 평행한 세 선분이 만나면 위 그림처럼 총 네 개의 길이가 생겨요. 네 변의 길이에는 위와 같은 비례식이 성립합니다.

물론 그림으로 외워야겠죠?

특히 오른쪽 그림에서 비례식을 세우기가 어려워하는 경우가 많은데, 한 가지만 기억하면 비례식을 쉽게 세울 수 있어요. 같은 직선 위에 있는 길이가 한 변에 오게 비례식을 세우면 돼요. ①, ②가 한 직선 위에 있으니까 이 둘이 한 변에 오도록 ① : ②를 좌변으로, ③, ④가 한 직선 위에 있으니까 ③ : ④를 우변으로 만들면 돼요.

증명은 어렵지 않아요.

??평행선 사이의 선분의 길이의 비 증명

여러 가지 할 필요없이 그냥 각 그림에서 오른쪽에 있는 직선을 왼쪽으로 옮겨서 두 직선이 평행선 위의 한 점에서 만나게 하면 돼요.

왼쪽 그림은 삼각형에서 평행선과 선분의 길이의 비 2에서, 오른쪽 그림은 삼각형에서 평행선과 선분의 길이의 비 1에서 봤던 그림이죠? 따로 설명하지는 않을게요.

평행선 사이의 선분의 길이의 비 두 번째

이번에는 평행선을 잘 연결해서 삼각형을 만들었을 때에요.

평행선 사이의 선분의 길이의 비 2

뭔가 그림이 참 복잡한데 세로로 그어진 세 직선이 평행이에요. 그리고 그 중간에 여러 선을 그어서 삼각형을 만든 거죠. 색깔에 유의해서 보세요

여기서도 마찬가지로 같은 직선 위에 있는 길이가 한 변에 오게 비례식을 세우면 돼요.

그림에서 필요한 부분만 떼서 보죠.

평행선 사이의 선분의 길이의 비 2 증명 1

△ABE와 △CDE를 보세요. 두 삼각형은 삼각형에서 평행선과 선분의 길이의 비 1의 그림을 옆으로 눕혀놓은 거예요. 두 삼각형은 닮은 도형이므로 길이의 비가 같아요. 각 선의 색으로 구별할 수 있어요.

또 필요한 부분만 떼왔어요. 이 그림은 삼각형에서 평행선과 선분의 길이의 비 2에 나오는 그림이죠? 굳이 증명하지 않아도 이해할 수 있죠?

위 두 비례식에 가 공통으로 들어있으니까 이걸 이용하면 아래 비례식을 만들 수 있어요.

다음 그림에서 변 EF의 길이를 구하여라.

위 내용정리에서 변EF에 관한 내용은 없어요. 하지만 EF를 뺀 나머지 변의 길이의 비는 모두 구할 수 있죠? 6 : 12 = 1 : 2요.

이 1 : 2라는 비와 △ABC와 △EFC가 닮음이라는 것을 이용하면 EF의 길이를 구할 수 있어요.

에요. 따라서 가 되는 거죠. 3 : 2는 두 삼각형 △ABC와 △EFC의 닮음비에요. 이 닮음비는 모든 대응변에서 같아요.

함께 보면 좋은 글

삼각형에서 평행선과 선분의 길이의 비 1
삼각형에서 평행선과 선분의 길이의 비 2
닮은 도형, 도형의 닮음

<<    중2 수학 목차    >>
 
그리드형

삼각형에서 평행선과 선분의 길이의 비 두 번째입니다. 삼각형에서 평행선과 선분의 길이의 비 1에서는 평행선을 그었을 때 생기는 새로운 삼각형과 원래 삼각형이 닮았다는 걸 중심으로 해서 각 길이의 관계를 알아봤는데요.

이 글에서는 새로운 삼각형과의 관계가 아니라 다른 내용의 길이의 비에 관한 내용이에요.

두 내용에 차이가 있으니까 잘 구별하세요.

이 글의 내용도 마찬가지로 공식으로 외우기보다는 그림으로 외워야 합니다.

삼각형에서 평행선과 선분의 길이의 비 2

△ABC에서 밑변에 평행한 선을 그어요. 그러면 두 부분으로 나뉘죠? 보라색 변의 길이 비는 파란색 변의 길이 비와 같아요.

삼각형에서 평행선과 선분의 길이의 비 공식

증명해볼까요?

삼각형에서 평행선과 선분의 길이의 비 증명

△ABC에서 와 평행한 선을 그어서 와 만나는 점을 점 D, 와 만나는 점을 점 E라고 해보죠. 그리고 와 평행하고, 점 E를 지나는 선을 그어요. 와 만나는 점을 점 F라고 하면 △EFC가 생기죠? 이 삼각형과 △ADE의 관계를 알아봐요.

∠ADE = ∠ABC = ∠EFC (평행선에서 동위각)

∠AED = ∠ECF (평행선에서 동위각)

두 각의 크기가 같으므로 △ADE ∽ △EFC (AA 닮음)

두 삼각형이 닮음이니까 길이의 비에 관한 식을 세울 수 있어요. 

□DBFE는 두 쌍의 대변이 서로 평행하므로 평행사변형이에요. 평행사변형의 성질에 따라 대변의 길이는 같으므로 죠. 이걸 위 비례식에 대입하면 가 성립함을 알 수 있어요.

다음 그림에서 x를 구하여라.

6 : 3 = 8 : x이므로
x = 4 (cm)

이번에는 △ABC에서 밑변의 평행선을 꼭짓점보다 더 위에 그렸을 때에요. 삼각형 한 변의 길이와 연장선 길이의 비 사이의 관계죠. 이 그림에서도 마찬가지로 파란색 선과 보라색 선 사이에 길이의 비가 성립해요.

삼각형에서 평행선과 선분의 길이의 비 2 공식

증명해 볼까요?

삼각형에서 평행선과 선분의 길이의 비 2 증명

△ABC에서 점 A위에 와 평행한 선을 그어서 의 연장선과 만나는 점을 점 D, 의 연장선과 만나는 점을 점 E라고 해보죠. 그리고 점 D를 지나고 에 평행한 선을 긋고, 의 연장선과 만나는 점을 점 F라고 해보죠. △ADE와 △DBF의 관계를 알아볼 거예요.

∠ADE = ∠DBF (평행선에서 엇각)
∠AED = ∠DFB (평행사변형에서 대각)

두 각의 크기가 같으므로 △ADE와 △DBF는 AA 닮음이에요. △ADE ∽ △DBF

변의 길이를 이용해서 비례식을 세워보죠.

□EDFC는 두 쌍의 대변이 서로 평행하므로 평행사변형이에요. 평행사변형의 성질에 따라 대변의 길이는 같으므로 죠. 이걸 위 비례식에 대입하면 가 성립함을 알 수 있어요.

다음 그림에서 x를 구하여라.

삼각형의 한 변의 길이와 그 연장선 사이의 비가 같으므로,

x : 12 = 6 : 9
x = 8 (cm)

함께 보면 좋은 글

삼각형의 닮음 조건, 삼각형 닮음의 조건
직각삼각형에서의 닮음
삼각형에서 평행선과 선분의 길이의 비 1
평행선 사이의 선분의 길이의 비

<<    중2 수학 목차    >>
 
그리드형

직각삼각형에서의 닮음에서는 직각삼각형에 수선을 내려서 각 직각삼각형의 관계를 알아봤어요. 이제는 삼각형에 평행선을 그어서 생기는 두 삼각형의 관계에 대해서 알아볼 거예요.

여기서도 마찬가지로 공식이 나올 건데, 그림으로 외우세요. 증명하고, 선분 이름 쓰고 하는 것 보면 정말 어려워 보이지만 그림으로 보면 별거 아니에요.

문제도 그다지 어렵게 나오는 부분은 아니니 크게 걱정할 필요도 없고요.

삼각형에서 평행선과 선분의 길이의 비는 두 부분으로 나눠서 올립니다.

삼각형에서 평행선과 선분의 길이의 비

△ABC에서 에 평행한 선을 그어요. 그러면 아래 세 경우처럼 삼각형 안과 밖, 그리고 점 A의 위쪽에 그을 수 있죠.

삼각형에서 평행선과 선분의 길이의 비 증명

에 평행한 선과 (또는 의 연장선)이 만나는 점을 점 D, 평행선과 (또는 의 연장선)이 만나는 점을 점 E라고 해보죠.

△ABC와 △ADE가 생기는데, 이 두 삼각형 사이의 관계를 알아볼 거예요. 세 경우 모두에서 똑같으니까 한꺼번에 설명할게요.

첫 번째, 두 번째 그림에서  // 이므로 ∠ADE = ∠ABC(동위각), ∠AED = ∠ACB(동위각 - 평행선에서 동위각과 엇각), ∠A는 공통이에요. AA 닮음이죠.

세 번째 그림에서는  // 이므로 ∠ADE = ∠ABC(엇각), ∠AED = ∠ACB(엇각), ∠A는 맞꼭지각이라서 마찬가지로 AA 닮음이에요.

△ABC ∽ △ADE (AA 닮음)

닮음인 도형에서 각 길이의 비는 모두 같으므로 인 관계가 성립합니다.

여기서 가운데 항인 밑변 부분을 빼면 아래 그림처럼 나타낼 수 있어요. 식으로 외우기보다는 그림으로 외우세요. 알파벳으로 외우는 건 안돼요. 파란색 부분끼리, 보라색 부분끼리 변의 길이의 비가 같아요.

삼각형에서 평행선과 선분의 길이의 비 공식

다음 그림에서 x를 구하여라.

삼각형의 밑변에 평행한 선을 그어서 생기는 삼각형과 원래 삼각형은 닮음이에요.

△ABC ∽ △ADE (AA 닮음)

6cm : 9cm = 8cm : xcm
6x = 72
x = 12 (cm)

함께 보면 좋은 글

삼각형에서 평행선과 선분의 길이의 비 2
삼각형의 각의 이등분선과 닮음
삼각형의 닮음 조건, 삼각형 닮음의 조건
닮은 도형의 성질

<<    중2 수학 목차    >>
 
그리드형

직각삼각형에서의 닮음

2012. 10. 16. 16:00

닮은 도형 이번에는 직각삼각형이에요. 직각삼각형의 닮음에서는 그동안 해왔던 합동과의 비교가 아니라서 조금 어려울 수 있어요.

비슷하게 생긴 그림도 많이 나오고, 공식도 나오니까 주의하여 잘 보세요.

이 글에서는 3개의 공식이 나오는데, 이건 그림으로 외우세요. 알파벳으로 된 공식 그 자체를 외우는 건 바보스러운 짓이라는 걸 미리 말해둘게요. 그러니까 알파벳은 공식을 유도하는 과정에서만 이해하시면 돼요.

직각삼각형에서의 닮음

직각삼각형 ABC의 직각이 있는 점 A에서 에 수선을 내리고, 수선의 발을 H라고 해보죠.

직각삼각형에서의 닮음

원래 있던 직각삼각형 ABC 외에 두 개의 직각삼각형이 더 생겼어요. △HBA와 △HAC요. 큰 직각삼각형, 중간 직각삼각형, 작은 직각삼각형 세 삼각형을 이용해서 각 변의 길이 사이에는 어떤 특징이 있는지 알아볼 거예요.

직각삼각형에서의 닮음 1 유도

먼저 △ABC와 △HBA를 볼까요? 큰 직각삼각형과 중간 직각삼각형이죠. 한 쌍의 대응각은 직각(∠A = ∠H = 90°)이고, ∠B는 공통각이예요. 두 쌍의 대응각의 크기가 같으니까 나머지 한 쌍의 대응각의 크기도 같겠죠? ∠C = ∠BAH. 두 대응각의 크기가 같으니까 AA 닮음이지요. △ABC ∽ △HBA

닮은 도형에서 대응변의 길이의 비는 같으므로 라는 식을 세울 수 있어요. 첫 번째 항과 두 번째 항에 가 공통으로 들어 있으니까 두 항만 따로 떼서 정리해보죠.

식을 정리했더니 길이에 대한 공식이 하나 나왔네요. 두 삼각형으로 나누어져 있던 그림 말고 원래대로 처음의 삼각형 그림으로 돌아와서 보세요.

직각삼각형에서의 닮음 1 공식

위 공식에 있는 변들이 그림에서 어떤 위치에 있는지 확인하세요. 직각이 아닌 꼭짓점에서 시작하는 세 변의 길이에 대한 공식이에요. 직각이 아닌 꼭짓점(점 B)에서 직각(점 A)으로 가는 변의 길이는 제곱해주고, 점 B에서 다른 꼭짓점(점 H, 점 C)으로 가는 두 변의 길이는 서로 곱해주는 거죠.

이 공식을 알파벳을 이용하거나 위 설명처럼 외울 수는 없어요. 대신 그림으로 외워야 해요. 그림에서 변을 짚어가면서 "이 변의 제곱은 이 변 곱하기 이 변" 이런 식으로요.

이번에는 △ABC와 △HAC에요. 처음의 큰 직각삼각형과 작은 직각삼각형이요. 한 쌍의 대응각은 직각(∠A = ∠H = 90°)이고요, ∠C라는 공통각을 가져요. 두 쌍의 대응각의 크기가 같으니까 나머지 한 쌍의 대응각의 크기도 같겠죠? ∠B = ∠CAH. 두 대응각의 크기가 같으니까 AA 닮음이에요. △ABC ∽ △HAC

직각삼각형에서의 닮음 2 유도

여기서도 마찬가지로 대응변의 길이의 비를 이용해서 비례식을 만들어 보죠. 라는 식을 세울 수 있어요. 두 번째 항과 세 번째 항에 가 공통으로 들어 있으니까 두 항만 따로 떼서 정리해보죠.

식을 정리했더니 공식이 또 하나 나왔네요. 다시 처음의 삼각형 그림으로 돌아오세요.

직각삼각형에서의 닮음 2 공식

이 공식도 마찬가지로 그림으로 외우세요. 직각이 아닌 꼭짓점(점 C)에서 직각(점 A)으로 가는 변의 길이는 제곱해주고, 점 C에서 다른 꼭짓점(점 H, 점 B)으로 가는 두 변의 길이는 서로 곱해주는 거죠.

마지막으로 중간 직각삼각형과 작은 직각삼각형이에요. △HBA와 △HAC요. ∠H는 직각으로 같아요. 삼각형 내각의 합은 180°고 ∠H = 90°이므로 나머지 두 각의 합이 90°에요. ∠B + ∠BAH = 90°, ∠C + ∠CAH = 90°

큰 삼각형에서 ∠A = ∠BAH + ∠CAH = 90°죠.

∠B + ∠BAH = ∠BAH + ∠CAH = 90°이므로 ∠B = ∠CAH
∠C + ∠CAH = ∠BAH + ∠CAH = 90°이므로 ∠C = ∠BAH

∠H는 직각으로 같고, ∠C = ∠BAH, ∠B = ∠CAH로 세 쌍의 대응각이 같아요. AA 닮음이죠. △HBA ∽ △HAC

직각삼각형에서의 닮음 3 유도

대응변의 길이의 비를 이용하면 라는 식을 세울 수 있어요. 첫 번째 항과 세 번째 항에 가 공통으로 들어 있으니까 두 항만 따로 떼서 정리해보죠.

처음의 삼각형 그림으로 돌아오세요.

직각삼각형에서의 닮음 3 공식

역시 그림으로 외우세요. 직각삼각형에서 내린 수선의 길이의 제곱은 반으로 나뉜 변의 길이를 각각 곱한 것과 같죠?

이제 삼각형을 따로 떼어놓지 않아도 직각삼각형을 보면 이 공식이 바로 나올 수 있도록 해야겠죠? 그리고 직각이 어느 위치에 있든지 수선을 내려서 그 길이의 관계를 알 수 있어야 해요. 위 그림에서는 직각이 위쪽에 있지만, 문제에서는 직각이 오른쪽 아래에 있을 수도 있고, 왼쪽 아래에 있을 수도 있거든요.

다음 그림에서 x, y를 구하여라.
직각삼각형에서의 닮음 예제

x를 구하려면 x2 = y(y + 3)라는 식을 세워야 하는데 미지수가 2개라서 이 식만 가지고는 x를 구할 수 없네요. y를 먼저 구해보죠.

y를 이용해서 42 = y × 3이라는 식을 세울 수도 있고요. 52 = 3(3 + y)이라는 식을 세울 수도 있어요. y = (cm)

y를 첫 번째 식에 대입해서 x를 구하면 x = (cm)

함께 보면 좋은 글

닮은 도형, 도형의 닮음
닮은 도형의 성질
삼각형의 닮음 조건, 삼각형 닮음의 조건
삼각형에서 평행선과 선분의 길이의 비 1
삼각형에서 평행선과 선분의 길이의 비 2
평행선 사이의 선분의 길이의 비

 
그리드형

닮은 도형에 대해서 공부하고 있어요. 어떤 도형을 닮은 도형이라고 하는지, 어떤 성질이 있는지, 어떤 위치에 있는지요. 이 글에서는 닮음비를 알려주지 않았을 때, 두 삼각형이 닮은 도형이 되려면 어떤 조건을 갖춰야 하는지 알아보죠.

먼저, 삼각형의 닮음 조건은 삼각형의 합동조건과 같아요. 아주 작은 차이만 있어요. 이 차이는 쉽게 이해할 수 있을 겁니다. 참고로 삼각형의 합동조건은 삼각형의 작도 조건과도 같으니까 꼭 알고 있어야 하는 조건이에요. 앞으로도 계속 나와요.

삼각형의 닮음 조건

먼저 삼각형의 합동 조건부터 얘기해볼까요? 세 가지가 있죠?

  • SSS 합동: 세 쌍의 대응변의 길이가 같을 때
  • SAS 합동: 두 쌍의 대응변의 길이가 같고, 그 끼인각의 크기가 같을 때
  • ASA 합동: 한 쌍의 대응변의 길이가 같고, 양 끝각의 크기가 같을 때

합동은 두 도형의 닮음비가 1 : 1일 때에요. 비가 1 : 1이니까 대응변의 길이가 같겠죠? 그런데 닮음은 1 : 1이 아닌 경우도 있으니까 대응변의 길이가 달라요. 대신 대응변의 길이의 비가 같죠. 따라서 삼각형의 닮음 조건은 삼각형의 합동조건에서 "길이가 같다."를 "길이의 비가 같다."로 바꾸면 돼요.

또 한 가지 차이가 있는데요. 삼각형은 각이 세 개고 내각의 합은 180°죠? 두 삼각형에서 두 쌍의 대응각 크기가 같으면 자동으로 나머지 한 쌍의 대응각 크기도 같아서 결국 세 쌍의 대응각 크기가 다 같아요. 세 쌍의 대응각의 크기가 같으면 닮은 도형이잖아요. 따라서 세 번째 ASA에서 두 쌍의 대응각의 크기만 같으면 돼요. 한 쌍의 대응변의 길이의 비가 같은지는 굳이 확인하지 않아도 된다는 거죠. 두 쌍의 대응각의 크기만 같으면 되니까 ASA 닮음이 아니라 AA 닮음이라고 해요.

삼각형의 합동과 닮음 비교
합동 닮음
SSS 합동
세 쌍의 대응변의 길이가 같을 때
SSS 닮음
세 쌍의 대응변의 길이의 비가 같을 때
SAS 합동
두 쌍의 대응변의 길이가 같고, 그 끼인각의 크기가 같을 때
SAS 닮음
두 쌍의 대응변의 길이의 비가 같고, 그 끼인각의 크기가 같을 때
ASA 합동
한 쌍의 대응변의 길이가 같고, 양 끝각의 크기가 같을 때

AA 닮음
두 쌍의 대응각의 크기가 같을 때

삼각형의 닮음 조건 1 - SSS 닮음

삼각형의 닮음 조건 2 - SAS 닮음

삼각형의 닮음 조건 3 - AA 닮음

다음 그림에서 이다. 보기와 같은 조건이 추가될 때 두 삼각형은 어떤 닮음인지 닮음 조건을 말하여라.
(1)
(2) ∠C = ∠F

문제에서 두 쌍의 대응변의 길이의 비가 같고, 한 쌍의 대응각의 크기가 같다고 했네요. 그런데 이 대응각이 길이의 비가 같은 대응변 사이의 끼인각은 아니네요.

(1) 번에서 한 쌍의 대응변의 길이의 비가 같다는 조건이 추가된다면 결국 세 쌍의 대응변의 길이의 비가 같아지므로 두 삼각형은 SSS 닮음이 됩니다.

또, 이고 ∠A = ∠D로 두 쌍의 대응변의 길이의 비가 같고 그 끼인각의 크기가 같으므로 SAS 닮음도 되네요.

(2) 번에서 한 쌍의 대응각의 크기가 같다는 조건이 나왔어요. 이 대응각은 길이의 비가 같은 두 쌍의 대응변 사이의 끼인 각이 아니죠. 따라서 두 쌍의 대응각의 크기가 같으므로 AA 닮음입니다.

함께 보면 좋은 글

닮은 도형, 도형의 닮음
닮은 도형의 성질
닮음의 위치, 닮음의 중심
직각삼각형에서의 닮음
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건

정리해볼까요

삼각형의 닮음 조건

  • SSS 닮음: 세 쌍의 대응변의 길이의 비가 같을 때
  • SAS 닮음: 두 쌍의 대응변의 길이의 비가 같고, 그 끼인각의 크기가 같을 때
  • AA 닮음: 두 쌍의 대응각의 크기가 같을 때
 
그리드형

닮은 도형은 한 도형을 일정한 비율로 확대 또는 축소해서 얻은 도형을 말해요. 두 닮은 도형의 위치에 따라서 또 다른 특징이 있는데, 이 글에서는 닮은 도형의 위치에 따른 성질을 알아볼 거예요.

이 성질을 잘 안다면 두 도형의 위치만 보고도 닮은 도형인지 아닌지 파악할 수 있어요. 또 그림이 그려져 있지 않아도 설명만 듣고도 닮은 도형인지 아닌지 알 수 있죠. 새로운 방법으로 닮음비도 구할 수 있고, 대응변의 길이도 구할 수 있고, 여러 가지 장점이 있어요.

닮음의 위치와 닮음의 중심

두 도형이 있어요. 이 도형에서 대응점을 연결하는 직선을 그으면 한 점에서 만나게 되는데, 이때 두 도형을 닮음의 위치에 있다고 얘기합니다. 그 연결선들이 만나는 한 점을 바로 닮음의 중심이라고 하고요.

닮음의 위치와 닮음의 중심 1

△ABC와 △DEF에서 대응점을 연결하는 직선이 한 점 O에서 만나요. 따라서 두 삼각형은 닮음의 위치에 있다고 하고, 점 O를 닮음의 중심이라고 하지요.

닮은 도형이라고 해서 모두 닮음의 위치에 있는 건 아니에요.

닮음의 위치에 있지않은 닮은 도형

두 도형은 닮은 도형이지만 대응점을 연결했을 때 연결선이 한 점에서 만나지 않죠.

닮음의 중심의 위치

닮음의 중심은 상황에 따라 여러 위치에 있을 수 있어요. 여러 경우가 있겠지만 크게 보면 세 가지 경우로 나누죠. 처음 그림에서는 닮음의 중심이 두 도형의 왼쪽에 있지요? 왼쪽이든 오른쪽이든 상관없이 두 도형의 외부에 있다고 얘기합니다.

닮음의 위치와 닮음의 중심 2

왼쪽 그림에서는 닮음의 중심은 두 도형의 사이에 있지요? 이 경우에도 마찬가지로 외부에 있다고 얘기합니다.

가운데 그림에서 닮음의 중심은 도형의 내부에 있어요.

오른쪽 그림에서는 도형의 꼭짓점에 있죠. 도형의 한 변에 있는 경우를 포함해서 이때를 도형의 위에 있다고 얘기해요.

닮음의 위치에 있는 두 도형의 성질

닮음의 위치에 있는 두 도형의 성질

대응점을 연결한 직선이 한 점에서 만나면 닮음의 위치에 있다고 했으니 거꾸로 닮음의 위치에 있으면 대응점을 연결한 직선이 한 점에서 만난다고 할 수 있죠.

닮음의 중심에서 대응점에 이르는 거리비는 닮음비와 같아요. 라면 도 성립한다는 거예요.

또 대응변은 서로 평행이에요. △OAB와 △ODE는 세 변의 길이의 비가 같은 닮은 도형이죠. 닮은 도형에서 대응각은 크기가 같아요. ∠OAB = ∠ODE이므로 평행선의 성질에 따라 동위각의 크기가 같으므로 가 됩니다. 다른 대응변들도 마찬가지고요.

닮음의 위치에 있는 도형의 성질
1. 대응점끼리 연결한 직선은 한 점에서 만난다. → 닮음의 중심
2. 닮음의 중심에서 대응점까지의 거리의 비는 일정 = 닮음비
3. 대응변은 서로 평행

닮은 위치에 있는 도형의 성질을 이용하면 두 도형이 닮은 도형의 위치에 있는지 아닌지 알 수 있겠죠?

아래 그림에서 □ABCD와 □EFGH는 서로 닮은 관계에 있고, 일 때, 의 길이를 구하여라.
닮음의 위치 예제

이므로 이예요. 이 비는 닮음비와 같죠. 닮음비는 변의 길이의 비와 같으므로 의 비례식을 풀어보면,  = 6cm라는 걸 알 수 있어요.

함께 보면 좋은 글

닮은 도형, 도형의 닮음
닮은 도형의 성질
삼각형의 닮음 조건, 삼각형 닮음의 조건
직각삼각형에서의 닮음

정리해볼까요

닮음의 위치

  • 두 도형의 대응하는 점을 연결한 직선이 한 점에서 만날 때 닮음의 위치에 있다고 한다.
  • 닮음의 중심: 대응점을 연결한 직선이 만나는 한 점
  • 닮음의 중심의 위치: 도형의 밖, 도형의 내부, 도형 위

닮음의 위치에 있는 도형의 성질

  • 대응점끼리 연결한 직선은 한 점에서 만난다. → 닮음의 중심
  • 닮음의 중심에서 대응점까지의 거리의 비는 일정 = 닮음비
  • 대응변은 서로 평행
 
그리드형

닮은 도형의 성질

2012. 10. 13. 16:00

합동과 닮은 도형의 같은 점과 차이점에 대해서 이해하셨나요? 이제 닮은 도형의 성질에 대해서 알아볼 거예요.

합동에서는 대응변의 길이가 같고, 대응각의 크기도 같았어요. 닮은 도형에서도 대응변과 대응각의 크기가 어떻게 되는지 알아볼 거예요. 평면도형과 입체도형에서도 어떤 차이가 있는 지 알아볼 거고요.

닮은 도형은 한 도형을 일정한 비율로 확대 또는 축소해서 얻어진 도형을 말하니까 이것만 잘 기억하시면 이 글의 내용은 어렵지 않을 겁니다.

평면도형에서 닮은 도형의 성질

평면도형에서 닮은 도형의 성질

두 삼각형이 있는데, 서로 닮음 관계에 있어요. △ABC ∽ △DEF

도형을 확대했다는 얘기는 모든 변을 확대했다는 거예요. 키가 커지면 팔도 다리도 같이 길어져야 정상이죠? 는 확대했는데, 는 확대하지 않으면 그건 닮은 도형에서 말하는 확대가 아니에요.

또 일정한 비율로 확대했다는 건 를 2배 확대하면 도 2배 확대하는 거지요. 를 확대한 비율과 를 확대한 비율이 다른 건 일정한 게 아니잖아요.

이번에는 거꾸로 얘기해보죠. 로 확대한 비율과 로 확대한 비율은 서로 같아요. 이 확대한 비는 어떤 변이든 같아요. 일정하다는 거죠. 대응하는 변의 길이의 비는 일정한데, 이 일정한 비를 닮음비라고 해요. 닮음비는 모든 변에서 같아서 하나의 대응변에서만 구해도 상관없어요.

변의 길이가 아니라 각을 한 번 보죠. 도형을 2배 확대하면 변의 길이가 2배로 늘어나요. 그렇다면 각도 2배로 늘어날까요? 아니에요. 삼각형의 크기를 2배로 늘렸다고 해도 모양은 삼각형 그대로에요. 따라서 내각의 크기는 확대 전후에 모두 180°죠. 각의 크기는 변하지 않는 걸 알 수 있어요.

평면도형에서 닮은 도형의 성질
1. 대응하는 변의 길이의 비는 일정하다. → 닮음비 
2. 대응각의 크기는 같다.

참고로, 원에는 변이 없는데, 닮음비를 어떻게 구할까요? 원에서는 반지름의 비를 닮음비로 합니다.

다음 그림에서 △ABC ∽ △DEF일 때, 물음에 답하여라.
(1) 두 도형의 닮음비를 구하여라.
(2) 의 길이를 구하여라.
(3) x + y 의 값을 구하여라.
평면도형에서 닮은 도형의 성질 예제

(1) 닮음비는 두 도형의 대응변 중 길이가 둘 다 나와 있는 변의 길이를 이용하므로

(2) 닮음비가 2 : 3인데, 이 닮음비는 모든 변에서 같으므로

(3) 닮은 도형에서 대응각의 크기는 같아요. ∠A = ∠D이므로 삼각형 내각의 합에 의해서 x + y + 50° = 180°
x + y = 130°

입체도형에서 닮은 도형의 성질

입체도형에서 닮은 도형의 성질

입체도형에는 변이 아니라 모서리라고 부르지요? 평면도형에서 대응변의 길이의 비는 일정해요. 마찬가지로 입체도형에서 대응하는 모서리의 비는 일정해요. 일정한 대응하는 모서리의 길이의 비를 닮음비라고 하지요.

입체도형에서 면 하나만 따로 떼서 볼까요? 대응하는 모서리의 길이의 비가 같으므로 의 비, 의 비도 일정해요. 면BCGF와 면JKON의 네 변의 길이는 모두 일정한 닮음비를 가져요. 따라서 두 면은 서로 닮은 도형이에요. 결국, 입체도형에서 대응하는 면은 서로 닮은 도형이에요.

입체도형에서 닮은 도형의 성질
1. 대응하는 모서리의 비는 일정하다. → 닮음비
2. 대응하는 면은 닮은 도형이다.

원에서와 마찬가지로 구의 닮음비는 반지름의 비로 구합니다.

다음 그림에 두 직육면체가 서로 닮음 관계에 있을 때, 물음에 답하시오.
(1) 두 도형의 닮음비는 얼마인가?
(2) x와 y를 구하여라.
입체도형에서 닮은 도형의 성질 예제

(1) 길이가 나와 있는 제일 아래 모서리의 길이의 비로 구해보죠. 6 : 9 = 2 : 3이네요.

(2) 2 : 3 = x : 6 이므로 x = 4(cm)
2 : 3 = 6 : y 이므로 y = 9(cm)

함께 보면 좋은 글

닮은 도형, 도형의 닮음
닮음의 위치, 닮음의 중심
닮은 도형의 넓이의 비와 부피의 비 1
닮은 도형의 부피의 비와 넓이의 비 2
삼각형의 닮음 조건, 삼각형 닮음의 조건
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건

정리해볼까요

평면도형에서 닮은 도형의 성질

  • 대응변의 길이의 비는 일정 → 닮음비
  • 대응각의 크기가 같다.

입체도형에서 닮은 도형의 성질

  • 대응하는 모서리의 길이의 비(닮음비)는 일정
  • 대응하는 면은 서로 닮은 관계에 있다.
 
그리드형

닮은 도형, 도형의 닮음

2012. 10. 12. 16:00

요즘에 많이 사용하는 말 중에 싱크로율 100%라는 얘기 있죠? 어떤 하나가 다른 하나랑 비슷할 때 쓰는 말이에요. 닮은 사람 보여주는 어플도 있고요.

닮았다는 건 생김새나 모양이 비슷하다는 거예요. 하지만 수학에서의 닮음은 조금 달라요.

미니미라는 말 알죠? 똑같이 생겼는데, 크기만 작은 걸 말하잖아요. 수학에서의 닮음은 미니미와 비슷한 용어라고 생각하면 돼요.

닮은 도형도형의 합동과 비슷한 게 많으니까 둘을 비교하면서 설명할게요.

닮은 도형

도형의 합동이 뭔 줄 알죠? 두 도형의 모양이나 크기를 바꾸지 않고 돌리거나 뒤집어서 완전히 포개지면 두 도형이 합동이라고 해요.

두 도형이 서로 합동이거나 한 도형을 일정한 비율로 확대, 축소해서 얻은 도형이 서로 합동일 때, 이 두 도형을 서로 닮은 도형 또는 닮음인 관계에 있다고 해요. 말이 좀 어려운데요. 쉽게 말해서 두 도형의 모양은 그대로 두고 크기만 바꿨을 때 완전히 포개지는 걸 말해요.

A, B 두 도형이 있다고 치죠. A를 두 배 확대한 도형을 A2라고 했을 때, A2와 B가 합동이면 A와 B를 서로 닮은 도형이라고 하는 거지요.

합동은 모양과 크기가 같아야 하고, 닮음은 모양만 같다는 차이가 있어요. 합동은 한 도형을 1배 확대/축소했을 때 다른 도형과 닮음 관계에 있는 걸 말하는 거지요.

합동은 기호로 ≡ 이었어요. 닮음 기호는 로 나타내요. 닮음이라는 영어단어 Similarity의 첫 글자 S를 옆으로 눕혀놓은 모양이죠. 이게 컴퓨터 화면에서 보면 물결표시(~)처럼 보이는 데, 물결표시가 아니라 S를 눕혀놓은 모양이에요. 닮은 기호(∽)는 왼쪽 위가 움푹 들어간 모양인데, 물결 표시(~)는 오른쪽 위가 움푹 들어간 모양이에요.

도형의 합동, 닮은 도형

도형의 합동에서 두 도형을 포갰을 때 서로 포개지는 변을 대응변, 포개지는 각을 대응각, 포개지는 꼭짓점을 대응점이라고 했는데, 닮은 도형에도 똑같이 대응변, 대응각, 대응점이라고 해요.

두 도형이 합동이라고 할 때 △ABC ≡ △DEF라고 써요. 이때 삼각형의 대응점 순서가 같게 써야 하죠. 닮은 도형에서도 이 원칙은 지켜야 해요. △ABC ∽ △DEF라고 써야 맞게 쓴 거예요. △ABC ∽ △FED는 틀린 표현이에요.

참고로 하나 더 알아둘 건 평면도형 중에서 정삼각형, 정사각형 등의 정다각형, 원, 직각이등변삼각형은 항상 닮은 도형이에요.

다음 그림에서 □ABCD ∽ □EFGH일 때 다음 물음에 답하여라.

(1) 점 A의 대응점
(2) ∠B의 대응각
(3) 의 대응변

사실 이 문제는 그림을 보지 않아도 상관없어요. 문제에서 □ABCD ∽ □EFGH라고 말해줬잖아요. 닮음 기호를 쓸 때는 대응점의 순서대로 쓴다는 사실만 알면 되거든요.

(1) □ABCD이라는 표현에서 A는 첫 번째에 있어요. 따라서 점 A의 대응점은 □EFGH의 첫 글자인 점 E가 되는 거지요.

(2) ∠B의 대응각을 찾을 때도 같은 방법으로, 두 번째 알파벳인 ∠F가 되는 거고요.

(3) 는 □ABCD에서 세 번째, 네 번째 알파벳이에요. 따라서 대응변도 세 번째, 네 번째인 가 되는 거지요.

함께 보면 좋은 글

[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
닮은 도형의 성질
닮음의 위치, 닮음의 중심
삼각형의 닮음 조건, 삼각형 닮음의 조건

정리해볼까요

닮은 도형

  • 두 도형이 서로 합동일 때
  • 한 도형을 일정한 비율로 확대 또는 축소해서 얻은 도형이 다른 도형과 합동일 때
  • 닮음 기호: ∽
  • 닮음을 기호로 표시할 때는 대응점의 순서가 같아야 함.
 
그리드형

이제는 삼각비를 이용해서 사각형의 넓이를 구하는 방법을 알아볼 거예요

평행사변형의 넓이는 (밑변) × (높이)에요. 여기서는 밑변의 길이와 높이를 알져주지 않고 다른 조건들을 알려준 평행사변형의 넓이를 구하는 걸 해볼 거예요. 물론 삼각비를 이용해서요.

삼각비를 이용해서 사각형의 넓이를 구할 때는 평행사변형의 성질을 이용합니다. 따라서 2학년 때 공부했던 평행사변형의 성질, 평행사변형과 넓이에 대해서 미리 읽어보세요.

사각형의 넓이는 삼각형의 넓이 공식 유도 방법과 비슷하니까 하나만 잘 해놓으면 두 개를 다 이해할 수 있어요.

평행사변형의 넓이

평행사변형의 넓이를 구할 때는 두 변의 길이와 그 끼인각의 크기를 알려줍니다. 삼각형의 넓이를 구할 때도 이 두 가지를 알려줬었죠?

높이를 구하여 평행사변형의 넓이 구하기

평행사변형의 넓이 구하기 - 삼각비의 활용

삼각형의 넓이를 구할 때 크기를 알려준 한 각과 길이를 알려준 한 변이 하나의 직각삼각형에 포함되도록 수선을 내린다고 했어요. 여기서도 마찬가지로 수선을 내려요. 점 A에서 변 BC에 수선을 내렸다고 해볼게요.

평행사변형의 넓이 구하기 2 - 삼각비의 활용

평행사변형 ABCD의 높이는 △ABH의 높이 즉, 와 같아요. 는△ABH에서 삼각비를 이용해서 구할 수 있죠.

평행사변형의 높이를 알아냈으니 넓이를 구할 수 있겠죠?

그런데 ∠B가 아니라 ∠A를 가르쳐줬다면 어떻게 할까요? ∠A는 둔각이에요. 둔각의 삼각비는 모르니까 예각으로 바꿔야겠죠? 2학년 때 공부한 건데, 평행사변형의 성질에서 이웃하는 두 내각의 합은 180°라는 성질을 이용해요. 이 성질을 이용하면 ∠B = 180° - ∠A가 되니까 예각인 ∠B를 알 수 있어요.

평행사변형의 대변은 길이가 같으니까 중 두 변의 길이를 고르고, 예각인 B를 끼인각으로 하면 평행사변형의 넓이를 구할 수 있어요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

삼각형의 넓이를 이용하여 평행사변형의 넓이 구하기 

높이를 구하지 않고 다른 방법으로 평행사변형의 넓이를 구해볼까요?

평행사변형에 대각선을 그어보세요. 삼각형 두 개로 나누어져요. 평행사변형과 넓이에서 대각선으로 나누어진 두 삼각형은 넓이가 같다는 걸 공부했어요. 그러니까 삼각형의 넓이를 구해서 두 배 해주면 되겠죠?

삼각비의 활용 - 삼각형의 넓이에서 두 변의 길이가 a, b이고 끼인각의 크기가 x°인 삼각형의 넓이는 라고 했지요? x°가 둔각일 때는 였고요.

똑같은 삼각형이 두 개 있으니까 두 배 해주면 돼요.

두 변의 길이가 a, b이고 그 끼인각의 크기가 x°인 평행사변형의 넓이

결국, 어떤 방법을 이용하던 결과는 같아요. 평행사변형의 넓이 공식은 삼각형의 넓이 공식에 2를 곱해주면 됩니다.

다음 그림에서 a = 4cm, b = 6cm, ∠A = 120°일 때 평행사변형 ABCD의 넓이를 구하여라.
평행사변형의 넓이 구하기 - 삼각비의 활용

두 변의 길이와 한 각의 크기를 알려줬는데, 그 각이 둔각이에요. 둔각일 때는 180°에서 빼서 예각을 만들어서 사용하면 돼요.

사각형의 넓이

이번에는 평행사변형이 아니라 그냥 막 생긴 사각형의 넓이에요. 여기서는 어떤 조건을 알려 주냐면 두 대각선의 길이와 대각선의 교각의 크기를 알려줘요.

삼각비의 활용 - 사각형의 넓이 1

이 사각형의 넓이를 구할 때는 그냥 구할 수 없어요. 우리가 알고 있는 사각형으로 변신을 시켜야 해요. 어떤 사각형이냐면 바로 위에서 했던 평행사변형으로 변신시키는 거죠.

위 사각형에서 대각선 와 평행하고 점 A를 지나는 평행선을 그어요. 또, 와 평행하고 점 C를 지나는 평행선도 긋고요. 이번에는 와 평행하고, 점 B를 지나는 평행선과 점 D를 지나는 평행선을 그어요.

삼각비의 활용 - 사각형의 넓이 2

총 네 개의 평행선을 긋는데, 이 평행선들이 만나서 사각형이 생기죠? 이 사각형을 □EFGH라고 할게요. 이 □EFGH은 와 에 평행한 선들로 이루어졌죠? 따라서 에요. 평행사변형이라는 얘기죠.

□AEFC는 평행사변형 →
□HEBD도 평행사변형 →
그 속의 작은 사각형들도 모두 평행사변형 → ∠AEB = x°

작은 평행사변형 네 개가 생기는데, 모두 대각선으로 나누어져 있죠? 각각의 작은 평행사변형을 둘로 나눈 삼각형 네 개를 붙여놓은 게 처음에 넓이를 구하려고 했던 □ABCD에요. 작은 삼각형은 작은 평행사변형의 넓이의 절반이므로(평행사변형과 넓이) □ABCD의 넓이는 □EFGH의 넓이의 절반인 걸 알 수 있어요.

□EFGH는 두 변의 길이와 끼인각의 크기를 알고 있으니까 공식으로 구할 수 있고, 이걸 2로 나눈 게 □ABCD의 넓이에요. 

여기서도 마찬가지로 두 대각선의 교각이 둔각이면 180° - x°를 해서 예각을 만들어야 해요. 

두 대각선의 길이가 a, b이고 교각의 크기가 x°인 사각형의 넓이

다음 그림에서 a = 4cm, b = 6cm, x° = 60°일 때 □ABCD의 넓이를 구하여라.
삼각비의 활용 - 사각형의 넓이 1

두 대각선의 길이와 교각의 크기를 알려줬어요. 이 교각이 예각이죠. 따라서 공식에 대입해보면

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용
삼각비의 활용 - 삼각형의 넓이
[중등수학/중2 수학] - 평행사변형의 성질, 평행사변형의 특징
[중등수학/중2 수학] - 평행사변형과 넓이

정리해볼까요
  • 평행사변형의 넓이: 두 변의 길이가 a, b이고 끼인각의 크기가 x°일 때
  • 사각형의 넓이: 두 대각선의 길이가 a, b이고 교각의 크기가 x°일 때
 
그리드형

삼각비를 이용해서 삼각형의 넓이를 구하는 방법이에요.

삼각형의 넓이 공식 모르는 사람 없죠? ½ × (밑변) × (높이)에요.

물론 이건 높이를 알고 있을 때 쓰는 공식이에요. 예각삼각형의 높이, 둔각삼각형의 높이에서도 해봤지만, 삼각비에는 변의 길이와 내각의 크기를 알려주지, 삼각형의 높이는 알려주지 않거든요. 주어진 내용을 가지고 삼각형의 높이를 구해서 위 공식에 대입해야 합니다.

두 변의 길이와 끼인각을 알려줬을 때 높이를 구하는 것부터 넓이를 구하는 것까지 해보고 공식으로 정리해보죠.

예각삼각형의 넓이

아래 △ABC에서 b, c와 ∠A의 크기를 알려줬다고 해보죠. 넓이를 구하려면 높이 h를 구해야 해요.

예각삼각형의 높이에서 예각삼각형의 높이를 구할 때는 길이를 알고 있는 한 변과 크기를 알고 있는 각이 같은 직각삼각형에 포함되도록 수선을 내린다고 했어요.

예각삼각형의 넓이

△ACH에서

높이 h를 구했으니까 삼각형 넓이 공식에 대입해보죠.

문제에서 알려준 걸 다 곱하면 되는 겁니다. 두 변의 길이를 곱하고, 거기에 크기를 알려준 각의 sin값을 곱해요. 삼각형의 넓이니까 그 절반으로 하는 거죠.

다음 그림에서 △ABC의 넓이를 구하여라.
예각삼각형의 넓이 예제

두 변의 길이가 b, c이고 끼인각의 크기가 A인 예각삼각형의 넓이는 에요.

둔각삼각형의 넓이

아래 △ABC에서 b, c와 ∠A의 크기를 알려줬다고 해보죠. 넓이를 구하려면 높이 h를 구해야 해요

둔각삼각형의 높이에서는 크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서 높이를 구한다고 했어요.

둔각삼각형의 넓이

△ACH만 보세요. sin을 이용해서 높이를 구해야 하는데, 기준각인 CAH는 180° - ∠A에요. 따라서 높이는 아래처럼 구할 수 있어요.

높이 h를 구했으니까 삼각형 넓이 공식에 대입해보죠.

예각삼각형의 넓이 구하는 공식과 같아요. 차이가 있다면 A가 아니라 180° - ∠A라는 거지요.

삼각형의 넓이는 알려준 길이 두 개와 각을 곱해요. 각은 그대로 곱하지 않고 sin값을 곱하죠. 그런데 우리는 0° ~ 90°까지의 삼각비밖에 안 배웠어요. 그러니까 sin을 구할 각의 크기는 예각이어야 해요. 예각이 아니라면(둔각이면) 180°에서 각을 빼서 예각을 만들어서 공식에 넣으면 돼요.

다음 그림에서 △ABC의 넓이를 구하여라.

두 변의 길이가 b, c이고 끼인각의 크기가 A인 둔각삼각형의 넓이는 에요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용
사각형의 넓이 공식 - 삼각비의 활용

정리해볼까요

두 변의 길이가 b, c이고, 끼인각이 A인 삼각형의 넓이

  • A < 90°일 때:
  • A > 90°일 때:
 
그리드형

삼각비의 활용 - 예각삼각형의 높이에 이어 둔각삼각형의 높이 구하기입니다.

둔각삼각형의 높이 구하기도 예각삼각형의 높이 구하기와 크게 차이는 없어요. 높이를 구할 수 있는 조건도 같아요. 두 변의 길이와 끼인각을 알 때와 한 변의 길이와 양 끝각을 알 때지요.

특히, 두 변의 길이와 끼인각의 크기를 알 때는 수선이 삼각형의 바깥쪽에 그려지는 것만 빼면 예각삼각형의 높이를 구하는 방법과 완전히 같아요.

이 글에서는 한 변의 길이와 양 끝각을 알 때에 주의해서 보시면 됩니다.

둔각삼각형의 높이

두 변의 길이와 그 끼인각을 알 때

두 변의 길이와 끼인각의 크기를 알 때는 수선을 내리는데, 수선은 삼각형의 바깥쪽에 그어지게 됩니다. 크기를 모르는 각 중 하나에서 길이를 아는 변의 연장선에 수선을 내리면 돼요. 이때 생기는 작은 직각삼각형을 이용해서 삼각형의 높이를 구할 거예요.

둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

둔각삼각형의 두 변의 길이와 그 끼인각을 알 때에요. 각의 크기를 모르는 점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 

둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

가 △ABC의 높이에요.

를 구하려면, 원래 있던 △ABC는 볼 필요 없고요. 새로 그은 수선 때문에 생긴 △ABH만 보면 돼요. △ABH에서는 c와 h가 들어있는 삼각비를 이용하면 되겠죠?

대신 기준각이 원래 있던 각이 아니라 새로 생긴 각이에요. ∠ABH죠. ∠CBH가 평각이므로 ∠ABH = 180° - ∠B로 구할 수 있어요.

다음 그림에서 a = 5cm, c = 6cm, ∠B = 120°일 때, △ABC의 높이를 구하여라.
둔각삼각형의 높이 - 두 변의 길이와 그 끼인각을 알 때

점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 위 그림을 보세요. 가 높이에요. ∠ABH = 180° - 120° = 60° 고요.

△ABH에서

한 변의 길이와 양 끝각을 알 때

여기서도 마찬가지로 보조선을 그어야 해요. 수선을 그어야하는데 어디에 그어야 하나면 각의 크기를 모르는 꼭짓점에서 길이를 아는 변의 연장선으로 수선을 내려요. 그러면 작은 직각삼각형 한 개와 큰 직각삼각형 한 개가 만들어져요. 이 두 직각삼각형의 내각의 크기를 구해서 tan를 이용하면 높이를 구할 수 있어요.

한 변의 길이와 양 끝각을 알려줬네요. 점 A에서 의 연장선에 수선을 내리고 수선의 발을 점 H라고 해보죠. 직각삼각형 두 개가 보이죠? 새로 생긴 큰 직각삼각형의 밑변에서 새로 생긴 작은 직각삼각형의 밑변을 빼면 원래 삼각형의 한 변의 길이가 되는 걸 알 수 있어요.  이걸 이용합니다.

둔각삼각형의 높이 - 한 변의 길이와 양 끝각을 알 때

이제부터 원래 있던 △ABC는 생각하지 마세요. 큰 직각삼각형 △ACH와 작은 직각삼각형 △ABH만 생각하면 됩니다.

먼저 큰 직각삼각형 △ACH를 보세요. 삼각형 내각의 합에 의해서 ∠CAH = 180° - 90° - ∠C = 90° - ∠C에요.

이제 작은 직각삼각형 △ABH를 보세요. ∠ABH = 180° - ∠B에요. 그리고 ∠BAH = 180° - 90° - (180° - ∠B) = ∠B - 90°죠.

에 위에서 구한 와 처음에 알려준 의 값을 대입하면 높이 를 구할 수 있어요.

아래 그림에서  = 4cm, ∠B = 120°, ∠C = 45°일 때 ABC의 높이를 구하여라.

점 A에서 의 연장선에 수선을 내리고 수선의 발을 H라고 하지요. (위 그림 참조.)

△ACH에서 ∠CAH = 180° - 90° - 45° = 45°이므로

△ABH를 보세요. ∠ABH = 180° - 120° = 60°, ∠BAH = 90° - 60° = 30° 이므로 

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
예각삼각형의 높이 - 삼각비
삼각비의 활용 - 삼각형의 넓이

정리해볼까요

둔각삼각형의 높이

  • 두 변의 길이와 끼인각의 크기를 알 때
    크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서 만들어진 작은 직각삼각형에 삼각비 적용
  • 한 변의 길이와 양 끝각의 크기를 알 때
    크기를 모르는 각에서 길이를 아는 변의 연장선에 수선을 내려서, 만들어진 작은 직각삼각형과 큰 직각삼각형에 삼각비를 적용하여 밑변의 길이의 차를 이용
 
그리드형

삼각형의 바깥쪽 세 변의 길이를 구하는 방법을 알아봤으니 이제 삼각형 높이를 알아볼 차례네요. 직각삼각형이라면 직각이 생기는 곳의 변의 길이가 높이니까 쉽게 구할 수 있어요.

이 글에서 다룰 내용은 직각삼각형이 아니라 일반삼각형, 그중에서도 예각삼각형에서 높이를 구하는 방법이에요. 여기서도 일반 삼각형 변의 길이 구하기에서와 마찬가지로 수선을 긋는 게 중요해요.

예각삼각형에서 높이를 구하는 방법을 잘 알아야 둔각삼각형의 높이도 구할 수 있어요.

예각삼각형의 높이 구하기

예각삼각형은 세 각의 크기가 모두 예각인 삼각형이에요. 예각삼각형의 높이를 구할 때도 삼각형의 합동조건과 같은 조건이 필요해요. 단 삼각비를 이용할 거니까 각을 알려줘야겠죠?

따라서 예각삼각형의 높이를 구할 수 있는 조건은 두 변의 길이와 그 끼인각을 알 때와 한 변의 길이와 양 끝각을 알 때 두 가지예요.

두 변의 길이와 그 끼인각의 크기를 알 때

예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

△ABC에서 두 변의 길이와 그 끼인각을 알려줬네요.

높이를 구하기 위해서 수선을 내려야하는데요. 일반 삼각형 변의 길이 구하기에서 수선을 내릴 때 어떻게 했나요? 크기를 알려준 각과 길이를 알려준 변이 한 직각삼각형에 포함되도록 수선을 내린다고 했어요. 여기서도 마찬가지에요.

점 A에서 대변으로 수선을 내리고 수선의 발을 H라고 해보죠.

예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

△ABH만 보세요. 직각삼각형이에요. 삼각비의 정의에서 봤던 그 삼각형이죠? 직각삼각형 변의 길이 구하기에서 이미 해봤던 거예요.

△ABC에서 a = 5cm, c = 4cm, ∠B = 60° 일 때 높이 h를 구하여라.
예각삼각형의 높이 - 두 변의 길이와 그 끼인각의 크기를 알 때

점 A에서 변 BC로 수선을 내리고 수선의 발을 H라고 해보죠. △ABC의 높이는 △ABH에서 변 AH의 길이와 같아요.

한 변의 길이와 양 끝각의 크기를 알 때

예각삼각형의 높이 - 한 변의 길이와 양 끝각의 크기를 알 때

한 변의 길이와 양 끝각을 알려줬네요.

이 경우에 수선을 긋는 방법은 다른 경우와 달라요. 이때는 길이를 알려준 변이 밑변이 되도록 수선을 그어요. 즉 길이를 알려준 변이 둘로 나뉘도록 하는 거죠. 양 끝각이 아닌 다른 각에서 수선을 내린다고 말해도 되겠네요.

각각의 직각삼각형에서 원래 알려준 각이 아닌 새롭게 만들어진 각을 기준각으로 정하는 것이 핵심이에요.

예각삼각형의 높이 - 한 변의 길이와 양 끝각의 크기를 알 때 2

△ABH에서 삼각형 세 내각의 합에 의해 90° + ∠BAH + ∠B = 180°이므로 ∠BAH = 90° - ∠B가 돼요. △ABH에서 삼각비를 구하는 기준각을 이 ∠BAH로 하면 변 AH는 밑변이 돼요. 여기서는 높이가 변 BH가 되죠.

△ACH에서 삼각형 세 내각의 합에 의해 90° + ∠CAH + ∠C = 180° 이므로 ∠CAH = 90° - ∠C가 돼요. △ACH에서 삼각비를 구하는 기준각을 이 ∠CAH로 하면 변 AH는 밑변이 돼요. 여기서는 높이가 변 CH가 되죠.

이제는 원래의 큰 삼각형으로 돌아와서요. △ABC에서 밑변 BC의 길이는 변 BH + 변 CH죠.

이 식을 정리하면 h를 구할 수 있어요.

다음 그림을 보고 △ACH의 높이 h를 구하여라.

△ABH에서에서 ∠BAH = 30°이므로 이 각을 기준각으로 하면
 

또 △ACH에서에서 ∠CAH = 45°이므로 이 각을 기준각으로 하면

함께 보면 좋은 글

특수한 각의 삼각비, 30°, 45°, 60°
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기
둔각삼각형의 높이 - 삼각비의 활용
삼각비의 활용 - 삼각형의 넓이
사각형의 넓이 공식 - 삼각비의 활용

정리해볼까요

예각삼각형의 높이

  • 두 변의 길이와 끼인 각을 알 때
    길이를 알려준 변과 크기를 알고 있는 각이 한 직각삼각형이 되도록 수선을 내린 후 삼각비의 정의를 이용
  • 한 변의 길이와 양 끝각을 알 때
    양 끝각이 아닌 각에서 수선을 내려 작은 직각삼각형 두 개로 나누어 각각의 삼각형에서 삼각비를 적용
    새로 만들어진 각을 기준각으로
 
그리드형

일반삼각형에서 세 변의 길이를 구하는 방법을 알아보죠.

그런데 아무 삼각형이나 세 변의 길이를 구할 수 있는 게 아니에요. 몇 가지 조건이 있어야 해요. 삼각형의 세 가지 합동조건 알고 있죠?. 세 변의 길이가 같을 때, 두 변과 그 끼인 각이 같을 때, 한 변의 길이와 양 끝각이 같을 때지요.

일반삼각형에서 세 변의 길이를 구할 수 있는 조건도 같아요. 그중 하나인 세 변의 길이를 알 때는 문제의 목적에 맞지 않으니까 나머지 두 개의 조건만 있으면 되겠죠? 두 변의 길이와 끼인 각을 알 때, 한 변의 길이와 양 끝각을 알 때요.

직각삼각형 변의 길이를 구할 때와 마찬가지로 각의 크기를 안다는 건 그 각의 삼각비를 안다는 거에요.

두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이를 알고 있으니까 나머지 의 길이만 구하면 되겠네요.

삼각형의 높이와 넓이에서 했던 방법과 비슷해요. 제일 먼저 삼각형의 한 점에서 수선을 내려서 두 개의 직각삼각형으로 나누어야 해요.

이때 어떤 점에서 수선을 내릴 것인지가 중요한데요. 여러 가지로 표현할 수 있겠지만, 길이를 아는 한 변과 크기를 아는 각이 하나의 직각삼각형에 포함되도록 수선을 내리면 돼요. 여기서는 점 A와 점 C 둘 중 아무 데서나 대변으로 수선을 내려도 되는 거지요.

점 A에서 수선을 내리고 수선의 발을 H라고 할게요. ∠B와 가 한 삼각형 안에 포함되었죠?

두 변의 길이와 그 끼인각의 크기를 알 때 삼각형의 변 길이 구하기

△ABH와 △ACH가 생겼어요.

△ABH에서

△ACH에서
 가 됩니다.

△ACH에서 높이와 밑변의 길이를 구했으므로 빗변인 의 길이는 피타고라스의 정리로 구할 수 있어요.

이거는 공식 아니에요. 외울 필요가 없어요. 구하는 과정만 잘 이해하면 됩니다.

  1. 길이를 아는 한 변과 크기를 아는 각이 하나의 직각삼각형에 포함되도록 보조선을 그어 두 개의 직각삼각형으로 나눈다.
  2. 삼각비를 이용하여 작은 직각삼각형의 높이와 밑변의 길이를 구한다.
  3. 다른 작은 직각삼각형에서 피타고라스의 정리를 이용하여 빗변의 길이를 구한다.

다음 △ABC에서 a = 8cm, c = 5cm, ∠B = 60°일 때 의 길이를 구하여라.
두 변의 길이와 그 끼인각의 크기를 알 때

두 변의 길이와 그 사이의 끼인각의 크기를 알려줬네요.

길이를 알려준 변과 크기를 알려준 각이 한 직각삼각형이 되도록 수선을 그어보죠. 점 A에서 대변으로 그었더니 아래 그림처럼 되었어요.

△ABH에서
 

의 길이를 구했으니까 △ACH에 피타고라스의 정리를 적용해보죠.

한 변의 길이와 그 양 끝각의 크기를 알 때

한 변의 길이와 그 양 끝각의 크기를 알 때

한 변의 길이와 양 끝각의 크기를 알 때에요. 길이를 구해야하는 변이 두 개네요.

여기서 제일 먼저 해야 할 게 있어요. 두 개의 각의 크기를 알려줬어요. 삼각형 내각의 합은 180°에요. 이 걸 이용하면 다른 한 내각의 크기도 알 수 있겠죠? ∠A = 180° - (∠B + ∠C)이죠. 결국, 두 개의 각의 크기를 알려줬다는 건 세 개 모두 알려준 거나 마찬가지에요.

이번에도 마찬가지로 보조선을 그어서 두 개의 직각삼각형으로 나눠야해요. 방법은 위와 같아요. 길이를 아는 변과 크기를 아는 한 각이 직각삼각형에 포함되도록 보조선을 그으면 됩니다.

점 C에서 대변으로 수선을 내리고 수선의 발을 점 H라고 해보죠. ∠B와 가 한 직각삼각형안에 포함되었네요.

한 변의 길이와 그 양 끝각의 크기를 알 때 삼각형의 변 길이 구하기

△BCH와 △ACH가 생겼어요.

△BCH에서

△ACH에서
 

일단, 한 변의 길이를 구했어요.

이제 점 C가 아닌 점 B에서 대변으로 수선을 내려서 위와 같은 방법으로 구하면 다른 한 변의 길이도 구할 수 있어요.

  1. 삼각형 내각의 합을 이용하여 알려주지 않는 한 내각의 크기를 계산한다.
  2. 길이를 아는 변과 크기를 아는 한 각이 하나의 직각삼각형에 포함되도록 보조선을 그어 두 개의 직각삼각형으로 나눈다.
  3. 삼각비를 이용하여 삼각형에서 높이를 구한다.
  4. 다른 작은 직각삼각형에서 삼각비를 적용하고 3에서 구한 높이를 대입하여 빗변의 길이를 구한다.
  5. 2 ~ 4의 과정을 다시 반복

다음 △ABC에서 의 길이를 구하여라.

한 변의 길이와 양 끝각의 크기를 알려줬네요. 삼각형의 내각의 합을 이용해서 다른 한 각의 크기도 알 수 있죠? 180° - (75° + 45°) = 60°에요.

크기를 알려준 한 각과 길이를 알려준 한 변이 직각삼각형에 포함되도록 수선을 내려보죠. 점 A에서 수선을 내려볼게요.

△ACH에서

△ABH에서

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
직각삼각형 변의 길이 - 삼각비 이용
예각삼각형의 높이 - 삼각비
둔각삼각형의 높이 - 삼각비의 활용

정리해볼까요

일반 삼각형 변의 길이 구하기

  • 두 변의 길이와 그 사이의 끼인각의 크기를 알 때
  • 한 변의 길이와 양 끝각의 크기를 알 때
  • 크기를 아는 한 각과 길이를 아는 한 변이 같은 직각삼각형에 포함되도록 수선을 내려서 두 개의 직각삼각형을 만드는 것이 핵심
  • 각각의 직각삼각형에서 삼각비와 피타고라스의 정리를 이용해서 변의 길이를 구함
 
그리드형

특수한 각의 삼각비, 30°, 45°, 60°에서 했던 내용 기억하죠? 특수한 각의 삼각비를 공부했고요. 삼각형을 그려놓고 각을 알려준 다음에 삼각형 변의 길이를 구하는 예제를 풀어봤어요.

이 글에서도 직각삼각형에서 삼각형의 변의 길이를 구하는 걸 할 거예요. 대신 특수한 각이 아니라는 게 다를 뿐이죠. 전에는 sin30°의 값을 외워서 했다면 이제는 30° 대신 다른 예각이 들어가고, 해당하는 삼각비 값을 알려줘요. sin30° 자리에 다른 예각의 sin 값을 넣으면 되는 거예요.

방법은 똑같고 각의 크기만 달라지는 거니까 어렵지 않아요. 삼각비의 정의를 잘 이용하면 됩니다.

직각삼각형 변의 길이

△ABC에서 ∠C = 90°이고, 세 변의 길이를 a, b, c라고 할 때 한 변의 길이와 직각이 아닌 한 각의 크기를 알면 다른 두 변의 길이를 구할 수 있어요.

직각삼각형 변의 길이

물론 각을 안다는 건 그 각의 삼각비를 안다는 뜻이에요. 각만 알고 삼각비를 모르면 삼각비표를 보면 돼요.

크기를 알고 있는 각이 ∠A라고 해보죠.

한 각의 크기와 한 변의 길이를 알고 있을 때 다른 두 변의 길이를 알 수 있다고 했지요? 한 각은 알고 있으니 어떤 변의 길이를 알고 있는지에 따라 길이를 구해야 하는 다른 두 변이 달라지겠죠?

∠A와 빗변의 길이(c)를 알고 있을 때

높이(a)와 밑변(b)의 길이를 구해야겠죠? 빗변을 알고 있으니까 높이와 빗변의 식인 sinA와 밑변과 빗변의 식인 cosA를 사용해서 길이를 구해요.

높이 a 밑변 b

∠A와 높이(a)를 알고 있을 때

빗변(c)과 밑변(b)의 길이를 구해야겠죠? 높이를 알고 있으니까 높이와 빗변의 식인 sinA와 높이와 밑변의 식인 tanA를 사용해서 길이를 구해요.

빗변 c 밑변 b

∠A와 밑변의 길이(b)를 알고 있을 때

빗변(c)과 높이(a)를 구해야겠죠? 밑변을 알고 있으니까 빗변과 밑변의 식인 cosA와 밑변과 높이의 식인 tanA를 사용해서 길이를 구해요.

빗변 c 높이 a

위에 총 여섯 개의 공식이 나왔는데, 이걸 외울 수는 없어요. 그러니까 공식을 외우지 말고, 공식의 첫 줄에 나와 있는 것처럼 이런 식으로 쓴 다음에 문자를 이항하고 값을 대입해서 그냥 푸세요.

다음 직각삼각형에서 한 각이 40°이고, 그 대변의 길이가 6cm일 때, 다른 두 변의 길이를 소수 둘째 자리까지 구하여라. (단, sin40° = 0.64, tan40° = 0.83이고 소수 셋째자리에서 반올림할 것)

한 각의 크기와 높이를 줬네요. 구해야 하는 길이는 빗변과 밑변의 길이고요.

빗변과 높이의 식인 sin과 밑변과 높이의 식인 tan를 이용해서 구해야겠군요.

빗변 밑변

빗변은 9.38cm, 밑변은 7.23cm네요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
삼각비표, 삼각비표 보는 법
일반 삼각형 변의 길이 구하기

정리해볼까요

직각삼각형에서 한 각의 크기와 한 변의 길이를 알면 다른 두 변의 길이를 알 수 있다.

  • 삼각비 구하는 공식을 쓰고, 해당 문자에 대해서 정리 후 값을 대입
 
그리드형

3학년 1학기 때는 모든 교과서, 참고서의 가장 뒷부분에 표가 하나 있었어요. 제곱근표였죠?

2학기에도 모든 책 뒤에 표가 하나 있어요. 그 표가 바로 삼각비표에요. 제곱근표보다 훨씬 간결하죠.

이 글에서는 삼각비표가 무엇인지와 삼각비표에서 삼각비와 각도를 구하는 방법을 알아볼 거에요.

삼각비표는 일반적으로 보는 표와 크게 다르지 않으니까 금방 이해할 수 있어요.

삼각비표

삼각비 표는 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 거에요. 근삿값이 아닌 것도 있지만, 대부분이 근삿값이에요. 가로줄에는 각도의 크기가 세로줄에는 sin, cos, tan가 쓰여 있어요.

그냥 설명 없이 표만 봐도 금방 알 수 있겠죠?

삼각비표
각도 sin cos tan
45° 0.7071 0.7071 1
46° 0.7193 0.6947 1.0355
47° 0.7314 0.6820 1.0724
48° 0.7431 0.6691 1.1106
49° 0.7547 0.6561 1.1504
50° 0.7660 0.6428 1.1918

삼각비 표를 이용해서 삼각비 구하기

삼각비표는 제곱근표 보는 방법보다 훨씬 쉬워요. 가로줄에서 원하는 각도를 찾고, 세로줄에서는 sin, cos, tan를 선택해서 둘이 서로 만나는 칸의 값이 해당 각도의 삼각비에요.

예를 들면 sin48°는 가로줄의 48°와 세로줄의 sin이 만나는 칸에 쓰여 있는 값을 찾으면 되죠. 0.7431이네요. cos46°는 0.6947이고, tan50°는 1.1918이고요.

제곱근표에서 값을 구해서 나타낼 때는 ≒ 기호를 썼어요. 예를 들면 처럼요. 하지만 삼각비에서는 ≒ 기호를 쓰지 않고 =를 써요. 실제로 삼각비표에 나와 있는 값들 대부분이 근삿값이지만 =를 씁니다. sin45° ≒ 0.7071이 아니라 sin45° = 0.7071이라고 말이죠. 좀 달라요.

삼각비표를 이용하여 다음을 구하여라.
(1) sin45° + cos46° + tan47° 

sin45° = 0.7071, cos46° = 0.6947, tan47° = 1.0724이므로
sin45° + cos46° + tan47° = 0.7071 + 0.6947 + 1.0724 = 2.4742

삼각비 표를 이용해서 각도 구하기

이번에는 반대로 특정한 삼각비 값을 주고 그 각이 몇 °인지 구하는 거에요. 위 과정을 거꾸로 하면 되겠죠?

0.7547이라는 sin값을 갖는 각은 몇 °일까요? 먼저 표의 sin줄에서 0.7547이라는 값을 찾아요. 그리고 왼쪽으로 바로 가면 49°가 보이네요.

다음을 만족하는 x, y를 구하여라.
(1) sinx° = 0.7314
(2) sinx° + cosy° = 1.3742

(1) 삼각비표의 sin줄에서 0.7314를 찾으면 x = 47가 되는군요.

(2)에서 sinx° = 0.7314라고 했으니까 이걸 식에 대입하면 0.7314 + cosy° = 1.3742가 돼요.
cosy° = 0.6428이 되죠. cos 줄에서 0.6428을 찾으면 y° = 50°가 되네요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
제곱근의 근삿값, 제곱근표 보는 방법

정리해볼까요

삼각비표

  • 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 것
  • 가로줄: 각도, 세로줄: sin, cos, tan
  • 각도와 sin, cos, tan가 만나는 칸의 값을 찾는다.
 
그리드형

+ 최근글