기울기
원의 접선의 방정식, 접점을 알 때 접선의 방정식
원 위의 한 점을 지나는 직선의 방정식을 구할 거예요. 원과 직선이 만나는 한 점을 접점이라고 하고, 접점을 지나는 직선의 방정식이니까 원의 접선의 방정식이라고 해요.
접선의 방정식도 직선의 방정식의 한 종류니까 직선의 방정식 구하기를 이용하여 구합니다. 또 접선의 방정식은 원 위의 한 점을 지나니까 이를 이용하기도 하고요.
접선의 방정식을 구하는 경우는 여러 가지가 있지만, 이 글에서는 접점의 좌표를 알 때 접선의 방정식 구하는 방법을 알아볼 거예요.
원의 접선의 방정식, 접점을 알 때 접선의 방정식
원의 방정식 (x - a)2 + (y - b)2 = r2위의 한 점에서 접하는 접선의 방정식 l을 구해보죠. 원의 중심을 C(a, b), 접점의 좌표를 P(x1, y1)라고 할게요.
원의 접선은 반지름에 수직이에요. 선분 CP가 반지름이므로 구하고자 하는 접선의 방정식 l과 수직이죠. 두 직선의 위치관계에서 두 직선이 수직이면 (기울기의 곱) = -1이라고 했죠? 직선 l의 기울기를 m이라고 해보죠.
직선 l은 기울기가 m이고, P(x1, y1)을 지나는 직선이니까 직선의 방정식 구하는 공식에 넣어보면 ……… ①
일반적으로 기울기는 인데, 원의 접선의 방정식 l은 기울기는 거꾸로예요. 그리고 앞에 (-)가 붙고요.
①의 공식으로 접선의 방정식을 구할 수도 있지만 다른 공식이 또 있어요.
접점 P(x1, y1)는 원의 방정식 (x - a)2 + (y - b)2 = r2위의 접이기도 해요. (x1, y1)을 대입해보죠.
(x1 - a)2 + (y1 - b)2 = r2 ……… ②
①, ②식을 각각 전개해서 더한 다음에 인수분해하면 아래 공식을 유도할 수 있어요. 유도 과정은 길어서 생략할게요.
(x1 - a)(x - a) + (y1 - b)(y - b) = r2
원래 원의 방정식은 (x - a)(x - a) + (y - b)(y - b) = r2인데, (x1 - a)(x - a) + (y1 - b)(y - b) = r2으로 바뀌었죠? x 하나가 x1으로, y 하나가 y1으로 바뀐 형태예요……
원의 접선의 방정식
(x - a)2 + (y - b)2 = r2위의 접점 P(x1, y1)을 지나는 접선의 방정식
(x1 - a)(x - a) + (y1 - b)(y - b) = r2
두 가지다 같은 결과가 나옵니다. 보통은 원의 방정식의 모양과 비슷해서 외우기 쉬운 두 번째를 많이 사용하는데, 본인이 외우기 쉬운 공식을 외우세요.
다음을 구하여라.
(1) (x - 2)2 + (y + 1)2 = 5 위의 점 (3, -3)에서의 접선의 방정식
(2) (x + 3)2 + (y + 1)2 = 50 위의 점 (4, -2)에서의 접선의 방정식
(3) x2 + y2 + 6x - 2y - 7 = 0위의 점 (-2, -3)에서의 접선의 방정식
(1) 번은 원의 중심이 (2, -1)이고 접점의 좌표는 (3, -3), r2 = 5예요.
(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(3 - 2)(x - 2) + (-3 + 1)(y + 1) = 5
x - 2 - 2y - 2 - 5 = 0
x - 2y - 9 = 0
어떤 공식을 이용하든 결과가 똑같죠?
(2) 원의 중심은 (-3, -1), 접점의 좌표는 (4, -2), r2 = 50이네요.
(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(4 + 3)(x + 3) + (-2 + 1)(y + 1) = 50
7x + 21 - y - 1 = 50
7x - y - 30 = 0
(3) 번은 먼저 표준형으로 바꿔야겠네요.
x2 + y2 + 6x - 2y - 7 = 0
x2 + 6x + y2 - 2y - 7 = 0
(x + 3)2 + (y - 1)2 - 7 - 9 - 1 = 0
(x + 3)2 + (y - 1)2 = 17
원의 중심이 (-3, 1)이고 접점의 좌표가 (-2, -3), r2 = 17이군요.
(x1 - a)(x - a) + (y1 - b)(y - b) = r2
(-2 + 3)(x + 3) + (-3 - 1)(y - 1) = 17
x + 3 - 4y + 4 = 17
x - 4y - 10 = 0
함께 보면 좋은 글
원의 접선의 방정식 2 - 기울기를 알 때
원의 접선의 방정식 3 - 원 밖의 한 점에서 그은 접선의 방정식
원의 방정식, 원의 방정식 표준형
두 원의 교점을 지나는 원의 방정식
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
두 직선의 위치관계는 중학교 1학년 때 두 직선의 위치관계에서 공부했어요. 이때는 그냥 위치 관계의 종류에 대해서만 공부했죠. 평행, 일치, 수직, 한 점에서 만나는 경우요.
이 글에서는 직선의 방정식과 위치관계 사이의 관계를 알아볼 거예요. 식을 보고 위치관계를 알아내고, 반대로 위치관계를 보고 직선의 방정식을 구할 수 있게요.
증명 과정이 약간 복잡할 수 있는데, 결론은 간단하니까 결론만 잘 외워두세요.
두 직선의 위치관계 - 평행, 일치
평행한 두 직선 y = mx + n, y = m'x + n'가 있어요. x축과 만나는 점을 각각 A, A'라고 해보죠. y축에 평행한 직선을 긋고 교점을 B, B'라고 하고요. 이 직선과 x축과의 교점을 H라고 하죠.
두 개의 직각삼각형이 생겨요. △ABH, △A'B'H
∠ABH = ∠A'B'H (평행선에서 동위각)
∠AHB = ∠A'HB' = 90°
두 직각삼각형은 AA 닮음이에요. 대응변의 길이를 비례식으로 표현해보죠.
는
으로 y = mx + n의 기울기 즉 m이에요.
는 y = m'x + n'의 기울기 즉 m'이고요. 두 직선이 평행하면 기울기가 같다는 것을 알 수 있어요.
m = m'일 때, n = n'이라면 어떨까요? 두 직선은 겹쳐지겠죠? 일치하게 되는 거예요. n ≠ n'이라면 그냥 평행하기만 하고 겹치지는 않고요.
두 직선의 위치관계 - 수직
y = mx + n과 y = m'x + n'이 수직으로 만날 때에요. 왼쪽 그림의 수직으로 만나는 두 그래프를 교점이 원점이 되도록 그대로 평행이동 시켜보죠. 평행이동 시킨다고 해도 두 직선이 수직으로 만나는 건 바뀌지 않으니까요. y = mx + n은 y = mx가 되고, y = m'x + n'은 y = m'x가 돼요.
여기에 x = 1이라는 직선을 그렸어요. x = 1과 y = mx의 교점을 A, x = 1과 y = m'x의 교점을 B라고 하면 △OAB가 생기는 데 직각삼각형이에요.
좌표평면 위의 두 점 사이의 거리를 이용하여 피타고라스의 정리를 적용해보죠. A(1, m), B(1, m'), O(0, 0)
두 직선이 수직일 때는 (두 직선의 기울기의 곱) = -1이 되는군요.
수직으로 만나는 경우 말고 그냥 만나는 때는 언제일까요? 기울기가 같으면 평행이라고 했어요. 기울기가 같지 않으면 평행하지 않겠죠? 평행하지 않으면 두 직선은 만나게 돼요. 따라서 기울기가 같지 않으면 한 점에서 만나요.
y = mx + n,y = m'x + n' | ||
---|---|---|
평행 | 기울기는 같고, y절편은 다르다 | m = m', n ≠ n' |
일치 | 기울기가 같고 y절편도 같다. | m = m', n = n' |
수직 | (기울기의 곱) = -1 | mm' = -1 |
한 점에서 만난다 | 기울기가 다르다 | m ≠ m' |
y = 2x + 3과 평행하고 (2, 1)을 지나는 직선의 방정식을 구하여라.
두 직선이 평행하려면 기울기가 같고 y절편이 달라야 하죠?
y = 2x + 3과 평행하다고 했으니 구하려는 직선의 방정식의 기울기는 2에요. y = 2x + n
y = 2x + n이 (2, 1)을 지난다고 했으니 식에 대입해보죠.
y = 2x + n
1 = 2 × 2 + n
n = -3
y = 2x - 3이네요.
y = ax + 3과 y = -x + b가 y축 위의 한 점에서 수직으로 만날 때, a + b의 값을 구하여라.
y축 위의 한 점에서 만난다고 했어요. y축 위의 점은 바로 y절편이죠? 따라서 y절편이 같다는 뜻이에요. y = ax + 3에서 y절편은 (0, 3)이므로 b = 3이네요.
두 직선이 수직이려면 (기울기의 곱) = -1이에요. a = 1이네요.
a + b = 1 + 3 = 4
함께 보면 좋은 글
직선의 방정식, 직선의 방정식 구하기
직선의 방정식의 일반형, 직선의 방정식의 표준형
절댓값 기호가 포함된 식의 그래프
좌표평면 위의 두 점 사이의 거리
[중등수학/중1 수학] - 점과 직선의 위치관계, 두 직선의 위치관계
[중등수학/중2 수학] - 직선의 방정식, 일차함수와 일차방정식
[중학수학/중3 수학] - 피타고라스의 정리
직선의 방정식의 일반형, 직선의 방정식의 표준형
우리 식을 얘기할 때 일반형, 표준형 이런 얘기하죠? 이차함수에서 y = ax2 + bx + c를 이차함수 일반형, y = a(x - p)2 + q를 표준형이라고 했잖아요. 일차방정식은 ax + b = 0, 이차방정식은 ax2 + bx + c = 0 이렇게 썼어요.
직선의 방정식도 마찬가지로 일반형, 표준형이 있어요. 직선의 방정식의 일반형과 표준형을 알아볼텐데, 용어가 크게 중요한 게 아니니까 공식처럼 외우지 말고 그 의미를 잘 이해하세요. 그냥 단순한 용어 정리일 뿐이에요.
직선의 방정식의 일반형
미지수가 x, y 두 개인 일차방정식은 ax + by + c = 0으로 써요. 이 방정식을 직선의 방정식, 직선의 방정식 구하기에서 사용했던 y = ax + b 꼴로 한 번 바꿔보죠.
ax + by + c = 0
by = -ax - c
b ≠ 0이면 양변을 b로 나눌 수 있어요.
기울기는 , y절편은
에요.
이때 a = 0이면 y = 가 되서 x축에 평행한 직선이에요.
b = 0이면 양변을 b로 나눌 수 없지요.
0y = -ax - c
ax = -c
x =
양변을 a로 나눴더니 y축에 평행한 직선이 되는군요.
이때 a = 0이면 어떻게 될까요? b = a = 0이 되어서 c = 0이라는 아무 것도 아닌 게 되어버렸네요.
방정식 ax + by + c = 0 | a ≠ 0 | a = 0 |
b ≠ 0 | 기울기는 |
y = x축에 평행한 직선 |
b = 0 | x = y축에 평행한 직선 |
모양을 바꾸고 나니 모두 직선이라는 것을 알 수 있죠?
보통 좌변에 모든 항을 이항하고 우변에 0만 있는 형태를 일반형이라고 해요. 미지수가 2개인 방정식은 미지수가 x, y이고 차수가 1인 방정식인데 그래프가 직선이죠? 그래서 ax + by + c = 0의 꼴을 직선의 방정식의 일반형이라고 해요.
모양을 바꿨던 y = ax + b꼴을 직선의 방정식의 표준형이라고 해요. 기울기와 x, y절편을 쉽게 알아볼 수 있는 형태지요.
함께 보면 좋은 글
직선의 방정식, 직선의 방정식 구하기
[중등수학/중2 수학] - 직선의 방정식, 일차함수와 일차방정식
[중등수학/중2 수학] - 축에 평행한 직선의 방정식
[중등수학/중2 수학] - 일차함수 식 구하기, 직선의 방정식 구하기
[중등수학/중2 수학] - 그래프를 보고 직선의 방정식 구하기
직선의 방정식, 직선의 방정식 구하기
직선의 방정식은 중학교 때 공부했던 직선의 방정식, 일차함수와 일차방정식에서 살짝 다뤄본 적이 있어요. 일차함수 그래프의 모양이 평면좌표에서 직선이기 때문에 직선의 방정식이라고 한다고 했죠.
직선의 방정식 구하기는 일차함수 식 구하기, 직선의 방정식 구하기와 방법이 같아요. 다만 이제는 조금 더 세련된(?) 방법으로 직선의 방정식을 구할 수 있어요.
공식이 여러 개 나오는데 어떻게 공식이 유도되는지 잘 보고 잊어버리지 않도록 외워두세요.
직선의 방정식 구하기
직선의 방정식은 일차함수와 모양이 같아요. y = ax + b 꼴이죠. 그러니까 직선의 방정식을 구한다는 말은 a, b를 구한다는 것과 같아요. a는 기울기, b는 y절편이죠?
여러 경우에 a, b를 어떻게 구하는지 방법을 알아보죠.
기울기와 y절편이 주어졌을 때 직선의 방정식 구하기
일차함수의 일반형 y = ax + b에서 기울기는 a, y절편이 b죠. 기울기와 y절편이 주어졌으면 이 내용을 거꾸로 해서 직선의 방정식을 바로 구할 수 있겠죠?
기울기가 m이고, y절편이 n인 직선의 방정식 ⇒ y = mx + n
기울기와 한 점의 좌표가 주어졌을 때 직선의 방정식 구하기
y = ax + b에서 a를 알려준 거예요. 그럼 b만 구하면 되죠? 알려준 기울기가 m이고, 한 점의 좌표가 A(x1, y1)라고 한다면 이 식에 대입해서 b를 구할 수 있어요.
y = ax + b
y1 = mx1 + b (∵ 기울기 m과 (x1, y1) 대입)
b = y1 - mx1
y = ax + b
y = mx + (y1 - mx1) (∵ 기울기 m과 b = y1 - mx1 대입)
y - y1 = mx - mx1
y - y1 = m(x - x1)
기울기가 m이고, 한 점(x1, y1)을 지나는 직선의 방정식 ⇒ y - y1 = m(x - x1)
두 점을 지나는 직선의 방정식 구하기
두 점의 좌표 A(x1, y1), B(x2, y2)를 알면 기울기를 구할 수 있어요.
m =
기울기를 구했네요. 그럼 기울기와 두 점의 좌표를 알게 되었어요. 위에서 했던 공식에 바로 대입해보죠.
y - y1 = (x - x1)
그런데 한 가지 생각해야 할 게 기울기 에서 x1 = x2라면 분모가 0이 되어버리죠? 그러니까 이 공식으로는 x1 = x2일 때 직선의 방정식을 구할 수 없어요.
x1 = x2일 때는 그래프를 보듯이 모든 x좌표가 x1으로 같고, y축에 평행한 x = x1이 돼요.
y1 = y2라면 어떨까요? 기울기가 0이겠죠? 모든 점의 y좌표가 y1으로 같고, x축에 평행인 y = y1이 돼요.
y - y1 = (x - x1)
y - y1 = 0 (∵ y1 = y2)
y = y1
공식을 이용해서 구할 수 있으니 굳이 따로 외울 필요는 없겠네요.
두 점 (x1, y1), (x2, y2)를 지나는 직선의 방정식
x1 ≠ x2일 때, y - y1 = (x - x1)
x1 = x2일 때, x = x1
x절편과 y절편이 주어졌을 때 직선의 방정식 구하기
x절편의 좌표 (a, 0), y절편의 좌표 (0, b)이 주어졌다고 해보죠. x절편과 y절편도 두 점의 좌표에요. 그러니까 위의 두 점을 지나는 직선의 방정식 공식에 넣어보죠.
여기서 a, b가 분모니까 a와 b는 0이 아니에요. a, b 중 하나라도 0일 때는 두 점을 지나는 직선의 방정식 구하는 방법으로 구하세요. 참고로 a = b = 0이면 (0, 0)인 점 하나만 알려준 거라서 직선의 방정식을 구할 수 없어요.
x절편이 (a, 0), y절편이 (0, b)인 직선의 방정식 ⇒ (단, ab ≠ 0)
다음을 보고 직선의 방정식을 구하여라.
(1) 기울기가 3이고 y절편이 5인 직선
(2) 기울기가 2이고 (3, 5)를 지나는 직선
(3) 두 점 (2, 5), (4, 6)을 지나는 직선
(4) x절편이 (3, 0), y절편이 (0, 6)인 직선
(1)은 기울기와 y절편을 알려줬네요.
y = mx + n
y = 3x + 5
(2)는 기울기와 한 점의 좌표를 알려줬고요.
y - y1 = m(x - x1)
y - 5 = 2(x - 3)
y = 2x - 1
(3)은 두 점의 좌표를 알려줬네요. 두 점의 x좌표가 서로 다르니까 공식을 이용할 수 있어요.
(4)는 x,y 절편을 알려줬는데 둘 다 0이 아니에요. 공식에 대입해보죠.
함께 보면 좋은 글
직선의 방정식의 일반형과 표준형
두 직선의 위치관계 - 평행, 일치, 수직
두 직선의 위치관계와 일차방정식의 해
교점을 지나는 직선의 방정식
[중등수학/중2 수학] - 일차함수 식 구하기, 직선의 방정식 구하기
[중등수학/중2 수학] - 그래프를 보고 직선의 방정식 구하기
일차함수 식 구하기, 직선의 방정식 구하기
일차함수의 식이 주어지면 그래프를 그릴 수 있나요? 거꾸로 이제는 그래프를 보고 또는 그래프의 특징만 보고 일차함수 식을 유추해내야합니다.
이제까지 공부했던 내용들을 총동원해야해요. 일차함수 그래프의 특징, x, y 절편, 기울기 등이요. 또 일차함수 그래프 그리기에서 공부했던 내용도 이해하고 있어야 해요
일차함수식을 구하는 것과 직선의 방정식을 구하는 것은 이름은 다르지만 사실상 같은 얘기라는 것도 알고 있어야하고요.
일차함수 식은 y = ax + b 꼴이므로 기울기와 y절편을 구하는 게 핵심이에요. 여러 경우에 어떻게 일차함수식을 구하는 지 알아보죠.
기울기와 y절편을 알 때 일차함수 식 구하기
y = ax + b라는 일차함수가 있을 때, a는 기울기, b는 y절편이에요.
따라서 함수를 모르더라도 기울기와 y절편을 알면 함수를 바로 구할 수 있겠죠?
기울기가 -3이고, y절편이 1인 일차함수를 구하여라.
기울기가 -3, y절편이 1인 일차함수는 y = -3x + 1입니다.
기울기와 한 점의 좌표를 알 때 일차함수 식 구하기
기울기는 함수식에 그대로 대입해보죠. y = ax + b에서 a는 알고 있으니까 b만 구하면 되겠네요.
함수의 그래프가 한 점을 지난다는 얘기는 그 점의 좌표를 함수식에 대입하면 식이 참이 된다는 뜻이죠? 점의 좌표를 y = ax + b에 대입하면 돼요. x와 y는 점의 좌표로 알고 있고, a는 기울기로 주어졌으니까 b를 구할 수 있어요.
일차함수 y = 3x + 1 그래프와 평행하고 (3, 2)를 지나는 일차함수를 구하여라.
일차함수 그래프의 평행과 일치에서 그래프가 평행이라면 기울기가 같고 y절편이 달라야 한다고 했어요. 구하고자 하는 일차함수의 그래프가 y = 3x + 1과 평행하니까 기울기는 3이에요. 따라서 구하는 식은 y = 3x + b의 식이겠네요.
y = 3x + b 식이 (3, 2)를 지나니까 점의 좌표를 식에 대입해 보죠.
2 = 3 × 3 + b
b = -7
(3, 2)를 대입해서 b를 구했어요. 결국 구하는 일차함수는 y = 3x – 7이네요.
두 점의 좌표를 알 때 직선의 방정식 구하기
두 점의 좌표만 알고 있을 때는 먼저 기울기를 구해야 해요. 기울기 구하는 방법은 일차함수와 그래프 - 기울기에 나와 있어요.
기울기는 위 방법으로 구할 수 있고, 원래 문제에서 줬던 두 점의 좌표까지 알고 있어요. 그러면 바로 앞에서 했던 기울기와 한 점의 좌표를 알 때 사용했던 방법 그대로 기울기와 점의 좌표를 이용해서 일차함수 식을 구할 수 있어요.
두 점 (1, 2), (-2, 17)을 지나는 일차함수 식을 구하여라.
먼저 두 점의 좌표를 이용해서 기울기를 구해보죠.
기울기 = (17 - 2) ÷ (-2 - 1) = 15 ÷ (-3) = -5
기울기가 -5니까 y = -5x + b 라고 놓을 수 있고, 이 그래프가 (1, 2)를 지나니까 대입해보면
2 = -5 × 1 + b
b = 7
따라서 구하고자 하는 일차함수 식은 y = -5x + 7입니다.
x절편, y절편을 알 때 직선의 방정식 구하기
x절편과 y절편을 안다는 건 x, y축과 만나는 두 점의 좌표를 안다는 뜻이고, 이건 그래프 위의 두 점의 좌표를 알려준 것과 같아요. 따라서 바로 위에서 했던 두 점의 좌표를 알 때 직선의 방정식 구하기 방법에서 했던 것처럼 기울기를 구해야 해요. 기울기를 구하고 거기에 x절편과 y절편을 알고 있으니까 첫 번째 "기울기와 y절편을 알 때 일차함수" 구하기 방법을 사용하면 되겠죠?
두 점의 좌표를 알 때 + 기울기와 y절편을 알 때를 섞어서 사용하면 돼요.
(-1, 0), (0, 2)를 지나는 직선의 방정식을 구하여라.
두 점의 좌표를 줬는데, 자세히 보니까 각각 x, y의 좌표가 0일 때로 x절편, y절편이네요. 이 내용을 먼저 알아두세요.
두 점의 좌표를 줬으니까 기울기를 구해야겠죠?
기울기 = {2 - 0} ÷ {0 - (-1)} = 2 ÷ 1 = 2
기울기가 2니까 y = 2x + b라고 할 수 있겠고 두 점 (-1, 0), (0, 2)를 지나니까 한 점의 좌표를 식에 넣어서 b를 구할 수 있어요. 하지만 그보다는 y절편이 b라는 사실을 알고 있으니까 (0, 2)를 이용해서 바로 y = 2x + 2를 구할 수 있겠죠?
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
일차함수 그래프의 평행과 일치
일차함수의 그래프에서 웬만한 건 다 다루었어요. 일차함수 y = ax + b 그래프에서 a가 무엇을 의미하는지, a의 부호에 따라서 그리고 b의 부호에 따라서 그래프의 모양이 어떻게 바뀌는 지 등이요.
일차함수를 보면 기울기와 y절편이 바로 눈에 띄죠? 두 개의 일차함수 y = ax + b, y = cx + d가 있다고 할 때, 기울기와 y절편을 비교해서 두 일차함수의 그래프가 평행한지 일치하는지 알아보죠.
일차함수 그래프의 평행
평면에서 두 직선이 서로 만나지 않는 걸 평행이라고 해요. 그러니까 일차함수 그래프가 평행하다는 말은 서로 만나지 않는다는 뜻이죠.
y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평행이동한 것이라고 했어요. 두 그래프는 서로 만나지 않아요. 그럼 두 그래프는 평행한 것이죠. 사실 평행이동을 했으니까 당연히 평행할 수밖에 없어요.
두 함수를 비교해볼게요. x, y는 변수니까 바뀔 수 있어서 비교할 수가 없어요. a, b는 상수라서 일정하죠. 두 그래프에서 기울기가 모두 a로 같아요. 그리고 y 절편이 b와 0으로 달라요. 여기서 일차함수의 그래프가 평행하려면 어떤 조건인지 알 수 있어요.
두 일차함수 그래프가 평행하려면: 기울기가 같고, y 절편은 다르다
y = ax + b와 y = cx + d에서 a = c이고 b ≠ d → 평행
일차함수 그래프의 일치
일차함수의 그래프가 일치한다는 건 그래프가 포개진다는 뜻이죠. 포개진다는 건 그래프에서 같은 점 위에 있다는 뜻이고요. 함수식이 같다는 얘기예요.
y = ax + b와 y = cx + d라는 두 일차함수가 일치하려면 a = c, b = d라는 것이죠.
두 일차함수의 그래프가 일치하려면: 기울기가 같고, y 절편이 같다.
y = ax + b와 y = cx + d 에서 a = c 이고 b = d → 일치
일차함수 y = 2x + 1의 그래프와 평행인 일차함수와 일치하는 일차함수를 각각 1개씩 적으시오.
먼저 문제에서 주어진 함수에서 기울기는 2, y절편은 1이네요. 평행한 것은 기울기가 같고 y절편이 다른 함수니까 기울기는 2일 테고, y 절편은 1만 아니면 돼요. y = 2x + 2도 될 수 있고, y = 2x - 1도 될 수 있겠네요. 그 개수가 매우 많아요.
일치하는 함수는 기울기도 같고, y 절편도 같아요. 같은 식이라는 거죠. y = 2x + 1이 되겠네요. 일치하는 일차함수는 딱 한 개예요.
함께 보면 좋은 글
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기
일차함수 y=ax+b 그래프의 특징
y = ax + b 그래프에서 a는 기울기이고, b는 y 절편이라는 사실을 알 수 있어요. 이제 이 두 가지에 따라 그래프가 어떻게 달라지는 지 알아볼 거예요.
일차함수의 그래프에서 간략하게 이야기하기는 했는데, 좀 더 자세히 알아보죠.
먼저 y = ax의 특징을 정리해보죠.
- 원점(0, 0)을 지난다.
- a의 절댓값이 커질수록 그래프는 y축에 가까워진다.
- a > 0
- x 증가 → y 증가
- 오른쪽 위로 향하는 직선
- 1, 3 사분면을 지난다.
- a < 0
- x 증가 → y 감소
- 오른쪽 아래로 향하는 직선
- 2, 4 사분면을 지난다.
y = ax와 y = ax + b의 차이는 b가 있고 없고의 차이에요. 사실은 y = ax + b에서 b = 0일 때가 y = ax이에요.
y = ax + b 그래프의 특징
y = ax와 y = ax + b의 차이는 b니까 b의 영향을 받는 부분만 다르고 나머지는 똑같아요.
원점(0, 0)을 지나는 대신 (0, b)를 지나고요.
그래프가 지나는 사분면은 y절편인 b의 부호에 따라서 달라져요.
a > 0, b > 0 | a > 0, b < 0 |
a < 0, b > 0 | a < 0, b < 0 |
a > 0 | a < 0 | |
---|---|---|
같은 점 | (0, b)를 지난다 a의 절댓값(|a|)의 절댓값이 커질수록 y축에 가까워진다. |
|
다른 점 | x 증가 → y 증가 오른쪽 위로 향하는 직선 b > 0이면 제 1, 2, 3 사분면 b < 0이면 제 1, 3, 4 사분면 |
x 증가 → y 감소 오른쪽 아래로 향하는 직선 b > 0이면 제 1, 2, 4 사분면 b < 0이면 제 2, 3, 4 사분면 |
다음 y = ax + b의 그래프를 보고, a와 b의 부호를 구하여라.
a는 그래프의 기울기인데, 그래프가 오른쪽 아래로 향하는 직선이니까 a < 0이겠네요. 그리고 b는 y 절편이니까 y축과 그래프가 만나는 곳의 부호를 보면 되겠죠. x 축보다 윗부분 즉, 양수인 곳에서 만나니까 b > 0이 되는군요.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 그래프 그리기
이제 일차함수의 그래프를 직접 그려볼까요?
일차함수의 그래프를 그리는 방법은 이미 1학년 때 배워봤어요. 함수식이 주어지면 그 식에, x = 1, 2, 3, …을 넣어서 그때의 y값을 구했죠. 그리고 순서쌍을 이용해서 좌표평면에 점을 찍은 다음 그 점들을 이어서 그래프를 그려요. 함수 그래프, 함수의 그래프 특징 비교
기본 원리는 점들의 좌표를 구해서 점을 찍고, 선으로 연결하는 겁니다. 그런데 사실 점의 좌표가 많이 필요하지 않아요. 그냥 두 개만 있으면 직선을 그을 수 있거든요.
두 점을 이용해서 일차함수 그래프 그리기
직선이라는 게 점을 여러 개 연결해도 되지만 두 점을 연결해도 직선이 돼요. 따라서 1학년 때처럼 점들의 좌표를 여러 개 구할 필요 없이 딱 두 개만 구해서 직선으로 연결하면 돼요.
두 점의 좌표가 주어졌다면 점을 찍어서 직선을 그으면 되고, 점이 주어지지 않고, 함수식만 주어졌다면 x = 1, 2처럼 임의의 값을 두 개 넣어서 좌표를 구해서 점을 찍고, 선을 그어주면 돼요.
두 점 (1, 1)과 (3, 2)를 지나는 함수의 그래프를 그려라.
좌표평면 위에 두 점을 찍고 그냥 이어서 연결하세요.
x절편, y절편을 이용해서 일차함수 그래프 그리기
마찬가지로 두 점의 좌표를 이용해서 그래프를 그리는 방법이에요.
두 개의 점의 좌표를 구할 때 아무 점이나 상관없지만 x절편, y절편을 구하는 방법도 좋아요. y 절편은 y = ax + b라는 함수식에서 b라는 걸 바로 알 수 있지요? 한 점의 좌표(0, b)를 금방 알아낼 수 있잖아요. 그럼 나머지 한 점의 좌표만 구하면 되는데, y = 0을 넣어서 구하면 x 절편이 나오죠.
문제에서 x, y 절편을 미리 알려주면 좋은 거고, 알려주지 않아도 다른 점의 좌표에 비해서 구하기가 쉬워서 많이 이용하는 방법이에요.
y = x + 2의 그래프를 그려라. (x절편과 y절편을 이용)
y = x + 2의 y 절편이 2이므로 y축과 만나는 점은 (0, 2), x 절편이 –2이므로 x축과 만나는 점은 (-2, 0)이네요. 두 점의 좌표를 구했으니 그래프를 그려보죠.
y절편과 기울기를 이용해서 일차함수 그래프 그리기
y 절편은 함수식에서 바로 구할 수 있지요?
일차함수와 그래프에서 기울기가 나타내는 게 뭐죠?
y = ax + b에서 y 절편이 b이므로 이 그래프는 (0, b)를 지나요. 기울기 a가 나태나는 건 x가 1 증가할 때, y는 a만큼 증가한다는 뜻이잖아요. 그래서 x가 0 → 1로 될 때, b → b + a 가 된다는 뜻이지요? 따라서 (0, b)와 (1, b + a)라는 점의 좌표를 구할 수 있다는 거예요. 물론 (1, b + a)가 아니라 (2, b + 2a), (3, b + 3a)라는 좌표를 구할 수도 있는 거지요. 어차피 두 점의 좌표만 있으면 되니까 아무거나 구해도 상관없어요.
두 점을 구했으니 좌표평면에 점을 찍고, 직선으로 연결하면 되겠지요?
y = 2x + 2의 그래프를 그려라. (기울기와 y절편을 이용)
y절편이 2이므로 이 그래프는 (0, 2)를 지나고 기울기가 2니까 x가 1 증가하면 y는 2 증가한다는 뜻이에요. x가 0 → 1이 되면, y는 2만큼 증가하니까 2 → 4가 되겠지요. 그래프가 지나는 두 점 (0, 2)와 (1, 4)를 구할 수 있어요.
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
함수 그래프, 함수의 그래프 특징 비교
일차함수와 그래프 - 기울기
일차함수의 그래프에서 또 한가지 알아야 할 내용이 기울기에요.
일차함수 y = ax 그래프에서 a의 부호에 따라 그래프가 어떤 특징을 가졌는지 알아봤지요? 바로 a가 기울기입니다. 그래프의 특징에 아주 큰 영향을 미치니까 기울기에 대해서 꼭 알고 있어야겠죠?
함수식이 주어진 경우라면 a를 바로 구할 수 있지만, 식이 주어지지 않았다면 어떻게 a를 구하는지 알아볼까요.
일차함수의 기울기
기울기는 말 그대로 그래프가 기울어진 정도를 나타내는 용어에요. 그런데 얼마나 기울어졌는지를 각도로 표현하지 않고 숫자로 표현해요.
이 숫자를 구하는 방법이에요.
그럼 x, y값의 증가량은 어떻게 구하느냐? 그래프에서 임의의 두 점 A(x1, y1), B(x2, y2)를 고르세요. 직선 위에 있는 점이면 아무 점이나 괜찮아요. 두 점의 (B점의 x 좌표 - A점의 x 좌표) 가 x의 증가량 (B점의 y 좌표 - A점의 y 좌표)가 y의 증가량입니다.
x, y의 증가량을 구할 때 주의해아 할 것은 x의 증가량을 구할 때 B에서 A를 뺐다면 y의 증가량을 구할 때도 B에서 A를 빼야 한다는 거예요. 큰 수에서 작은 수를 빼는 게 아니에요. 증가량이라고 표현했지만 실제로는 x, y이 변한 정도를 나타내는 말로 감소량을 포함하고 있는 거예요. 따라서 x, y의 증가량은 부호가 (-)일 수도 있고 둘의 부호가 다를 수도 있다는 점을 알아두세요.
다음 일차함수의 그래프를 보고 기울기를 구하여라.
위 그래프에는 기울기가 표시되어 있지만 직접 구해보죠. 그래프가 x축과 만나는 점, y축과 만나는 점의 좌표를 구할 수 있죠? (2, 0)과 (0, 2)입니다.
두 점의 좌표를 이용해서 구한 기울기가 문제에서 주어진 함수식에서의 기울기와 같죠?
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징
일차함수와 그래프 - x절편, y절편
일차함수 y = ax의 그래프의 특징에 대해서 이해했나요?
- 원점 (0, 0)을 지난다.
- 기울기의 절댓값이 커질수록 y축에 가깝다.
- a > 0 이면
- 오른쪽 위로 향하는 직선
- x 증가 → y 증가
- 1, 3 사분면
- a < 0이면
- 오른쪽 아래로 향하는 직선
- x 증가 → y 감소
- 2, 4 사분면
y = ax + b의 그래프는 y = ax 그래프를 y축 방향으로 b만큼 평형이동한 그래프라는 것까지는 알고 있어야 해요.
오늘은 그래프를 읽는 법을 공부할 겁니다. 그래프는 통해서 무엇을 알 수 있는지요. 나중에는 반대로 특정한 정보를 주고, 그래프를 그리는 법도 공부할 거예요.
x절편
함수의 그래프에서 절편은 함수의 그래프가 x축, y축과 만나는 점의 좌표를 말해요. x축과 만나는 점의 x좌표를 x 절편, y축과 만나는 점의 y좌표를 y절편이라고 하지요.
x축의 y좌표는 0이니까 그래프가 x축과 만나는 점의 y 좌표도 0이죠. 이거는 그래프를 통해서 확인할 수 있어요. 그래서 x 절편을 다른 말로 y = 0일 때의 x값이라고도 해요. 어차피 같은 얘기예요. 중요한 건 x축과 만나는 점의 x좌표인데 이 점의 y 좌표가 0이니까 함수식에 y = 0을 대입해서 그때의 x값을 구하면 돼요
y = 2x + 2라는 함수가 있고 이 함수 그래프의 x절편을 구해보죠. y = 0을 대입하면,
0 = 2x + 2
2x = -2
x = -1
y = 0일 때의 x값이 -1이죠? 이 -1을 x 절편이라고 해요.
y절편
x절편이 그래프가 x축과 만나는 점의 x좌표라면 그래프가 y축과 만나는 점의 y좌표가 y 절편이에요. 그래프가 y축과 만나니까 x 좌표가 0이겠죠. 그래서 다른 말로 x = 0일 때의 y좌표라고도 해요.
함수식에 x = 0을 넣어서 y절편을 구해요.
y = 2x + 2
y = 2
x = 0을 대입했더니, y = 2라는 값이 나왔네요. 이 함수의 y절편은 2입니다.
다음 그래프를 보고, x절편과 y절편을 구하여라.
그래프가 x축과 만나는 점의 좌표는 (2, 0)이고, y축과 만나는 점의 좌표는 (0, 2)이네요. 따라서 x절편은 2, y절편은 2입니다.
그래프를 통해서 구할 수도 있고, 아니면 앞에서 했던 방법처럼 x = 0, y = 0을 대입해서 값을 구할 수도 있어요.
y = ax+b의 x절편, y절편
일차함수 y = ax + b (a ≠ 0, a, b는 상수)에서의 x절편, y절편을 구해볼까요?
x절편을 구할 때는 y = 0을 대입한다고 했어요. 대입해 볼게요.
y = ax + b
0 = ax + b
-ax = b
x =
x 절편은 네요. 그래서 그래프가 x축과 만나는 점의 좌표는 (
, 0)이고요.
y절편은 x = 0을 대입해서 구해요.
y = ax + b
y = a × 0 + b
y = b
y 절편은 b고, 그때 점의 좌표는 (0, b)예요. 사실 y 절편은 굳이 x = 0을 대입할 필요가 없어요. 왜냐하면 y = ax + b에서 b니까요. 식만 봐도 바로 알 수 있어요.
- x 절편
- 그래프가 x축과 만나는 점의 x좌표
- y = 0일 때의 x 값
- y = ax + b에서는 x =
- 그래프가 x축과 만나는 점의 좌표: (
, 0)
- y절편
- 그래프가 y축과 만나는 점의 y좌표
- x = 0일 때의 y 값
- y = ax + b에서는 b
- 그래프가 y축과 만나는 점의 좌표: (0, b)
함께 보면 좋은 글
일차함수의 그래프
일차함수와 그래프 - 기울기
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징