분수
단항식의 곱셈과 나눗셈
단항식과 계수라는 용어는 1학년 때 들어봤어요. 그리고 단항식의 곱셈과 나눗셈도 해봤죠? 그때는 단항식과 수의 곱셈과 나눗셈이었고, 이 글에서 할 건 단항식과 단항식의 곱셈과 나눗셈이에요.
솔직히 말해 좀 짜증 나는 과정이라고 할 수 있어요. 같은 문자에 비슷비슷한 차수의 계산이 많이 나오거든요. 원리가 어렵다기보다는 계산이 복잡하죠. 문자와 차수를 잘 구별하고, 빼먹는 항이 없도록 집중해야하는 단원입니다.
실수를 줄이려면 계산 연습을 많이 해보는 방법밖에 없어요. 교과서의 예제를 많이 풀어보세요.
단항식의 곱셈과 나눗셈
단항식의 덧셈과 뺄셈은 동류항의 덧셈과 뺄셈에 나온 것처럼 차수와 문자가 같은 동류항끼리 계산해요. 1학년 때 해봤으니까 넘어가죠.
단항식의 곱셈
2a3b × 3ab2을 계산해보죠. 생략된 곱셈기호를 다시 살려서 계산하면 돼요.
2a3b × 3ab2
= (2 × a3 × b) × (3 × a × b2)
= 2 × 3 × a3 × a × b × b2 (∵ 교환법칙)
= 6 × a4 × b3
= 6a4b3
매번 이렇게 풀어서 계산할 수는 없잖아요. 규칙을 알아보죠.
단항식의 덧셈, 뺄셈에서 숫자끼리 더하거나 빼고 문자는 뒤에 그대로 붙여준다고 했어요. 단항식의 곱셈에서도 숫자끼리 곱해요. 다만 문자는 바뀌죠? 문자는 어떻게 하냐면 지수법칙을 이용해서 밑이 같은 문자끼리 곱하는 거예요.
단항식의 곱셈: 숫자는 숫자끼리, 문자는 밑이 같은 문자끼리 곱
다음을 간단히 하여라.
(1) 3a2b3 × 4a3b3
(2) (2a)3 × 4a × 5a2
(3) (5a2b)2 × (2a2b3)3
단항식의 곱셈은 숫자끼리, 문자끼리 곱하는 거예요.
(1) 3a2b3 × 4a3b3
= (3 × 4) (a2 × a3) (b3 × b3)
= 12a5b6
두 번째 줄에서 숫자끼리, 밑이 같은 문자끼리 묶어서 계산했어요.
(2)에는 거듭제곱의 거듭제곱 꼴이므로 지수법칙 - 괄호를 이용해서 먼저 계산해야 해요. 괄호 안의 모든 항목을 거듭제곱해주는 거예요.
(2a)3 × 4a × 5a2
= 23a3 × × 4a × 5a2
= (8 × 4 × 5) (a3 × a × a2)
= 160a6
(3)도 지수법칙을 이용해서 괄호를 먼저 전개한 다음에 곱셈을 해야 합니다.
(5a2b)2 × (2a2b3)3
= 52(a2)2b2 × 23(a2)3(b3)3
= 25a4b2 × 8a6b9
= (25 × 8) (a4 × a6) (b2 × b9)
= 200a10b11
단항식의 나눗셈
나눗셈에서도 곱셈처럼 숫자끼리, 밑이 같은 문자끼리 계산해요. 나눗셈은 분수를 이용하기 때문에 약분을 하는데, 이때는 밑이 같은 문자에서 지수를 빼는 거예요. 계산은 분수를 이용하는 방법과 역수를 이용하는 방법으로 합니다.
나눗셈을 분수로 바꿔서 계산하는 방법이에요. 나누는 수를 분수의 분모로 하는 방법이죠.
이번에는 역수를 이용하는 방법을 해보죠. 나누는 수에 분수가 있을 때 유용한 방법이에요.
위 경우처럼 나누는 항의 계수만 분수이고 문자는 분수가 아닐 때, 계수만 역수로 바꾸고 문자는 그대로 두는 경우가 있어요. 이 아니라 3a2b로 말이죠. 실수를 정말 자주 하는 거니까 꼭 주의하세요. 역수로 바꿀 때는 숫자와 문자 모두 다 뒤집어야 해요.
분수꼴로 고쳐서
나누기를 곱하기로 바꾸고 역수
다음을 간단히 하여라.
단항식의 나눗셈도 숫자는 숫자끼리, 문자는 문자끼리 계산해요. 대신 나누는 수가 분수면 역수를 이용하고, 분수가 아니면 분모로 만들어서 계산하지요.
(1)에서는 나누는 수가 분수가 아니므로 식 전체를 분수꼴로 바꿔서 계산하면 편해요
(2)번에는 괄호가 있으므로 괄호의 거듭제곱을 지수법칙을 이용해서 푼 다음에 나눗셈해야겠네요. 그리고 나누는 수에 분수가 있으니까 역수를 이용해서 계산하고요.
(3)번은 곱셈과 나눗셈이 섞여 있는 계산이네요. 앞에서부터 순서대로 계산하면 돼요.
함께 보면 좋은 글
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
[중등수학/중1 수학] - 단항식의 곱셈과 나눗셈, 일차식의 곱셈과 나눗셈
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
지수법칙 - 나눗셈, 괄호, 분수
지수법칙 두 가지를 공부했었죠? 밑이 같은 거듭제곱의 곱일 때는 밑을 그대로 써주고 지수는 더해주는 거였고요. 거듭제곱의 거듭제곱에서는 밑은 그대로 쓰고, 지수를 곱해주는 거였어요.
지수법칙 두 번째는 나눗셈과 괄호가 있을 때의 거듭제곱이에요.
나눗셈에서는 지수의 크기가 중요해요. 지수의 크기에 따라 계산 방법이 달라지거든요. 괄호가 있을 때는 분수든 아니든 상관없이 공통된 특징이 있으니 이건 쉽게 이해할 거예요.
지수법칙
25 ÷ 23을 해볼까요? 지수를 풀어서 계산(약분)한 다음, 다시 거듭제곱으로 나타내보죠.
지수만 보면 5 - 3 = 2가 되죠. 밑이 같은 거듭제곱의 나눗셈은 밑은 그대로 쓰고, 지수만 빼면 돼요. 여기까지는 지수법칙 첫 번째에서 했던 밑이 같은 거듭제곱의 곱과 비슷해요. 밑이 다르거나 나눗셈이 아니면 쓸 수 없다는 것까지 같지요.
이번에는 25 ÷ 25을 해보죠.
위처럼 밑은 그대로 쓰고, 지수의 차를 구해보면 25 ÷ 25 = 25 - 5 = 20이 되겠지요? 여기에서 20 = 1이라는 걸 알 수 있어요. 지수가 같으면 나누기의 결과로 지수는 0이 되고, 밑이 2든 3이든 상관없이 모든 수의 0 제곱은 1이에요.
이번에는 23 ÷ 25를 해볼까요?
밑이 같고 지수의 나눗셈이니까 밑은 그대로 쓰고, 지수끼리 빼면 23 ÷ 25 = 23 - 5 = 2-2이 돼요. 지수가 -2인데, (-)는 분수라는 걸 말해요. 지수가 2인 분수꼴이라는 뜻이죠. 나누는 수의 지수가 클 때는 분수로 쓰되, 지수는 큰 것에서 작은 걸 빼주는 거지요.
위 세 경우에서 보듯이 거듭제곱의 나눗셈은 나누어지는 수와 나누는 수의 지수 크기에 따라 계산 방법이 살짝 달라져요.
a ≠ 0이고, m, n이 자연수일 때
다음을 간단히 하여라.
(1) a6 ÷ a2
(2) b5 ÷ b3 ÷ b2
(3) c3 ÷ c7
밑이 같은 거듭제곱의 나눗셈에서는 나누어지는 수와 나누는 수의 지수 중 어디가 큰지에 따라 달라져요. 나누어지는 수의 지수가 크면 밑은 그대로 쓰고 지수의 차, 같으면 1, 나누어지는 수의 지수가 더 작으면 분수 형태예요.
(1) 나누어지는 수의 지수가 나누는 수의 지수보다 크네요.
a6 ÷ a2
= a6 - 2
= a4
(2)에서는 항이 3개지만 밑이 같으면 한꺼번에 계산할 수 있어요.
b5 ÷ b3 ÷ b2
= b5 - 3 - 2
= b0
= 1
(3)은 나눠지는 수의 지수가 더 작으니까 분수로 나오겠지요.
괄호가 있을 때 지수법칙
이번에는 여러 개의 문자나 수를 한꺼번에 거듭제곱할 때 어떻게 되는지 알아보죠.
(ab)3을 볼까요? ab를 3번 곱한 건데, 원래 a × b에서 곱셈기호가 생략된 거죠.
(ab)3
= (a × b)3 곱셈기호 살리기
= (a × b) × (a × b) × (a × b)
= (a × a × a) × (b × b ×b ) 곱셈에 대한 교환법칙
= a3 × b3
= a3b3 곱셈기호 생략
첫 줄과 끝줄만 보면, (ab)3 = a3b3로 괄호 안에 있는 것들을 각각 세제곱한 것과 같아요.
분수의 거듭제곱도 분자, 분모를 각각 거듭제곱한 것과 같죠.
위 두 가지를 정리해 보면, 괄호로 묶여있는 걸 거듭제곱하면 괄호 안에 있는 것들을 각각 거듭제곱한 것과 같다는 걸 알 수 있어요.
b ≠ 0이고, m이 자연수일 때
다음을 간단히 하여라.
괄호 안에 있는 건 분수든 아니든 상관없이 각각을 거듭제곱해줘야 해요.
(1) (a3b2)2
= (a3)2(b2)2
= a3 × 2b2 × 2
= a6b4
(2)에서 (-a) = (-1) × a에요.
(-a)4 × (-b)3
= (-1)4a4 × (-1)3b3
= a4 × (-b3)
= -a4b3
함께 보면 좋은 글
지수법칙 - 곱셈, 거듭제곱
단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
순환소수를 분수로 나타내기
순환소수는 분수로 나타낼 수 있어요. 분수로 나타낼 수 있다는 얘기는 유리수라는 얘기죠. 반대로 순환소수 아닌 무한소수는 분수로 나타낼 수 없어요. 따라서 순환소수 아닌 무한소수는 유리수가 아니에요……
이 글에서는 순환소수를 분수로 나타내는 방법을 공부할 거예요. 그냥 글만 보고 이해하기에는 너무 어려운 내용이라서 여러 번 반복해서 읽어봐야 이해가 될 겁니다. 어렵긴 하지만 원리를 이해하면 답을 바로 구할 수 있는 공식도 있으니까 끝까지 집중해서 잘 보세요.
글로 된 설명과 그림을 잘 비교하면서 읽어보세요.
순환소수를 분수로 나타내는 방법
순환소수를 분수로 나타낼 때 가장 중요한 건 10의 거듭제곱을 곱해주는 거예요. 10의 거듭제곱을 곱해서 소수점 이하 자리를 같게 만들어준 다음 없애주는 거지요.
순환소수 을 분수로 나타내보죠.
을 풀어서 쓴 0.33333…을 x라고 해 볼까요π
x = 0.33333… 이걸 ①식이라고 하고, ①의 양변에 10을 곱해보죠.
10x = 3.33333…이에요. 이걸 ②식이라고 할게요.
①과 ②의 소수점 이하 부분이 같아요. ②식에서 ①을 빼보죠. 식을 뺄 때는 좌변끼리 빼고, 우변끼리 빼는 거예요.
로 쓸 수 있어요.
방법이 정말 복잡해서 이해하기 어려운 내용이에요. 잘 봐야 해요.
순환소수를 분수로 나타내기
- 주어진 순환소수를 x로 놓는다. - ①식
- 소수점이 순환마디 뒤에 오도록 10의 거듭제곱을 곱한다. - ②식
- 소수점이 순환마디 앞에 오도록 10의 거듭제곱을 곱한다. - ③식
- ② - ③
- 좌변, 우변을 정리 후 x의 계수로 양변을 나눠준다.
- 약분
을 분수로 나타내는 과정이에요. 설명을 하다 보니 숫자가 복잡한데, 실제 이렇게 복잡한 숫자는 나오지 않아요..
약분하면 이네요.
다음 순환소수를 분수로 나타낼 때, 가장 편리한 식을 <보기>에서 찾으시오..
<보기> 10x - x, 100x - x, 1000x – x
100x - 10x, 1000x – 10x
1000x – 100x
소수점을 옮길 때 얼마를 곱해줘야 하는지 찾는 문제입니다. 소수점이 (순환마디 뒤에 있을 때) - (순환마디 앞에 있을 때)가 되어야 해요.
(1)은 순환마디가 2이므로 2 뒤에 소수점이 오려면 10을 곱해서 10x, 2 앞에 소수점이 있으니까 그냥 그대로 x로 하면 되겠네요. 이 둘을 뺀 10x - x가 가장 편리한 식입니다.
(2)는 순환마디가 34이므로 소수점이 34 뒤에 오려면 1000을 곱해서 1000x, 소수점이 34 앞에 오려면 10을 곱해서 10x가 되므로 1000x - 10x가 되어야 하고요.
(3)은 순환마디가 3으로 소수점이 3 뒤에 오려면 1000을 곱해서 1000x, 소수점이 3 앞에 오려면 100을 곱해서 100x가 되므로 1000x - 100x가 되겠네요..
순환소수를 분수로 나타내는 공식
위의 과정으로 순환소수를 분수로 나타내다 보니 너무 복잡해요. 그래서 결과로 바로 갈 수 있는 공식이 있는데, 이걸 외워야 합니다. 그런데 위 내용을 모르면 공식을 외울 수 없어요.
공식이라고 해서 딱 줄여서 쓸 수 있는 표현법이 마땅히 없어요. 설명을 잘 보고 이해하세요.
순환소수를 분수로 나타내는 거니까 분모, 분자가 있겠죠?
분모는 순환마디의 숫자만큼 9를 써줘요. 순환마디가 두 자리면 99, 세 자리면 999를 쓰는 거죠. 그리고 소수점 이하 자리에서 순환마디가 아닌 자리의 개수만큼 9 뒤에 0을 써줘요.
위 그림의 는 순환마디가 3자리이므로 999를 먼저 쓰고 소수점 이하에서 순환마디가 아닌 숫자가 하나 있으니까 뒤에 0을 하나 붙인 9990이 분모가 되는 거예요.
분자는 소수점을 고려하지 않은 전체 수에서 순환하지 않는 부분의 수를 그냥 빼주세요. 에서 소수점을 고려하지 않은 전체 수는 10123이고 순환하지 않는 부분의 수는 10이죠. 10123 - 10 = 10113이 분자가 됩니다.
순환소수를 분수로 나타내는 공식
- 분모는 순환마디의 숫자 개수만큼 9를 써주고, 9 뒤에 소수점 이하에서 순환마디가 아닌 숫자의 개수만큼 0을 붙여준다.
- 분자 = (소수점을 고려하지 않은 전체 수) - (순환하지 않는 부분의 수)
- 분자, 분모를 약분
0.2353535………를 공식을 이용해서 분수로 바꾸는 과정이에요.
다음 순환소수를 분수로 나타내어라.
(1) 순환마디는 1자리, 소수점 이하 순환하지 않는 숫자는 2개이므로 분모는 900
소수점을 고려하지 않은 전체 수는 1235, 순환하지 않는 부분의 숫자는 123이므로 분자는 1235 - 123
(2) 순환마디는 3자리, 소수점 이하 순환하지 않는 숫자가 없어서 0을 붙일 필요가 없으므로 분모는 999
소수점을 고려하지 않은 전체 수는 123, 순환하지 않는 부분은 0이므로 분자는 123 - 0
(3) 순환마디는 2자리, 소수점 이하 순환하지 않는 숫자는 1개이므로 분모는 990
소수점을 고려하지 않은 전체 수는 12345, 순환하지 않는 부분은 123이므로 분자는 12345 - 123
(4) 순환마디는 1자리, 소수점 이하 순환하지 않는 숫자는 0개이므로 분모는 9
소수점을 고려하지 않는 전체수는 9, 순환하지 않는 숫자는 0이므로 분자는 9 - 0
0.9999999999………라서 절대로 1은 안될 것 같은데, 1하고 같아요. 0.99990.9999999999……… 가 1과 같은 이유
함께 보면 좋은 글
유한소수와 무한소수
순환소수와 순환마디, 순환소수 표시법
순환소수와 유리수, 순환소수의 대소비교와 사칙연산
복잡한 일차방정식의 풀이
일차방정식의 풀이에서 일차방정식의 해를 구하는 기본적인 방법을 알아봤어요. 이 글에서는 조금 더 복잡한 일차방정식의 풀이를 해볼 거예요. 방법은 똑같은데, 식이 조금 더 어렵게 나와요.
식이 복잡하고 어렵다고 해도 이항과 등식의 성질을 이용한 풀이라는 기본 원리는 똑같아요. 복잡한 식을 가능한 한 쉬운 식으로 모양을 바꾸면 다음에 우리가 알고 있는 방법으로 풀 수 있어요.
따라서 이 글에서는 공부할 내용은 복잡한 일차방정식을 덜 복잡한 일차방정식으로 바꾸는 방법이에요.
복잡한 일차방정식의 풀이
괄호가 있을 때
유리수의 사칙연산 혼합계산에서 거듭제곱과 괄호를 먼저 계산해야 한다고 했었죠? 괄호가 있는 일차방정식에서도 마찬가지로 괄호를 먼저 계산해야 해요. 거듭제곱은 안 나오니까 제외하고요. 괄호는 대부분이 분배법칙으로 풀어야 하는 경우에요. 분배법칙으로 괄호 푸는 법 알고 있죠?
2(4x + 2) = 6x + 2
8x + 4 = 6x + 2 분배법칙으로 괄호 풀기
8x - 6x = +2 - 4 x는 좌변, 상수항은 우변으로 이항
2x = -2 계산
x = -1 x의 계수로 양변 나누기
계수가 분수일 때
계수가 분수면 계산하기가 복잡하죠. 대신 계수를 정수로 바꿔서 계산하면 계산이 편해져요. 계수를 정수로 바꾸려면 분수의 분모를 없애줘야 하는데, 분모의 최소공배수를 이용해요. 모든 분모의 최소공배수를 방정식의 양변에 곱해서 분모와 최소공배수를 약분시켜 정수로 바꿔주는 거죠.
계수가 소수일 때
계수가 소수일 때도 분수일 때처럼 계수를 정수로 바꿔서 해요. 대신 이때는 10, 100, 1000, … 등 10의 거듭제곱을 곱해요. 계수가 0.1이면 10을, 계수가 0.01이면 100을 곱하고, 여러 소수가 섞여 있을 때는 소수점 이하 자리가 가장 많은 계수를 기준으로 10의 거듭제곱을 곱해요.
0.2x - 0.14 = 0.5x + 0.16
100(0.2x - 0.14) = 100(0.5x + 0.16) 상수항이 소수점이하 두 자리이므로 양변에 100을 곱.
20x - 14 = 50x + 16 분배법칙으로 괄호 풀기
20x - 50x = 16 + 14 x는 좌변, 상수항은 우변으로 이항
-30x = 30 동류항 계산
x = -1 x의 계수로 양변을 나눔
비례식일 때
방정식이 비례식으로 나왔을 때는 (내항의 곱) = (외항의 곱)이라는 비례식의 성질을 이용해요. 내항의 곱과 외항의 곱을 이용하면 일반적으로 볼 수 있는 방정식으로 모양이 바뀝니다.
(x - 1) : 2 = (2x + 1) : 3
3(x - 1) = 2(2x + 1) (내항의 곱) = (외항의 곱)으로 변형
3x - 3 = 4x + 2 분배법칙을 이용하여 괄호 전개
3x - 4x = 2 + 3 x는 좌변, 상수항은 우변으로 이항
-x = 5 동류항 계산
x = -5 x의 계수로 양변을 나눠줌
함께 보면 좋은 글
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
일차방정식의 활용 첫번째
일차방정식의 활용 2
대입, 식의 값
아직은 새로운 단원을 시작하기에 앞서 이 단원에서 사용할 기본적인 것들을 공부하는 단계입니다. 정확하게 이해를 해야 이 단원을 잘 이해할 수 있어요.
대입이라는 용어는 매우 자주 사용하는 용어라서 그 의미를 정확히 알고 있어야 해요. 식의 값의 뜻은 이름 그대로예요. 용어가 중요한 것도 아니고, 의미도 별거 없어요. 그냥 알고 넘어가면 되는 거예요.
어려운 내용은 아니지만, 연습이 좀 필요한 과정입니다. 교과서의 예제 문제를 꼭 풀어보세요.
대입
대입은 문자가 있는 식에서 문자 대신에 숫자를 넣는 거예요. 조금 더 쉽게 말하면 문자를 숫자로 바꾸는 거고요. 무작정 바꾸면 안 되고 문자와 숫자가 같을 때에만 가능해요.
축구에서 선수교체를 하면 경기를 하고 있던 선수는 빠지고, 벤치에 있던 선수가 대신 들어가죠? 대입도 마찬가지로 식에 원래 있던 걸 빼고 그 자리에 뺀 것과 같은 걸 넣는 거예요.
x = 2이고, x + 3이라는 식이 있다고 해보죠. x + 3이라는 식에 x = 2를 대입해볼까요? x가 2와 같으니까 x + 3이라는 식에서 x는 빼고, 그 자리에 2를 넣어도 식은 바뀌지 않죠? x + 3 = 2 + 3 = 5가 되겠죠.
하나만 더 해볼까요?
y = 5일 때, y - 3을 구해보죠. y - 3이라는 식에 y = 5을 대입하면 y는 없어지고 그 자리에 5가 들어가요. y - 3 = 5 - 3이 되어서 결국은 2가 돼요.
식의 값
문자에 수를 대입해서 식을 계산한 값을 식의 값이라고 해요. 위에서는 2가 바로 식의 값이 되는 거죠.
식의 값을 구하는 순서를 알아볼까요?
식을 간단히 하기 위해서 곱셈기호와 나눗셈기호의 생략한 식이라면 곱셈기호와 나눗셈기호를 다시 살려줘야 해요. 문자와 숫자사이, 문자와 문자 사이에서만 곱셈기호를 생략한다고 했잖아요. 지금 우리는 문자를 숫자로 바꿀 거예요. 그러면 숫자들끼리의 곱이라서 곱셈기호를 생략할 수 없게 돼요.
곱셈기호를 다시 살렸으면 문자를 지우고, 그 자리에 문자와 크기가 같은 숫자를 넣으세요.
x = 2일 때, 2x + 1을 구해보죠. 2x는 곱셈기호가 생략되어 있어요. 다시 써줘야 해요.
x = -2라면 어떨까요? 다른 건 같아요. 대신 음수니까 다른 기호와 헷갈리지 않도록 괄호를 쳐주는 게 다르죠.
x = 일 때
를 구해볼까요? 식에 x를 대입하면
이라는 이상한 식이 돼버리죠? 이럴 때는 분수를 나눗셈으로 바꿔서 대입해요.
식의 값 구하는 방법
생략한 곱셈, 나눗셈 기호를 다시 되살린다.
음수를 대입할 때는 괄호 사용.
분수는 나눗셈으로 바꿔서
a = 2, b = -3일 때 다음 식의 값을 구하여라.
(1) 2a + 3b
(2) a2 + b3
(3)
(1)번에는 곱셈기호가 생략되어 있으니까 살려줘야겠네요. 또 b가 음수이므로 대입할 때 괄호를 사용해야 하고요.
2a + 3b
= 2 × a + 3 × b
= 2 × 2 + 3 × (-3)
= 4 + (-9)
= -5
(2) 거듭제곱일 때도 마찬가지로 음수에는 괄호를 쳐주세요.
a2 + b3
= 22 + (-3)3
= 4 + (-27)
= -23
(3) 분수일 때는 나눗셈으로 바꿔서 해요. 하지만 이 문제에서는 바로 대입해도 상관없어요. 바로 대입해도 식의 모양이 이상해지지 않거든요.
함께 보면 좋은 글
문자와 식, 문자를 포함한 식
곱셈기호의 생략, 나눗셈 기호의 생략
단항식과 다항식, 항, 상수항, 계수, 차수
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
유리수, 유리수의 분류
정수를 다 공부했어요.
이제 또 새로운 수를 배울 거예요. 유리수라는 건데, 중학교 1, 2학년 수학에서 수라고 말하면 대부분 유리수를 말하는 거예요. 그러니까 이 글을 집중해서 보세요.
이 유리수는 정수의 연장선이라고 생각하면 돼요. 따라서 유리수라는 수의 개념만 잘 이해하면 나머지는 비교적 쉬워요. 정수의 연장선인 만큼 그 성질, 사칙연산과 연산에서 성립하는 법칙 등이 정수와 같아요.
유리수를 분류하는 여러 가지 방법도 알아볼 거예요.
유리수의 뜻
유리수는 분수꼴로 나타낼 수 있는 수를 말해요. 분수에서 분자와 분모는 정수면 되고요. 꼭 자연수일 필요는 없어요. 단 분모는 0이면 안 돼요. 분모가 0인 분수는 없으니까요.
유리수는 분수꼴로 나타낼 수 있는 수에요. 수의 모양을 분수꼴로 바꿀 수 있으면 다 유리수인 거죠. 유리수와 분수를 같은 것으로 착각하는 데 절대로 그러면 안 돼요. 유리수 ≠ 분수
정수나 소수도 얼마든지 분수 모양으로 바꿀 수 있어요.
유리수는 정수, 분수, 소수 등 이제까지 우리가 봐왔던 모든 수를 통틀어 놓은 거예요. 그러니까 완전히 새로 배우는 수는 아니에요.
정수에 양의 정수, 0, 음의 정수가 있는 것처럼 유리수도 양의 유리수, 0, 음의 유리수로 되어 있어요.
양의 정수는 (+) 부호를 생략해서 쓰는 것처럼 양의 유리수도 (+) 부호를 생략해서 쓸 수 있어요. 음의 유리수의 (-) 부호는 생략할 수 없고요.
유리수의 분류
위에서는 부호에 따라서 유리수를 나눴죠? 다른 방법으로 구분하기도 하는데요.
유리수의 대표적인 수가 바로 정수잖아요. 정수와 정수가 아닌 유리수로 나누는 거예요. 정수가 아닌 유리수에는 분수, 소수 이런 것들이 포함돼요.
아래 그림을 잘 기억하세요.
는 약분을 하면 2가 되죠? 생긴 모양은 정수가 아니라 분수라서 정수가 아닌 유리수라고 생각하기 쉽지만, 약분을 하면 2가 되기 때문에
는 정수라고 해야 해요. 분수로 되어 있는 경우라도 꼭 약분을 해서 기약분수로 만든 다음에 판단해야 합니다.
다음 수를 정수와 정수 아닌 유리수로 구분하여라.
는 약분을 하면 -3이에요. 음의 정수죠. 나머지는 보면 금방 알 수 있네요.
정수: +1, 0,
정수 아닌 유리수:
함께 보면 좋은 글
유리수와 수직선, 절댓값, 유리수의 대소관계
유리수의 덧셈과 뺄셈
유리수의 곱셈과 나눗셈, 혼합계산
정수, 양의 정수, 음의 정수, 0, 양수와 음수
복잡한 이차방정식의 풀이
이차방정식을 풀기 위해서는 이차방정식의 기본형인 ax2 + bx + c = 0꼴로 바꿔주는 것이 좋아요. 기본형으로 바꾼다음 인수분해가 되면 인수분해를 이용해서 해를 구하고 인수분해가 되지 않는다면 근의 공식으로 푸세요.
이번 글에서는 복잡한 이차방정식의 풀이에 대해서 알아볼 거예요. 복잡한 식이라는 거 많이 해봤잖아요. 복잡한 일차방정식의 풀이, 복잡한 연립방정식의 풀이, 복잡한 부등식, 복잡한 인수분해.. 모두 원리는 하나에요.
복잡한 건 복잡하지 않게 계산하기 쉽게 바꾸면 된다. 복잡한 이차방정식은 복잡하지 않게 바꾼 다음에 인수분해 or 근의 공식 입니다.
복잡한 이차방정식 푸는 법
괄호가 있을 때
괄호가 있으면 괄호를 전개한 다음 동류항끼리 계산을 해야해요. 괄호를 전개하지 않거나 동류항 계산을 다 끝내야 일반형으로 바꿀 수 있어요.
x(1 - x) = (x + 2)(x - 3)
괄호가 있으니까 전개해서 동류항 계산을 하세요. 물론 기본형으로 바꾸는 작업까지요.
x - x2 = x2 - x - 6
2x2 - 2x - 6 = 0
x2 - x - 3 = 0
일반형으로 바꿨더니 위처럼 됐어요. 근데 인수분해가 안되니까 근의 공식을 써야겠죠.
계수가 소수일 때
계수가 소수이면 계산이 복잡합니다. 그래서 계수를 정수로 바꿔줘야해요. 정수로 바꿀려면 10의 제곱인 수 즉, 10, 100, 1000을 식에 곱해줍니다. 계수를 정수로 바꾼 다음에 인수분해나 근의 공식을 이용하세요.
0.3x2 - x + 0.1 = 0
계수가 소수 첫째자리까지 있으니까 10을 곱해줘야 겠네요.
3x2 - 10x + 1 = 0
인수분해가 안되네요. 근의 공식을 써야하는데 x의 계수가 짝수니까 짝수 공식을 써볼까요?
계수가 분수일 때
계수가 분수일 때에도 역시 계수를 정수로 바꿔줘야 해요. 정수로 바꾸려면 각 계수의 분모의 최소공배수를 식에 곱해주면 돼요.
계수가 분수이고, 각 계수의 분모인 5, 2, 10의 최소공배수가 10이니까 식에 10을 곱해줄께요.
2x2 + 5x - 3 = 0
(x + 3)(2x - 1) = 0
x = -3 or x =
공통인 식이 있을 때
공통인 식이 있을 때는 다른 문자로 치환을 해요. 치환하는 거 인수분해할 때 연습 많이 해봤죠? 식에 공통으로 들어있는 부분이나 괄호로 묶여져 있는 부분을 치환합니다.
일단 식을 치환하는 경우에는 대부분 인수분해가 돼요. 인수분해가 되면 치환했던 걸 다시 원래 식으로 바꿔주고 그 다음에 해를 구할 수 있어요.
(x - 1)2 + 6(x - 1) - 27 = 0
x - 1이라는 부분이 있으니까 이 걸 A라는 문자로 치환해볼께요.
A2 + 6A - 27 = 0라는 식이 돼요. 이 식은 A에 관한 이차방정식입니다. 따라서 인수분해나 근의 공식으로 A 값을 구할 수 있겠죠. 인수분해가 되는 군요. A를 구해볼까요?
(A + 9)(A - 3) = 0
A = -9 or A = 3
A를 구했어요. 하지만 문제에서 구하는 건 A가 아니라 x 라는 걸 명심하세요. 원래 A = x - 1였으니까 x를 구해보죠.
A = -9 x - 1 = -9 x = -8 |
A = 3 x - 1 = 3 x = 4 |
x - 1이라는 식을 A라는 문자로 치환한 후에 다시 원래 식으로 되돌아와서 x를 구할 수 있었어요.
괄호가 있으니까 괄호를 전개해서 계산해도 되지만 전개하지 않고 치환하는 게 훨씬 쉬워요.
함께 보면 좋은 글
근의 공식, 근의 공식 유도, 짝수 공식
인수분해, 공통인수로 인수분해
인수분해 공식 - 완전제곱식, 합차공식
인수분해 공식 두 번째
복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
복잡한 식의 인수분해 - 항이 4개 이상일 때