허근

이차방정식의 판별식을 이용해서 두 근이 실근인지 허근인지 판별할 수 있어요. 이번에 공부할 건 조금 확장된 버전(?)인데요. 교육과정에 있는 내용은 아닌데, 그냥 한 번 해보죠.

이차방정식은 모르지만, 이차방정식 두 근의 합과 곱을 알 때, 두 근이 실근인지 허근인지 확인하는 방법이에요. 판별식을 이용하는 방법보다 한 단계만 더 거치는 거니까 어렵지는 않아요.

식을 알면 두 근을 구해서 실근인지 허근이지 판별할 수 있는데, 식을 모르니까 두 근을 구할 수 없고, 근을 모르니까 실근인지 허근인지 판별할 수 없어요.

하지만, 이차방정식의 판별식, 실근, 허근에서도 근을 구하지 않고 실근, 허근을 판별했어요. 즉, 식을 알기만 하면 근을 구할 수 없을더라도 실근, 허근을 판별할 수는 있어요.

판별식을 이용하려면 식을 알아야 하죠. 그런데 식을 몰라요. 합과 곱만 알아요. 어떻게 해야 할까요? 식을 먼저 구해야겠죠? 식을 구하는 방법이 뭘까요? 바로 두 수를 근으로 하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식이에요.

그러니까 합과 곱을 이용해서 이차방정식을 만들고, 그렇게 만든 이차방정식에서 판별식을 구하면 두 근이 실근인지 허근인지 확인할 수 있어요.

두 근의 합과 곱을 알 때 이차방정식은 다음과 같아요.

두 근의 합이 m이고 곱이 n, 이차항의 계수가 a인 이차방정식
a(x2 - mx + n) = 0
a(x2 - 합x + 곱) = 0

위 공식을 전개해보면 ax2 - amx + an = 0이에요.

나머지 과정은 다 알죠?

D = (-am)2 -  4  × a  ×   an

  • D > 0이면 서로 다른 두 실근
  • D = 0이면 중근(실근)
  • D < 0이면 서로 다른 두 허근

두 근의 합이 9, 곱이 18이고 이차항의 계수가 2인 이차방정식의 근의 종류를 판별하여라.

근이 뭔지는 모르지만, 두 근의 합과 곱, 이차항의 계수를 알려줬네요. 식을 구할 수 있어요.

a(x2 - 합x + 곱) = 0

2(x2  +  9x +  18)  =  0
2x2 + 18x + 36 = 0

이제 식을 알았으니 판별식을 사용할 수 있어요.

D/4 = 92 - 2 × 36
= 81 - 72
= 9 > 0

D/4 > 0이니까 서로 다른 두 실근이에요.

여기서 한 가지 더 알아둘 건, 이차항의 계수는 별 필요가 없다는 거예요.

합이 m, 곱이 n, 이차항의 계수가 a인 이차방정식
a(x - mx + n) = 0
ax2 - amx + an = 0

D = (-am)2 - 4 × a × an
= a2m2 - 4a2n
= a2(m2 - 4n)

a2은 무조건 양수니까 뒤 (m2 - 4n)의 부호만 알면되죠?

이차항의 계수 없이 공식의 괄호부분만 볼까요?

x2 - mx + n = 0

D = (-m)2 - 4 × 1 × an
= m2 - 4n

결국 이차항의 계수는 판별식의 부호에 아무런 영향을 미치지 않아요.

<<  공통수학 1  >>
 
그리드형

보통 도형에서의 위치관계는 수직, 평행 등을 묻는데 이차함수의 그래프와 직선의 위치관계는 그런 게 아니에요. 교점이 몇 개 생기느냐를 말하죠. 앞서 했던 이차함수의 그래프와 이차방정식의 실근의 내용과 비슷하니까 별로 어렵지는 않을 거예요. 거의 한 쌍둥이라고 할 수 있어요.

이차함수 그래프의 대략적인 모습과 직선을 그리면 조금 더 쉽게 이해할 수 있으니까 그림도 함께 외우세요.

이차함수의 그래프와 직선의 위치관계

이차함수의 그래프와 직선의 위치관계는 이차함수의 그래프와 이차방정식의 실근에서 했던 내용을 살짝만 바꾸면 돼요.

이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
    = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

중학교 2학년 때 직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식에 대해서 잠깐 공부한 적이 있어요. x축은 식으로 나타내면 y = 0이라는 직선의 방정식으로 나타낼 수 있죠? x축도 직선이니까 이걸 확장하면 이차함수의 그래프와 직선의 위치관계를 구할 수 있는 거죠.

이차함수 y = ax2 + bx + c (a ≠ 0)와 x축이 몇 개의 교점을 가지느냐를 알아볼 때 어떻게 했나요? x축이 y = 0이니까 이걸 이차함수 식에 대입해서 이차방정식을 만들고, 판별식 D의 부호를 구했죠? D > 0이면 교점이 2개, D = 0이면 교점이 1개, D < 0이면 교점이 0개예요.

이차함수 y = ax2 + bx + c (a ≠ 0)와 직선 y = mx + n 사이의 관계를 구할 때도 똑같아요. 직선 y = mx + n를 이차함수 y = ax2 + bx + c에 대입해서 이차방정식을 만들고, 판별식의 부호를 구하면 교점의 개수를 알 수 있어요.

ax2 + bx + c = mx + n
ax2 + (b - m)x + c - n = 0

위와 같은 식을 얻을 수 있는데, 이 식은 x에 대한 이차방정식이죠. x에 대한 이차방정식의 해의 개수는 판별식을 이용해서 구할 수 있어요. 해의 개수와 교점의 개수가 같으니까 해의 개수를 구해보죠.

D > 0 ⇔ 서로 다른 두 실근 ⇔ 교점 2개 ⇔ 서로 다른 두 점에서 만난다.
D = 0 ⇔ 서로 같은 두 실근(중근) ⇔ 교점 1개 ⇔ 한 점에서 만난다. (접한다.)
D < 0 ⇔ 서로 다른 두 허근 ⇔ 교점 0개 ⇔ 만나지 않는다.

이차함수의 그래프와 직선 둘 다좌표평면 위에 있어서 실수 범위에서만 다루기니까 허근은 해로 인정하지 않아요. 그래서 D < 0이면 해가 0개고, 교점도 0개입니다.

이차함수의 그래프와 직선의 위치관계

위 내용을 표로 정리해 볼게요.

이차함수의 그래프와 직선의 위치관계
이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계
→ ax2 + (b - m)x + c - n = 0의 판별식 D 이용
판별식 D > 0 D = 0 D < 0
위치관계 서로 다른 두 점에서 만난다. 한 점에서 만난다. (접한다.) 만나지 않는다.
그래프 이차함수의 그래프와 직선의 위치관계 - 서로 다른 두 점에서 만난다. 이차함수의 그래프와 직선의 위치관계 - 한 점에서 만난다. (접한다.) 이차함수의 그래프와 직선의 위치관계 - 만나지 않는다.
교점의 개수 2개 1개 0개

표에서는 a > 0일 때의 그래프만 그렸는데, a < 0이면 그래프가 위로 볼록이니까 그림을 180° 뒤집으면 돼요.

이차함수 y = x2 + 3x - 3의 그래프와 접하고, 기울기가 1인 직선의 방정식을 구하여라.

기울기가 1이라고 했으니까 직선은 y = x + b가 되겠네요.

이차함수의 그래프와 직선의 위치관계에서는 판별식을 이용하는데, D > 0이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나고, D < 0이면 만나지 않아요.

이 직선이 y = x2 + 3x - 3의 그래프와 접한다고 했으니까 D를 이용해서 b를 구해보죠.

x2 + 3x - 3 = x + b
x2 + 2x - 3 - b = 0

D/4 = 12 - (-3 - b) = 0
1 + 3 + b = 0
b = -4

따라서 구하는 직선의 방정식은 y = x - 4가 되겠네요.

함께 보면 좋은 글

이차함수의 그래프와 이차방정식의 실근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
연립방정식 - 연립이차방정식의 풀이

정리해볼까요

이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계

  • ax2 + (b - m)x + c - n= 0의 판별식 D
  • D > 0 ⇔ 서로 다른 두 점에서 만난다.
  • D = 0 ⇔ 한 점에서 만난다.(접한다.)
  • D < 0 ⇔ 만나지 않는다.
<<    수학 1 목차    >>
 
그리드형

이차함수와 이차방정식은 참 많이 닮았어요. 그래서 이차함수의 그래프를 그리고 그 그래프를 통해서 이차방정식 실근의 개수를 알 수 있지요.

이 글에서는 이차함수의 그래프와 이차방정식 실근의 개수에는 어떤 관계가 있는지 알아볼 거예요. 이차함수 그래프를 간략하게 그릴 줄 알고 이차함수와 이차방정식의 간단한 관계만 알면 금방 이해할 수 있는 내용이에요.

이차함수의 그래프와 이차방정식의 실근

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프에서 그래프가 x축과 만나는 점이 있다고 해보죠. x축을 방정식으로 나타내면 y = 0이니까 교점에서의 x좌표를 구하려면 이차함수 식에 y = 0을 대입해서 구해요.

ax2 + bx + c = 0이라는 식이 되고 여기서 구한 x가 이차함수 그래프와 x축의 교점의 x좌표예요. 그런데 이 식의 모양은 어디서 많이 본 모양이죠? 바로 이차방정식이에요. 즉, 이차방정식의 해가 교점의 x좌표예요.

이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
    = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

교점의 x좌표와 해가 서로 같으니까 개수도 서로 같겠죠?

이차함수 y = ax2 + bx + c의 그래프와 x축과의 교점이 2개면 이차방정식 ax2 + bx + c = 0의 해도 두 개고, 교점이 하나면 해도 하나예요.

이차함수의 그래프와 x축과의 교점이 없으면 이차방정식의 해도 없어요. 좌표평면은 실수로만 이루어져 있으니까 정확히 말하면 실근이 없는 거죠. 수를 복소수까지 확장해보면 허근을 가져요.

이 얘기는 반대로도 할 수 있어요. 이차방정식 ax2 + bx + c = 0의 해가 서로 다른 두 실근이면 이차함수 y = ax2 + bx + c의 그래프와 x축이 서로 다른 두 점에서 만나고, 이차방정식의 해가 중근이면 이차함수의 그래프와 x축은 한 점에서 만나요.

이차방정식이 실근을 가지지 않으면(서로 다른 두 허근을 가지면) 이차함수의 그래프와 x축은 만나지 않아요.

이차방정식이 실근을 몇 개 가지는지는 이차방정식의 판별식을 통해서 알 수 있어요.

ax2 + bx + c = 0

D = b2 - 4ac

D > 0이면 서로 다른 두 실근 ⇔ 서로 다른 두 점에서 만난다.
D = 0이면 서로 같은 두 실근(중근) ⇔ 한 점에서 만난다. (접한다.)
D < 0이면 서로 다른 두 허근(실근 없음) ⇔ 만나지 않는다.

이 내용을 표로 정리해보죠. 그래프의 모양을 잘 보세요.

이차함수의 그래프와 이차방정식의 실근

D > 0 D = 0 D < 0
y = ax2 + bx + c의 그래프 x축과 두 점에서 만난다. x축과 한 점에서 만난다. (접한다.) x축과 만나지 않는다.
a > 0일 때
a < 0일 때
ax2 + bx + c = 0 (a ≠ 0)의 해 서로 다른 두 실근 중근 서로 다른 두 허근
이차함수 ax2 + bx + c (a ≠ 0)와 x축의 교점의 x좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

이차함수의 그래프에서 이차항의 계수인 a의 부호에 따라 그래프의 볼록한 방향이 달라지는 걸 볼 수 있어요. 판별식의 부호와 a의 부호에 따라 그래프를 그릴 수 있어야 하고, 해의 개수도 알아내야 해요.

이차함수 y = x2 + 2x + k + 2의 그래프가 x축과 서로 다른 두 점에서 만나도록 하는 실수 k의 범위를 구하여라.

이차방정식 x2 + 2x + k + 2 = 0에서 D > 0 이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나요. D < 0이면 만나지 않죠.

D = 22 - 4 × 1 × (k + 2) > 0
4 - 4k - 8 > 0
4k < -4
k < -1

k < -1이면 서로 다른 두 점에서 만나네요.

함께 보면 좋은 글

이차함수의 그래프와 직선의 위치관계
이차방정식의 판별식, 실근, 허근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소

정리해볼까요

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 이차방정식의 실근

  • 이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 x축의 교점 = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 실근
  • D > 0 ⇔ 서로 다른 두 점에서 만난다. ⇔ 서로 다른 두 실근
  • D = 0 ⇔ 한 점에서 만난다.(접한다.) ⇔ 중근
  • D < 0 ⇔ 만나지 않는다. ⇔ 서로 다른 두 허근
 
그리드형

x축도 직선이죠? 이차함수의 그래프와 직선의 위치관계를 이용하여 이차함수의 그래프와 x축의 위치관계를 알아볼 거예요. 이 둘 사이의 위치관계를 통해서 이차방정식의 근의 개수를 파악할 수 있어요. 결국, 이차함수의 그래프와 이차방정식의 실근이 어떤 관계가 있는지 확인할 수 있죠.

이차함수의 그래프와 x축의 모습을 간략하게 그릴 수 있으면 이차함수의 그래프와 이차방정식의 실근 사이의 관계를 이해하는 데 훨씬 도움이 돼요.

이차함수의 그래프와 x축의 위치관계

이차함수의 그래프와 직선의 위치관계에서 이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 y = mx + n 사이의 위치관계를 구해봤어요. ax2 + bx + c = mx + n에서 판별식 D를 구해서 관계를 구했죠.

이번에는 이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 x축 사이의 관계를 알아볼 거예요. x축은 직선의 방정식으로 나타내면 y = 0이죠. x축도 직선이니까 같은 방법을 이용하여 판별식 D를 구해보죠.

ax2 + bx + c = 0

D = b2 - 4ac

D > 0이면 서로 다른 두 점에서 만나요.
D = 0이면 한 점에서 만나죠. (접한다.)
D < 0이면 만나지 않아요.

여기까지는 쉬워요.

그런데 식을 다시 한 번 보세요. ax2 + bx + c = 0은 어떤 모양인가요? 바로 이차방정식의 일반형이죠? 그러니까 이차함수의 그래프와 x축의 관계는 이차방정식으로 나타낼 수 있는 거예요. x축과의 교점이 바로 이차방정식의 해가 되는 겁니다.

D > 0이어서 서로 다른 두 점에서 만나면 해가 2개가 되는 거고, D = 0으로 한 점에서 만나면 해가 하나인 경우예요. 이차방정식의 해가 1개인 경우는 중근일 때죠. D < 0이어서 만나지 않을 때는 해가 없어요. 실수범위에서만 구하기 때문에 해가 없는 거고 복소수까지 생각한다면 D < 0일 때의 해는 서로 다른 두 허근이에요.

이건 이차방정식의 판별식, 실근, 허근에서 했던 내용이지요.

D > 0일 때와 D = 0일 때 실근을 갖는데, 이 실근은 이차함수의 그래프와 x축의 교점의 x좌표에요.

이 내용을 표로 정리해보죠. 그래프의 모양을 잘 보세요.

이차함수의 그래프와 x축과의 위치관계
D > 0 D = 0 D < 0
y = ax2 + bx + c의 그래프 x축과 두 점에서 만난다. x축과 한 점에서 만난다. (접한다.) x축과 만나지 않는다.
a > 0일 때
a < 0일 때
ax2 + bx + c = 0 (a ≠ 0)의 해 서로 다른 두 실근 중근 서로 다른 두 허근
이차함수 ax2 + bx + c (a ≠ 0)와 x축의 교점의 x좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

이차항의 계수인 a의 부호에 따라 그래프의 볼록한 방향이 달라지는 걸 볼 수 있어요. 판별식의 부호와 a의 부호에 따라 그래프를 그릴 수 있어야 하고, 해의 개수도 알아내야 해요.

이차함수 y = x2 + (k + 1)x + k + 1의 그래프가 x축과 서로 다른 두 점에서 만나도록 하는 실수 k의 범위를 구하여라.

이차방정식 x2 + (k + 1)x + k + 1 = 0에서 D > 0 이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나요. D < 0이면 만나지 않죠.

D = (k + 1)2 - 4 × 1 × (k + 1) > 0
k2 + 2k + 1 - 4k - 4 > 0
k2 - 2k - 3 > 0
(k + 1)(k - 3) > 0

k < -1 or k > 3

함께 보면 좋은 글

이차함수의 그래프와 직선의 위치관계
이차방정식의 판별식, 실근, 허근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소

정리해볼까요

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 이차방정식의 실근

  • 이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 x축의 교점 = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 실근
  • D > 0 ⇔ 서로 다른 두 점에서 만난다. ⇔ 서로 다른 두 실근
  • D = 0 ⇔ 한 점에서 만난다.(접한다.) ⇔ 중근
  • D < 0 ⇔ 만나지 않는다. ⇔ 서로 다른 두 허근
 
그리드형

삼차방정식 중에서 특이한 형태의 삼차방정식 하나를 더 공부할 거예요. x3 = 1인데요. 그냥 보면 x = 1이라는 실근이 하나보이죠? x = 1 말고 허근이 더 있는데, 이 허근을 오메가(ω)라고 해요. 그런데 이 ω가 재밌는 성질이 있어요. 그래서 이 글에서는 오메가의 성질에 대해서 알아볼 거예요.

오메가 (ω)의 성질을 외울 수 있으면 외우면 좋아요. 너무 헷갈려서 외우기 어렵다면 성질을 유도할 수 있어야 해요. ω2이 정확하게 무슨 값인지는 몰라도 "ω2이 특정한 값을 갖고 있다"는 사실은 기억하고 있어야 한다는 얘기죠. 성질의 정확한 값을 모르더라도 성질이 있다없다 정도만 기억하고 있다가 문제에 맞게 유도할 수 있을 정도는 되어야 합니다.

x3 = 1 허근 오메가(ω)의 성질

삼차방정식 x3 = 1의 해를 구해보죠.

x3 = 1
x3 - 1 = 0
(x - 1)(x2 + x + 1) = 0
x = 1 or 삼차방정식의 허근 오메가

인수분해 공식 a3 - b3 = (a - b)(a2 + ab + b2)을 이용해서 인수분해 했고, 근의 공식을 이용해서 근을 구했어요.

허근 삼차방정식의 허근 오메가를 볼까요? 삼차방정식의 허근 오메가 1 = ω (오메가)라고 한다면 켤레근을 삼차방정식의 허근 오메가 2 = 삼차방정식의 허근의 성질 - 오메가 바 (오메가 바)라고 할 수 있죠?

일단 ω와 삼차방정식의 허근의 성질 - 오메가 바는 x3 = 1의 근이니까 ω3 = 1, 삼차방정식의 허근 오메가 바의 세제곱 = 1이에요.

또, x2 + x + 1의 두 근이기도 하므로 ω2 + ω + 1 = 0, 삼차방정식 허근의 성질이에요. 이차방정식의 근과 계수와의 관계에 의해서 두 근의 합과 곱도 구할 수 있어요. 삼차방정식 허근의 성질 - 두 허근의 합과 곱

삼차방정식 허근의 성질 - 두 허근의 곱이라는 얘기는 ω와 삼차방정식의 허근의 성질 - 오메가 바가 서로에게 곱셈에 대한 역원 즉, 역수라는 얘기예요. 삼차방정식 허근의 성질 - 두 허근은 서로 역수 1, 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2

또 위 성질들을 합쳐서 다음 성질도 유도해 낼 수 있어요.

삼차방정식 허근의 성질 유도 - 오메가 제곱 = 오메가 바

x3 = 1의 허근 ω의 성질
x3 = 1의 한 허근 ω 켤레근 삼차방정식의 허근의 성질 - 오메가 바
ω3 = 1 삼차방정식의 허근 오메가 바의 세제곱 = 1
ω2 + ω + 1 = 0 삼차방정식 허근의 성질
삼차방정식 허근의 성질 - 두 허근의 합과 곱
삼차방정식 허근의 성질 - 두 허근은 서로 역수 1 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
삼차방정식 허근의 성질 - 오메가 제곱 = 오메가 바 삼차방정식 허근의 성질 - 오메가 바의 제곱 = 오메가

x3 = 1의 한 허근을 ω라고 할 때 다음을 구하여라.
(1) ω2013 + ω2014 + ω2015 + … + ω2019
(2) 삼차방정식 허근의 성질 예제

x3 = 1
x3 - 1 =0
(x - 1)(x2 + x + 1) = 0
ω3 = 1, ω2 + ω + 1 = 0, 삼차방정식 허근의 성질 - 두 허근의 합과 곱 등 많은 성질이 있어요.

(1) ω2013 + ω2014 + ω2015 + … + ω2019
= ω2013(1 + ω + ω2) + ω2016(1 + ω + ω2) + ω2019
= (ω3)671(1 + ω + ω2) + (ω3)672(1 + ω + ω2) + (ω3)673
= 1 × 0 + 1 × 0 + 1           (∵ ω3 = 1, ω2 + ω + 1 = 0)
= 1

삼차방정식 허근의 성질 예제 풀이

x3 = -1 허근 오메가(ω)의 성질

삼차방정식 x3 = -1에서도 비슷한 성질을 알 수 있어요. 둘을 헷갈리지 마세요.

x3 = -1
x3 + 1 = 0
(x + 1)(x2 - x + 1) = 0
x = -1 or 삼차방정식 허근 - 근의 공식

한 허근삼차방정식의 허근 - 오메가 = ω, 켤레근 삼차방정식의 허근 - 오메가 바 = 삼차방정식의 허근의 성질 - 오메가 바라고 해보죠.

x3 = 1에서와 같은 방법을 이용하면 아래의 성질을 유도할 수 있어요.

x3 = -1의 허근 ω의 성질
x3 = -1의 한 허근 ω 켤레근 삼차방정식의 허근의 성질 - 오메가 바
ω3 = -1 삼차방정식의 허근 오메가 바의 세제곱 = -1
ω2 - ω + 1 = 0 삼차방정식 허근의 성질 2
삼차방정식 허근의 성질 2- 허근의 합과 곱
삼차방정식 허근의 성질 - 두 허근은 서로 역수 1 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
삼차방정식 허근의 성질 2 - 오메가의 제곱 = -오메가 바 삼차방정식 허근의 성질 2 - 오메가 바의 제곱 = -오메가

함께 보면 좋은 글

삼차방정식 근과 계수와의 관계
이차방정식의 켤레근
이차방정식의 근과 계수와의 관계
인수분해, 인수분해 공식
항등원과 역원, 연산법칙

정리해볼까요

x3 = 1의 허근의 성질

  • x3 = 1의 한 허근을 ω라고 할 때, 켤레근 삼차방정식의 허근의 성질 - 오메가 바
  • ω3 = 1, 삼차방정식의 허근 오메가 바의 세제곱 = 1
  • ω2 + ω + 1 = 0, 삼차방정식 허근의 성질
  • 삼차방정식 허근의 성질 - 두 허근의 합과 곱
  • 삼차방정식 허근의 성질 - 두 허근은 서로 역수 1, 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
  • 삼차방정식 허근의 성질 - 오메가 제곱 = 오메가 바, 삼차방정식 허근의 성질 - 오메가 바의 제곱 = 오메가
<<  수학 1 목차  >>
 
그리드형

이차방정식은 두 개의 근을 가져요. 근을 구하면 근의 부호를 알 수 있어요. 하지만 부호만 알고 싶을 때는 근을 구하지 않고 이차방정식의 판별식과 근과 계수와의 관계를 이용하면 근들의 부호를 알 수 있어요.

근 하나하나의 부호를 정확하게 알 수는 없지만 둘의 부호가 같다 다르다 정도는 알 수 있죠. 또 둘의 부호가 같을 때에는 둘 다 양수인지 음수인지도 알 수 있고요.

이차방정식의 판별식과 근과 계수와의 관계를 이용해서 이차방정식 실근의 부호를 판별하는 방법을 알아보죠.

이차방정식 실근의 부호

복소수에는 대소관계나 부호가 없어서 허근이면 부호를 판별할 수 없어요. 실수는 부호가 있어서 실근일 때만 부호를 판별해요. 따라서 근의 부호를 판별할 때는 실근이라는 조건을 만족해야 해요.

이차방정식의 판별식, 실근, 허근에서 이차방정식이 실근을 가지려면 D ≥ 0이어야 한다고 했어요.

이차방정식 ax2 + bx + c = 0의 두 근을 α, β라고 할 때 두 근의 부호를 판별하려면 실근을 갖도록 D = b2 - 4ac ≥ 0이어야 해요.

이차방정식 실근의 부호를 판별할 때는 두 근의 합과 두 근의 곱을 이용해요.

두 근 α, β가 둘 다 양수면 어떨까요? 두 근의 합 α + β > 0이겠죠? 두 근의 곱 αβ > 0일 거예요.

반대로, 두 근 α, β가 둘 다 음수면 어떨까요? 두 근의 합 α + β < 0이고, 두 근의 곱 αβ > 0이죠.

만약에 두 근 α, β의 부호가 서로 반대면 어떨까요? 하나는 양수, 하나는 음수라면 말이죠. 일단 두 근의 합은 α, β의 절댓값에 따라 달라질 수 있어요. 양수인 근의 절댓값이 크면 합은 양수, 음수인 근의 절댓값이 크면 합은 음수예요. 근을 모르는 상태에서는 두 근의 합의 부호를 알 수가 없어요.

양수와 음수를 곱하니까 두 근의 곱 αβ < 0이에요. 이차방정식의 근과 계수와의 관계에 의해 αβ = 이차방정식의 근과 계수와의 관계 - 두 근의 곱이죠.
αβ < 0
이차방정식의 근과 계수와의 관계 - 두 근의 곱 < 0
ac < 0
-4ac > 0
b2 - 4ac > b2

b2 은 실수의 제곱으로 0보다 크거나 같으니까 D = b2 - 4ac > 0이에요. αβ < 0이면 항상 D > 0이므로 D ≥ 0인지 굳이 확인할 필요가 없어요.

두 근이 부호가 반대일 때는 D ≥ 0은 확인할 필요가 없고 α + β의 부호는 알 수 없으니 αβ < 0인지만 확인하면 되는 거죠.

이차방정식 실근의 부호
ax2 + bx + c = 0(a, b, c는 실수, a ≠ 0)의 두 근을 α, β라고 할 때
두 근이 모두 양수: D ≥ 0, α + β > 0, αβ > 0
두 근이 모두 음수: D ≥ 0, α + β < 0, αβ > 0
두 근의 부호가 반대: αβ < 0

이차방정식 x2 + 5x + 4 = 0의 근을 α, β라고 할 때 α, β의 부호를 판별하여라.

근의 부호를 판별하려면 판별식 D, 두 근의 합 α + β, 두 근의 곱 αβ의 부호를 알아봐야 해요.

D = 52 - 4 × 1 × 4 = 25 - 16 = 9 > 0이므로 서로 다른 실근 두 개를 갖는군요. 부호를 판별할 수 있어요..

이차방정식에서 두 근의 합과 곱의 부호를 알려면 이차방정식의 근과 계수와의 관계를 이용해요.

α + β = -5 < 0이므로 둘 다 음수일 수도 있어요. 또 부호가 반대고 음수인 근의 절댓값이 큰 경우일 수도 있지요.

αβ = 4 > 0이므로 두 근의 부호가 같네요.

결국 이차방정식의 두 근 α, β는 둘 다 음수입니다

실제로 이차방정식의 근은 -1, -4로 둘 다 음수예요.

이차방정식 x2 - 4x + (k - 3) = 0의 두 근이 모두 양수가 되도록 하는 k의 범위를 구하여라.

이차방정식의 두 근을 α, β라고 할 때 두 근이 모두 양수이려면 D ≥ 0, α + β > 0, αβ > 0이어야 해요.

이차항의 계수가 짝수니까 D/4를 이용해보죠.
D/4 = (-2)2 - 1 × (k - 3) ≥ 0
4 - k + 3 ≥ 0
k ≤ 7

α + β = 4 > 0이네요. k가 들어있지 않으니까 문제와 직접적인 관계는 없어요.

αβ = k - 3 > 0
k > 3

k ≤ 7과 k > 3을 동시에 만족해야 하므로 3 < k ≤ 7입니다.

함께 보면 좋은 글

이차방정식의 판별식, 실근, 허근
이차방정식의 근과 계수와의 관계
이차방정식 실근의 위치
복소수, 허수와 허수단위

정리해볼까요

이차방정식 ax2 + bx + c = 0(a, b, c는 실수, a ≠ 0)의 두 근을 α, β라고 할 때

  • 두 근이 모두 양수: D ≥ 0, α + β > 0, αβ > 0
  • 두 근이 모두 음수: D > 0, α + β < 0, αβ > 0
  • 두 근의 부호가 반대: αβ < 0
<<  수학 1 목차  >>
 
그리드형

이차방정식의 근은 인수분해를 하거나 근의 공식을 이용해서 구할 수 있어요. 근의 공식을 이용해서 구한 근이 실수인지 허수인지에 따라서 부르는 이름이 달라져요. 실근허근이라는 표현을 언제 사용하는지 알아보죠.

이차방정식 ax2 + bx + c = 0 (a, b, c는 상수 a ≠ 0)에서 b2 - 4ac를 이차방정식의 판별식이라고 하고 D라고 써요. 이차방정식의 판별식을 이용해서 근의 개수를 알 수 있었죠.

이 글에서는 이차방정식의 판별식을 이용해서 근의 개수뿐 아니라 근의 종류를 알아볼 거예요. D > 0, D = 0일 때는 이차방정식 근의 개수, 판별식 이용과 똑같으니까 D < 0일 때를 주목해서 보세요.

이차방정식의 실근, 중근, 허근

이차방정식 x2 + 3x + 2 = 0의 해를 구해보죠.

x2 + 3x + 2 = 0
(x + 1)(x + 2) = 0
x = -1 or -2

두 개의 근을 구했어요. 두 수는 모두 실수죠? 실수인 근이니까 실근이라고 해요.

x2 + 4x + 4 = 0
(x + 2)2 = 0
x = -2

완전제곱식일 때는 근이 두 개인데, 두 개가 같아서 중근이라고 하지요?

이번에는 이차방정식 x2 + x + 1 = 0의 두 근을 구해보죠. 인수분해가 안 되니까 근의 공식으로 해를 구해야 해요.

ax2 + bx + c = 0 (a, b, c는 상수, a ≠ 0)
근의 공식

허근

근호 안이 -3이어서 허수단위 i를 이용해서 표현해봤어요. 근이 허수에요. 허수인 근이니까 허근이라고 합니다.

이차방정식의 판별식

중3 때, 이차방정식 근의 개수, 판별식 이용에서 판별식을 이용해서 근의 개수를 구할 수 있었어요.

ax2 + bx + c = 0 (a, b, c는 상수, a ≠ 0)의 판별식
D = b2 - 4ac

판별식 D > 0이면 두 개의 근, D = 0이면 중근, D < 0이면 근이 없다고 했지요.

이차방정식 ax2 + bx + c = 0 (a, b, c는 상수 a ≠ 0)의 근은 근의 공식에요.

전에는 실수 체계에 대해서만 알고 있어서 D < 0이면 제곱근 안이 음수니까 D < 0일 때는 근이 없다고 공부했던 거예요. 복소수 체계에서는 제곱근 안이 0보다 작은 걸 허수라고 하죠. 따라서 D < 0일 때는 허수가 근이라는 걸 알 수 있어요.

D < 0이면 서로 다른 두 허근 의 두 근을 갖는데, 제곱근 안이 0보다 작은 허근이지요. 분자의 가운데가 하나는 (+), 다른 하나는 (-)로 두 허근은 서로 달라요.

D > 0일 때는 두 개의 근을 갖는데, 이들은 모두 실수에요. 제곱근 안이 양수로 무리수니까요.

D = 0일 때는 중근을 갖는데 이것 역시 실수죠.

서로 다른 두 허근

이처럼 판별식 D를 이용해서 근의 개수와 근의 종류를 알 수 있어요.

이차방정식의 판별식과 근
판별식 근의 개수
b2 - 4ac > 0 서로 다른 두 실근
b2 - 4ac = 0 서로 같은 두 실근(중근)
b2 - 4ac < 0 서로 다른 두 허근

문제를 풀 때, 실근인지 허근인지 두 근이 서로 같은지 다른지를 잘 구별해야 해요.

복소수 단원을 제외한 문제에서 특별한 언급이 없으면 답을 실수범위에서만 구했는데, 방정식에서는 특별한 언급이 없는 한 허근까지도 구해야 합니다.

x2 + 3x - 4 + k = 0가 실근을 가질 때, k 값의 범위를 구하여라.

실근을 갖는다는 얘기는 D > 0이어서 서로 다른 두 실근을 가질 수도 있지만, D = 0으로 중근을 가질 수도 있어요. 따라서 D ≥ 0이어야 해요.

b2 - 4ac ≥ 0
32 - 4 × 1 × (-4 + k) ≥ 0
9 + 16 - 4k ≥ 0
4k ≤ 25
이차방정식의 판별식 예제 풀이

함께 보면 좋은 글

[중등수학/중3 수학] - 근의 공식, 근의 공식 유도, 짝수 공식
[중등수학/중3 수학] - 이차방정식 근의 개수, 판별식 이용
복소수, 허수와 허수단위
삼차방정식의 허근 ω 오메가의 성질
이차함수의 그래프와 이차방정식의 실근

정리해볼까요

ax2 + bx + c = 0 (a, b, c 는 상수 a ≠ 0)의 판별식 D = b2 - 4ac

  • b2 - 4ac > 0        서로 다른 두 실근
  • b2 - 4ac = 0        서로 같은 두 실근(중근)
  • b2 - 4ac < 0        서로 다른 두 허근
<<  수학 1 목차  >>
 
그리드형

+ 최근글