이차함수의 그래프

보통 도형에서의 위치관계는 수직, 평행 등을 묻는데 이차함수의 그래프와 직선의 위치관계는 그런 게 아니에요. 교점이 몇 개 생기느냐를 말하죠. 앞서 했던 이차함수의 그래프와 이차방정식의 실근의 내용과 비슷하니까 별로 어렵지는 않을 거예요. 거의 한 쌍둥이라고 할 수 있어요.

이차함수 그래프의 대략적인 모습과 직선을 그리면 조금 더 쉽게 이해할 수 있으니까 그림도 함께 외우세요.

이차함수의 그래프와 직선의 위치관계

이차함수의 그래프와 직선의 위치관계는 이차함수의 그래프와 이차방정식의 실근에서 했던 내용을 살짝만 바꾸면 돼요.

이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
    = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

중학교 2학년 때 직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식에 대해서 잠깐 공부한 적이 있어요. x축은 식으로 나타내면 y = 0이라는 직선의 방정식으로 나타낼 수 있죠? x축도 직선이니까 이걸 확장하면 이차함수의 그래프와 직선의 위치관계를 구할 수 있는 거죠.

이차함수 y = ax2 + bx + c (a ≠ 0)와 x축이 몇 개의 교점을 가지느냐를 알아볼 때 어떻게 했나요? x축이 y = 0이니까 이걸 이차함수 식에 대입해서 이차방정식을 만들고, 판별식 D의 부호를 구했죠? D > 0이면 교점이 2개, D = 0이면 교점이 1개, D < 0이면 교점이 0개예요.

이차함수 y = ax2 + bx + c (a ≠ 0)와 직선 y = mx + n 사이의 관계를 구할 때도 똑같아요. 직선 y = mx + n를 이차함수 y = ax2 + bx + c에 대입해서 이차방정식을 만들고, 판별식의 부호를 구하면 교점의 개수를 알 수 있어요.

ax2 + bx + c = mx + n
ax2 + (b - m)x + c - n = 0

위와 같은 식을 얻을 수 있는데, 이 식은 x에 대한 이차방정식이죠. x에 대한 이차방정식의 해의 개수는 판별식을 이용해서 구할 수 있어요. 해의 개수와 교점의 개수가 같으니까 해의 개수를 구해보죠.

D > 0 ⇔ 서로 다른 두 실근 ⇔ 교점 2개 ⇔ 서로 다른 두 점에서 만난다.
D = 0 ⇔ 서로 같은 두 실근(중근) ⇔ 교점 1개 ⇔ 한 점에서 만난다. (접한다.)
D < 0 ⇔ 서로 다른 두 허근 ⇔ 교점 0개 ⇔ 만나지 않는다.

이차함수의 그래프와 직선 둘 다좌표평면 위에 있어서 실수 범위에서만 다루기니까 허근은 해로 인정하지 않아요. 그래서 D < 0이면 해가 0개고, 교점도 0개입니다.

이차함수의 그래프와 직선의 위치관계

위 내용을 표로 정리해 볼게요.

이차함수의 그래프와 직선의 위치관계
이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계
→ ax2 + (b - m)x + c - n = 0의 판별식 D 이용
판별식 D > 0 D = 0 D < 0
위치관계 서로 다른 두 점에서 만난다. 한 점에서 만난다. (접한다.) 만나지 않는다.
그래프 이차함수의 그래프와 직선의 위치관계 - 서로 다른 두 점에서 만난다. 이차함수의 그래프와 직선의 위치관계 - 한 점에서 만난다. (접한다.) 이차함수의 그래프와 직선의 위치관계 - 만나지 않는다.
교점의 개수 2개 1개 0개

표에서는 a > 0일 때의 그래프만 그렸는데, a < 0이면 그래프가 위로 볼록이니까 그림을 180° 뒤집으면 돼요.

이차함수 y = x2 + 3x - 3의 그래프와 접하고, 기울기가 1인 직선의 방정식을 구하여라.

기울기가 1이라고 했으니까 직선은 y = x + b가 되겠네요.

이차함수의 그래프와 직선의 위치관계에서는 판별식을 이용하는데, D > 0이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나고, D < 0이면 만나지 않아요.

이 직선이 y = x2 + 3x - 3의 그래프와 접한다고 했으니까 D를 이용해서 b를 구해보죠.

x2 + 3x - 3 = x + b
x2 + 2x - 3 - b = 0

D/4 = 12 - (-3 - b) = 0
1 + 3 + b = 0
b = -4

따라서 구하는 직선의 방정식은 y = x - 4가 되겠네요.

함께 보면 좋은 글

이차함수의 그래프와 이차방정식의 실근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
연립방정식 - 연립이차방정식의 풀이

정리해볼까요

이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계

  • ax2 + (b - m)x + c - n= 0의 판별식 D
  • D > 0 ⇔ 서로 다른 두 점에서 만난다.
  • D = 0 ⇔ 한 점에서 만난다.(접한다.)
  • D < 0 ⇔ 만나지 않는다.
<<    수학 1 목차    >>
 
그리드형

이차함수와 이차방정식은 참 많이 닮았어요. 그래서 이차함수의 그래프를 그리고 그 그래프를 통해서 이차방정식 실근의 개수를 알 수 있지요.

이 글에서는 이차함수의 그래프와 이차방정식 실근의 개수에는 어떤 관계가 있는지 알아볼 거예요. 이차함수 그래프를 간략하게 그릴 줄 알고 이차함수와 이차방정식의 간단한 관계만 알면 금방 이해할 수 있는 내용이에요.

이차함수의 그래프와 이차방정식의 실근

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프에서 그래프가 x축과 만나는 점이 있다고 해보죠. x축을 방정식으로 나타내면 y = 0이니까 교점에서의 x좌표를 구하려면 이차함수 식에 y = 0을 대입해서 구해요.

ax2 + bx + c = 0이라는 식이 되고 여기서 구한 x가 이차함수 그래프와 x축의 교점의 x좌표예요. 그런데 이 식의 모양은 어디서 많이 본 모양이죠? 바로 이차방정식이에요. 즉, 이차방정식의 해가 교점의 x좌표예요.

이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
    = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

교점의 x좌표와 해가 서로 같으니까 개수도 서로 같겠죠?

이차함수 y = ax2 + bx + c의 그래프와 x축과의 교점이 2개면 이차방정식 ax2 + bx + c = 0의 해도 두 개고, 교점이 하나면 해도 하나예요.

이차함수의 그래프와 x축과의 교점이 없으면 이차방정식의 해도 없어요. 좌표평면은 실수로만 이루어져 있으니까 정확히 말하면 실근이 없는 거죠. 수를 복소수까지 확장해보면 허근을 가져요.

이 얘기는 반대로도 할 수 있어요. 이차방정식 ax2 + bx + c = 0의 해가 서로 다른 두 실근이면 이차함수 y = ax2 + bx + c의 그래프와 x축이 서로 다른 두 점에서 만나고, 이차방정식의 해가 중근이면 이차함수의 그래프와 x축은 한 점에서 만나요.

이차방정식이 실근을 가지지 않으면(서로 다른 두 허근을 가지면) 이차함수의 그래프와 x축은 만나지 않아요.

이차방정식이 실근을 몇 개 가지는지는 이차방정식의 판별식을 통해서 알 수 있어요.

ax2 + bx + c = 0

D = b2 - 4ac

D > 0이면 서로 다른 두 실근 ⇔ 서로 다른 두 점에서 만난다.
D = 0이면 서로 같은 두 실근(중근) ⇔ 한 점에서 만난다. (접한다.)
D < 0이면 서로 다른 두 허근(실근 없음) ⇔ 만나지 않는다.

이 내용을 표로 정리해보죠. 그래프의 모양을 잘 보세요.

이차함수의 그래프와 이차방정식의 실근

D > 0 D = 0 D < 0
y = ax2 + bx + c의 그래프 x축과 두 점에서 만난다. x축과 한 점에서 만난다. (접한다.) x축과 만나지 않는다.
a > 0일 때
a < 0일 때
ax2 + bx + c = 0 (a ≠ 0)의 해 서로 다른 두 실근 중근 서로 다른 두 허근
이차함수 ax2 + bx + c (a ≠ 0)와 x축의 교점의 x좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해

이차함수의 그래프에서 이차항의 계수인 a의 부호에 따라 그래프의 볼록한 방향이 달라지는 걸 볼 수 있어요. 판별식의 부호와 a의 부호에 따라 그래프를 그릴 수 있어야 하고, 해의 개수도 알아내야 해요.

이차함수 y = x2 + 2x + k + 2의 그래프가 x축과 서로 다른 두 점에서 만나도록 하는 실수 k의 범위를 구하여라.

이차방정식 x2 + 2x + k + 2 = 0에서 D > 0 이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나요. D < 0이면 만나지 않죠.

D = 22 - 4 × 1 × (k + 2) > 0
4 - 4k - 8 > 0
4k < -4
k < -1

k < -1이면 서로 다른 두 점에서 만나네요.

함께 보면 좋은 글

이차함수의 그래프와 직선의 위치관계
이차방정식의 판별식, 실근, 허근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소

정리해볼까요

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 이차방정식의 실근

  • 이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프와 x축의 교점 = 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 실근
  • D > 0 ⇔ 서로 다른 두 점에서 만난다. ⇔ 서로 다른 두 실근
  • D = 0 ⇔ 한 점에서 만난다.(접한다.) ⇔ 중근
  • D < 0 ⇔ 만나지 않는다. ⇔ 서로 다른 두 허근
 
그리드형

이차함수의 그래프와 이차부등식의 관계예요. 이차함수의 그래프를 이용하여 이차부등식의 해를 구하는 과정입니다. 이차함수의 그래프와 판별식을 이용해서 이차부등식의 해를 구하는 것으로 결론은 기존에 알고 있던 이차부등식의 해를 구하는 방법과 같으니까 별로 어렵지는 않을 거예요. 이글을 보고 나면 이차부등식의 풀이, 판별식과 이차부등식의 해에서 했던 내용이 훨씬 깔끔하게 정리가 될 거예요.

이차함수, 이차방정식, 이차부등식의 관계를 파악해보고 이들이 좌표평면 위의 그래프에서 어떤 위치를 갖는지도 잘 이해해보세요.

이차함수의 그래프와 이차부등식의 해

이차함수 y = ax2 + bx + c (a ≠ 0)의 그래프를 이용하여 이차부등식 ax2 + bx + c > 0의 해를 구하는 방법이에요. 사실 굳이 그래프를 그리지 않고도 해를 구할 수 있는데, 그래프를 그리면 좀 더 확실히 이해할 수 있죠.

여기서는 a > 0일 때만 살펴보죠. a < 0이면 양변에 (-1)을 곱해서 a > 0으로 바꿔서 생각하면 되니까요.

a > 0이면 이차함수의 그래프는 아래로 볼록이에요. 판별식 D에 따라 x축과의 교점의 개수가 달라지죠. 이차함수의 그래프와 이차방정식의 실근에서는 교점의 x좌표가 이차방정식의 해였고, 교점의 개수는 해의 개수라고 했어요.

이차부등식에서는 교점의 x좌표가 해를 구하는 경곗값이에요.

표의 그래프를 잘 보세요.

D > 0일 때, y = ax2 + bx + c의 그래프는 x축과 두 점 α, β에서 만나요. x = α일 때와 x = β일 때, ax2 + bx + c = 0이 되어 그래프는 x축과 만나죠. 이차부등식 ax2 + bx + c > 0의 좌변은 0보다 크니까 그래프에서 x축(y = 0)보다 위에 있는 구간을 찾아야 해요. x축보다 위에 있는 구간은 x < α일 때와 x > β일 때에요. 따라서 ax2 + bx + c > 0의 해는 x < α or x > β입니다.

D = 0일 때 그래프는 x축과 한 점에서 만나요. 이 점을 α라고 해보죠. ax2 + bx + c > 0은 x축보다 위에 있는 구간을 해로 갖는데, x축과 만나는 한 점 x = α를 빼고는 모두 x축보다 위에 있어요. 따라서 해는 x ≠ α인 모든 실수예요.

D < 0일 때 그래프는 x축과 만나지 않아요. 따라서 모든 구간에서 그래프가 x축보다 위에 있으니까 해는 모든 실수예요.

ax2 + bx + c < 0의 해는 x축보다 아래에 있는 구간을 찾으면 되겠죠? D > 0일 때는 α < x < β, D = 0일 때와 D < 0일 때는 해가 없어요.

이차방정식에서는 복소수에서 해를 구했으니까 허근을 근으로 봤지만, 이차부등식에서는 실수 범위에서만 해를 구해요.

이차함수의 그래프와 이차부등식의 해 (a > 0, α ≤ β)
D > 0 D = 0 D < 0
y = ax2 + bx + c의 그래프
ax2 + bx + c = 0의 해 x = α or x = β
서로 다른 두 실근
x = α
중근
실수인 해는 없다.
서로 다른 두 허근
ax2 + bx + c > 0 x < α or x > β x ≠ α인 모든 실수 모든 실수
ax2 + bx + c ≥ 0 x ≤ α or x ≥ β 모든 실수 모든 실수
ax2 + bx + c < 0 α < x < β 해는 없다. 해는 없다.
ax2 + bx + c ≤ 0 α ≤ x ≤ β x = α 해는 없다.

이 내용은 이차부등식의 풀이, 판별식과 이차부등식의 해에서 했던 내용과 같아요. 그때는 식을 이용해서 해를 구했다면 이번에는 이차함수의 그래프를 이용해서 해를 구했다는 차이가 있을 뿐이죠.

이차부등식의 해를 구하는 게 생각나지 않을 때는 이차함수의 그래프를 그리고 x축과의 관계를 보고 해를 구할 수 있어요.

이차부등식 x2 + (k + 1) x + 4 > 0의 해가 모든 실수일 때 실수 k의 범위를 구하여라.

x2 + (k + 1)x + 4 >0 0의 해가 모든 실수라는 말은 항상 성립한다는 얘기예요.

문제에서 이차부등식의 부등호에 등호가 포함되어 있지 않고 최고차항이 양수이므로 아래로 볼록이에요. 이런 꼴의 이차부등식이 모든 실수를 해로 가지려면 그래프가 x축보다 항상 위에 있는 경우로 위 표에서 제일 오른쪽 그림이 되겠죠. 따라서 D < 0이어야 합니다.

(k + 1)2 - 4 × 1 × 4 < 0
k2 + 2k + 1 - 16 < 0
k2 + 2k - 15 < 0
(k - 3)(k + 5) < 0

-5 < k < 3

함께 보면 좋은 글

이차부등식의 풀이, 판별식과 이차부등식의 해
이차부등식이 항상 성립할 조건
이차부등식, 이차부등식의 해
이차함수의 그래프와 직선의 위치관계
이차함수의 그래프와 이차방정식의 실근

정리해볼까요

이차함수 y = ax2 + bx + c (a > 0)의 그래프와 이차부등식의 해

  • 이차함수의 그래프와 x축과의 교점을 α, β (α ≤ β)
  • ax2 + bx + c > 0의 해
    • D > 0 ⇔ x < α or x > β
    • D = 0 ⇔ x ≠ α인 모든 실수
    • D < 0 ⇔ 해는 모든 실수
  • ax2 + bx + c < 0의 해
    • D > 0 ⇔ α < x < β
    • D = 0 ⇔ 해는 없다.
    • D < 0 ⇔ 해는 없다.
<<  수학2 목차  >>
 
그리드형

일차함수와 직선의 방정식의 관계에 대해서 알고 있죠? 이차함수도 방정식으로 바꿀 수 있어요. 이차함수의 그래프와 직선의 위치관계는 이차방정식과 일차방정식의 관계로 바꿀 수 있죠. 이 관계를 이용해서 둘의 위치관계를 구해요.

이런 방법은 원과 직선의 위치관계에서도 했던 방법이에요. 일차식을 이차식에 대입한 다음에 판별식을 이용하는 거죠. 원의 방정식이 이차함수로 바꿨다는 것만 다르고 나머지는 똑같으니까 별로 어렵지 않을 거예요.

그래프를 그리지 않고 식만 보고 이차함수의 그래프와 직선의 위치 관계를 파악할 수 있도록 해보세요.

이차함수의 그래프와 직선의 위치관계

이차함수의 그래프와 직선의 위치관계는 원과 직선의 위치관계에서 했던 방법을 그대로 가져다 쓰면 돼요.

이차함수 y = ax2 + bx + c는 ax2 + bx + c - y = 0이라는 식으로 바꿀 수 있고, 이건 x 관한 이차방정식이죠? y = mx + n은 mx + n - y = 0으로 바꿀 수 있고, 이건 일차방정식이에요. 이 둘을 연립하면 연립이차방정식의 풀이에 따라 해를 구할 수 있어요. 하지만 위치관계에서는 해가 중요한 게 아니고 해의 개수가 중요해요.

이차함수 y = ax2 + bx + c(a ≠ 0)와 직선 y = mx + n을 연립해서 푼 해가 바로 그래프에서의 교점이에요. 해가 2개이면 교점이 2개, 해가 하나이면 교점도 하나죠.

ax2 + bx + c = mx + n
ax2 + (b - m)x + c - n = 0

연립하면 위와 같은 식을 얻을 수 있는데, 이 식은 x에 대한 이차방정식이죠. x에 대한 이차방정식의 해의 개수는 판별식을 이용해서 구할 수 있어요. 해의 개수와 교점의 개수가 같으니까 해의 개수를 구해보죠.

이차함수의 그래프와 직선의 위치관계 - 판별식 D

D > 0 ⇔ 서로 다른 두 실근 ⇔ 해가 2개 ⇔ 교점 2개 ⇔ 서로 다른 두 점에서 만난다.
D = 0 ⇔ 중근 ⇔ 해가 1개 ⇔ 교점 1개 ⇔ 한 점에서 만난다.(접한다.)
D < 0 ⇔ 허근 ⇔ 해가 0개 ⇔ 교점 0개 ⇔ 만나지 않는다.

실수 범위에서만 다루기때문에 허근은 해로 인정하지 않아요. 그래서 D < 0이면 해가 0개고, 교점도 0개입니다.

이차함수의 그래프와 직선의 위치관계

위 내용을 표로 정리해 볼게요.

이차함수의 그래프와 직선의 위치관계
이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계
→ ax2 + (b - m)x + c - n = 0의 판별식 D 이용
판별식 D > 0 D = 0 D < 0
위치관계 서로 다른 두 점에서 만난다. 한 점에서 만난다.(접한다.) 만나지 않는다.
그래프 이차함수의 그래프와 직선의 위치관계 - 서로 다른 두 점에서 만난다. 이차함수의 그래프와 직선의 위치관계 - 한 점에서 만난다. (접한다.) 이차함수의 그래프와 직선의 위치관계 - 만나지 않는다.
교점의 개수 2개 1개 0개

x2 + 3x - 3의 그래프와 접하고, y = x + 1과 평행한 직선의 방정식을 구하여라.

두 직선의 위치관계 - 평행, 일치, 수직에서 서로 평행한 직선은 기울기가 같아요. y = x + 1과 평행하다고 했으니 구하는 직선은 y = x + b가 되겠네요.

이차함수의 그래프와 직선의 위치관계에서는 판별식을 이용하는데, D > 0이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나고, D < 0이면 만나지 않아요.

이 직선이 y = x2 + 3x - 3의 그래프와 접한다고 했으니까 D를 이용해서 b를 구해보죠.

x2 + 3x - 3 = x + b
x2 + 2x - 3 - b = 0

D/4 = 12 - (-3 - b) = 0
1 + 3 + b = 0
b = -4

따라서 구하는 직선의 방정식은 y = x - 4가 되겠네요.

함께 보면 좋은 글

이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
연립방정식 - 연립이차방정식의 풀이

정리해볼까요

이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계

  • ax2 + (b - m)x + c - n= 0의 판별식 D
  • D > 0 ⇔ 서로 다른 두 점에서 만난다.
  • D = 0 ⇔ 한 점에서 만난다.(접한다.)
  • D < 0 ⇔ 만나지 않는다.
 
그리드형

이제부터는 이차함수를 공부할 건데요. 이차함수뿐 아니라 이차함수를 중심으로 해서 이차방정식, 이차부등식 등 다른 이차식과의 관계를 공부할 거예요. 그래서 그 전에 공부했던 이차식들에 대해서 정확히 이해하고 있어야 해요. 이차방정식과 이차부등식은 고등학교에 올라와서 공부했으니까 이 글에서는 중학교 3학년 때 공부했던 이차함수의 내용에 대해서 간단히 총정리를 해보죠.

중요한 내용만 요약할 건데, 생각나지 않는 내용이나 이런 결과가 나오는 이유를 모르겠다면 관련 글을 보면서 이해해보세요. 다음 단원을 공부하려면 이 내용이 필수니까 절대로 잊어버려서는 안 돼요.

이차함수

함수 y = f(x)에서 우변 f(x)가 x에 관한 이차식일 때 이 함수를 이차함수라고 해요.(이차함수의 뜻)

  • 일반형: y = ax2 + bx + c (a ≠ 0)
  • 표준형: y = a(x - p)2 + q (a ≠ 0)

x의 이차항의 계수 a > 0이면 아래로 볼록한 그래프이고, a < 0이면 위로 볼록한 그래프죠. |a|가 커질수록 그래프의 폭이 좁아지고요. (이차함수 그래프의 특징)

표준형에서 꼭짓점의 좌표는 (p, q)예요. 축의 방정식은 x = p이고, y값의 범위는 y ≥ q이에요. (이차함수 그래프, y = a(x - p)2 + q)

일반형은 표준형으로 바꾼 후에 꼭짓점을 찾죠. 축의 방정식과 y값의 범위도 마찬가지고요. 일반형에서는 x, y절편을 찾기 쉬워요 x절편은 ax2 + bx + c = 0의 해이고, y절편은 c예요. (y = ax2 + bx + c의 그래프, 이차함수 일반형)

이차함수의 그래프를 보고 계수의 부호를 구하는 것도 했어요. (이차함수 계수 부호 찾기)

표준형 y = a(x - p)2 + q에서

  • a의 부호는 그래프가 볼록한 방향을 보고 판단해요.
    • 아래로 볼록이면 a > 0
    • 위로 볼록이면 a < 0

    이차함수 계수 부호 확인 - a 부호
  • p와 q의 부호는 꼭짓점의 좌표를 보고 판단해요.
    • 꼭짓점이 제 1 사분면에 있으면 p > 0, q > 0
    • 꼭짓점이 제 2 사분면에 있으면 p < 0, q > 0
    • 꼭짓점이 제 3 사분면에 있으면 p < 0, q < 0
    • 꼭짓점이 제 4 사분면에 있으면 p > 0, q < 0

    이차함수 계수 부호 확인 - p, q 부호

일반형 y = ax2 + bx + c에서 a, b, c의 부호를 구하는 방법이에요.

  • a의 부호는 그래프가 볼록한 방향을 보고 판단해요. 표준형에서와 똑같아요.
    • 아래로 볼록이면 a > 0
    • 위로 볼록이면 a < 0

    이차함수 계수 부호 확인 - a 부호
  • b의 부호는 좌동우이
    • 그래프의 대칭축이 y축의 왼쪽에 있으면 a와 b의 부호가 같고
    • 그래프의 대칭축이 y축의 오른쪽에 있으면 a와 b의 부호가 달라요.

    이차함수 계수 부호 확인 - b 부호
  • c는 y절편의 위치를 보고 판단해요.
    • y절편이 x축 위에 있으면 c > 0
    • y절편이 x축 아래에 있으면 c < 0

    이차함수 계수 부호 확인 - c 부호

이차함수의 식을 구하는 방법도 했어요. (이차함수 식 구하기)

  • 꼭짓점의 좌표(p, q)와 다른 한 점 (m, n)을 알려줬을 때: y = a(x - p)2 + q에 (m, n) 대입
  • 축이 방정식 x = p와 다른 두 점의 좌표 (x1, y1), (x2, y2)를 알려줬을 때: y = a(x - p)2 + q에 두 점의 좌표 대입
  • 세 점의 좌표(x1, y1), (x2, y2), (x3, y3)를 알려줬을 때: y = ax2 + bx + c에 세 점의 좌표를 대입
  • x축과의 교점(α, 0), (β, 0)과 다른 한 점 (m, n)을 알려줬을 때: y = a(x - α)(x - β)에 (m, n)을 대입

이차함수에서 최댓값과 최솟값은 꼭짓점의 y좌표에서 정해져요. 보통은 실수 전체에서 구하니까 최댓값과 최솟값 중 하나만 갖게 되지요. (이차함수의 최댓값과 최솟값)

  • a > 0이면 꼭짓점의 y좌표가 최솟값
  • a < 0이면 꼭짓점의 y좌표가 최댓값

여기까지가 중학교 3학년 때 공부했던 이차함수에요. 정리해놓으니까 양이 별로 안되네요. 그러니까 절대로 잊어버려서는 안돼요.

함께 보면 좋은 글

이차함수의 뜻, 이차함수란?
이차함수 그래프 그리기
이차함수 그래프의 특징
이차함수 그래프의 평행이동, y = ax2 + q
이차함수 그래프의 평행이동, y = a(x - p)2
이차함수 그래프, y = a(x - p)2 + q
이차함수 그래프의 대칭이동
y = ax2 + bx + c의 그래프, 이차함수 일반형
이차함수 식 구하기
y = ax2 + bx + c에서 a, b, c 부호 구하기, 이차함수 계수 부호 찾기
이차함수의 최댓값과 최솟값, 이차함수의 최대 최소
이차함수의 활용

 
그리드형

+ 최근글