현
원의 접선과 할선 사이의 비례 관계, 할선과 접선의 성질
원의 할선과 접선, 접점에서 공부웠던 접선과 할선이 또 나와요. 물론 원의 접선의 길이를 구할 때도 했고요. 접선은 원과 한 점에서 만나는 직선이고, 할선은 원과 두 점에서 만나는 직선이에요. 할선은 현을 연장한 선이기도 하지요.
이 글에서는 원의 접선과 할선 사이의 비례 관계에 대해서 알아볼 거예요. 할선과 접선이 한 점에서 만나서 교점이 생기면 교점과 접점, 현의 양 끝점 사이의 거리에 특별한 관계가 있거든요.
원과 비례와 아주 비슷하므로 원과 비례에 대해서 잘 이해하고 있으면 내용을 이해하기 쉬울 거예요.
할선과 접선의 성질
원 위의 한 점 T를 지나는 접선과 현 AB를 연장한 할선이 한 점 P에서 만날 때, 교점에서 접점까지의 거리의 제곱이 교점에서 현의 양 끝점까지의 거리의 곱과 같아요.
그림으로 외우세요.
왜 그런지 증명해보죠.
원 위의 접점 T와 현의 양 끝점 A, B를 선분으로 연결하면 삼각형이 세 개가 생겨요. △PAT, △ABT와 큰 삼각형 △PTB에요.
여기서는 △PAT와 큰 삼각형 △PTB 두 개를 볼게요.
∠APT는 공통이에요.
∠ATP = ∠TBP (접선과 현이 이루는 각 - 호 AT가 포함된 각과 호 AT에 대한 원주각)
두 각의 크기가 같으니까 두 삼각형은 AA 닮음이에요. △PAT ∽ △PTB
닮은 도형의 성질에서 닮은 도형은 대응변의 길이의 비가 같으므로 가 되죠.
정리하면 가 돼요.
증명이 조금 어렵다면 이렇게 생각해보세요.
원과 비례에서 였어요. 여기서
가 점점 아래로 내려가면 점 C와 점 D가 한 점 T에서 만나게 되겠죠?
가 되므로,
의 우변이
이 돼요.
다음 그림에서 가 원의 할선일 때, 원의 접선
의 길이를 구하여라.
할선과 접선의 교점에서 접점까지의 거리의 제곱은 교점에서 현의 양 끝점까지의 거리의 곱과 같아요.
x2 = 5 × (5 + 5)
x2 = 50
x = (cm)
함께 보면 좋은 글
원의 접선, 원의 접선의 길이
접선과 현이 이루는 각
두 원에서 접선과 할선의 비례관계
원과 비례, 원과 비례 증명
두 원에서 원과 비례
네 점이 한 원 위에 있을 조건 - 두 번째
두 원에서 원과 비례
원과 비례 두 번째로 두 원에서 원과 비례에요. 앞서 원과 비례, 원과 비례 증명에서는 하나의 원에서 원과 비례에 대해서 알아봤고 증명도 해봤어요. 이 글에서는 원이 하나가 아니라 두 개예요. 다른 건 없어요.
앞의 내용을 잘 이해했다면 이 글에서 할 내용은 정말 쉽게 이해할 수 있어요. 원이 한 개 있을 때의 내용을 두 번 적용하면 되는 거니까요. 서로 다른 두 원에서 각각 원과 비례를 적용한 다음에 그 둘을 잘 연결하기만 하면 됩니다.
총 세 가지 경우가 나오는데 결과는 같아요. 그림에 어떤 차이가 있는지만 잘 확인하세요.
두 원에서 원과 비례
원과 비례, 원과 비례 증명에서 원에서 두 현이 접할 때, 접점에서 한 현의 양쪽 끝까지의 거리의 곱은 접점에서 다른 현의 양 끝점까지의 거리의 곱과 같다고 했지요? 그림이 바로 떠올라야 해요.
두 원에서 원과 비례는 위 내용을 바탕으로 해서, 두 원에 포함되는 공통현과 각 원의 현 또는 할선이 한 점에서 만날 때 그 거리의 관계를 식으로 나타낸 거예요.
총 세 가지 경우가 있는데, 첫 번째는 두 원의 현이 하나의 직선일 때에요.
왼쪽의 작은 원을 보세요. 작은 원에는 와
의 두 현이 한 점 P에서 만나요. 여기 원과 비례의 공식을 집어넣어 보죠.
……… (1)
오른쪽의 큰 원은 와
두 현이 한 점 P에서 만나죠.
……… (2)
(1)과 (2)에 같은 부분이 있으므로 하나로 정리해보면
두 번째는 각 원의 서로 다른 두 현과 공통현이 원 안에서 만날 때고, 세 번째는 두 원의 할선과 공통현의 연장선이 원 밖의 한 점에서 만날 때에요.
첫 번째와 그림만 다를 뿐 증명하는 방법이 똑같아요. 작은 원과 큰 원에 따로 원과 비례 공식을 적용하고 같은 부분을 하나로 합치는 거지요.
여기서 중요한 게 라는 공통현이에요.
가 양쪽 원에 모두 들어있어서 두 원을 연결해주는 역할을 해요.
내용이 어렵지 않으니까 예제는 생략해도 되겠죠?
함께 보면 좋은 글
원과 비례, 원과 비례 증명
네 점이 한 원 위에 있을 조건 - 두 번째
원의 접선과 할선 사이의 비례 관계, 할선과 접선의 성질
원과 비례, 원과 비례 증명
제목에 나와 있듯이 원에서 비례식을 이용하는 거에요. 원의 현, 할선 등의 길이를 비례식을 이용해서 구하는 거지요.
설명은 되게 복잡한데요, 실제 결론을 보면 어렵지는 않아요. 이런 과정을 거쳐서 결론을 얻었구나 하고 바로 이해할 수 있죠. 하지만 이해한 결론을 실제 주어진 문제에 적용하기가 약간 까다로워요. 그림에 선이 여러 개인데다 길이도 여러 개 나오거든요.
원과 비례에서는 결론을 공식이 아닌 그림으로 외워야해요. 그림을 짚어가면서 "여기 여기 곱한 값과 여기 여기 곱한 값이 같다." 처럼요. 그래야 문제에서 주어진 선과 길이를 우리가 외우고 있는 그림에 맞게 변형할 수 있어요.
원과 비례
원과 비례에서 사용하는 비례식의 기본이 되는 건 닮음비에요. 매번 닮음비를 이용하는 게 아니라 공식을 유도하는 과정에서 닮음비를 이용합니다.
두 현과 교점
원에 현을 두 개 그었을 때, 교점이 생기죠. 그 교점에서 현에 이르는 거리를 곱한 값들이 서로 같다는 걸 알 수 있어요.
언제나처럼 그림으로 외우세요. 먼저 현을 하나 고르고, 그 현에서 교점 P에서 출발해서 현의 양쪽으로 거리의 곱을 구하고, 다른 현에서도 점 P에서 양쪽으로 거리의 곱을 구하면 두 값이 서로 같아요.
왜 그런지 증명해 보죠.
와
를 그으면 삼각형 두 개가 생겨요.
△PAC와 △PDB에서
∠PAC = ∠PDB (호 CB의 원주각)
∠PCA = ∠PBD (호 AD의 원주각)
두 각의 크기가 같으므로 두 삼각형은 AA 닮음이죠. △PAC ∽ △PDB
닮은 도형에서는 대응변의 길이의 비가 같으므로
다음 그림에서 가 원의 중심 O를 지날 때 x를 구하여라.
가 지름이므로 반지름은 5cm죠.
에서
4 × x = (5 - 2) × 7
4x = 21
x = (cm)
원에서 현의 교점 사이에는 대각선 방향의 길이를 그냥 곱한 것이 같고, 피타고라스 정리의 활용 - 사각형에서는 대각선에 이르는 거리의 제곱의 합이 서로 같아요. 헷갈리면 안 돼요.
+
=
+
두 할선과 교점
이번에는 원의 할선의 교점과 거리의 관계에요.
역시 마찬가지로 할선 하나를 선택하여 교점 P에서 출발해서 현의 양 끝점까지의 거리를 곱한 값과 다른 할선에서 점 P에서 양 끝점까지의 거리를 곱한 값이 같아요.
와
를 그어 두 개의 삼각형을 만들어요. 이때 □ACDB는 원에 내접하는 사각형이에요.
△PDB와 △PAC에서
∠PDB = ∠PAC (□ACDB에서 외각과 내대각)
∠PBD = ∠PCA (□ACDB에서 외각과 내대각)
두 각의 크기가 같으므로 두 삼각형은 AA 닮음이죠. △PAC ∽ △PDB
닮은 도형에서는 대응변의 길이의 비가 같으므로
다음 그림을 보고 x를 구하여라.
에서
(3 + 9) × 3 = x × 4
4x = 36
x = 9(cm)
함께 보면 좋은 글
원에 내접하는 사각형의 성질, 내대각
현의 수직이등분선
현의 길이
접선과 현이 이루는 각
두 원에서 접선과 현이 이루는 각, 공통접선과 현이 이루는 각
[중등수학/중2 수학] - 닮은 도형, 도형의 닮음
[중등수학/중2 수학] - 닮은 도형의 성질
두 원에서 접선과 현이 이루는 각, 공통접선과 현이 이루는 각
이번에는 원이 두 개일 때, 두 원의 접선과 현이 이루는 각에 대해서 알아볼 거예요.
두 원과 접선의 관계부터 따져보죠. 두 원의 위치관계는 총 여섯 가지가 있어요. 여기서 다룰 내용은 그중에서도 내접과 외접 두 경우입니다. 접선은 두 원의 접점을 지나는 공통접선이에요. 두 원의 접점이 아닌 다른 곳을 지나는 접선은 다루지 않아요.
두 원과 접선의 세 도형이 한 점에서 만날 때, 접선과 현이 이루는 각의 특징에 대해서 알아보죠. 도형을 많이 그리기 때문에 조금 복잡할 수 있어요. 주의해서 잘 보세요.
두 원에서 접선과 현이 이루는 각
두 원이 외접할 때
두 원이 외접할 때, 접점을 지나는 접선과 현이 이루는 각들을 표시한 그림이에요.
위 그림에서 총 세 가지를 알 수 있어요. 첫 번째는 크기가 같은 각들이에요. 각의 수가 많은데 헷갈리지 않도록 주의하세요. 그다음은 평행한 직선이고, 세 번째는 닮은 삼각형이에요. 크기가 같은 각들의 위치만 정확히 알면 되는데요. 혹시 외우기가 어려우면 두 번째, 세 번째 내용을 이용해서 찾을 수도 있어요.
위 세 가지를 증명해보죠. 공통접선, 현이 만나서 생기는 각에 번호를 붙여봤어요.
가운데 복잡한 부분에서 크기가 같은 각들을 찾아보죠.
② = ⑤ (와
가 만나서 생기는 맞꼭지각) ………(1)
① = ④ (와
가 만나서 생기는 맞꼭지각) ………(2)
③ = ⑥ (와
가 만나서 생기는 맞꼭지각) ………(3)
이번에는 접선과 현이 이루는 각에 의해 크기가 같아지는 각을 찾아볼까요?
① = ⑧ (호 AT를 포함하고 있는 각과 호 AT에 대한 원주각) ………(4)
③ = ⑦ (호 BT를 포함하고 있는 각과 호 BT에 대한 원주각) ………(5)
④ = ⑨ (호 CT를 포함하고 있는 각과 호 CT에 대한 원주각) ………(6)
⑥ = ⑩ (호 DT를 포함하고 있는 각과 호 DT에 대한 원주각) ………(7)
(1)에 의해 ② = ⑤
(2)와 (4), (6)에 의해서 ① = ④ = ⑧ = ⑨
(3)과 (5), (7)에 의해서 ③ = ⑥ = ⑦ = ⑩
크기가 같은 모든 각을 찾았어요.
와
의 두 선분과
가 만나서 생기는 엇각 ⑦과 ⑩이 같아요. 엇각의 크기가 같으면 두 직선은 평행선이 되므로
가 됩니다. (평행선의 성질)
마지막으로 중요한 건 아닌데 그래도 알고 넘어가면 좋은 것 하나 추가 하자면요. △TAB와 △TCD에서 두 쌍의 대응각의 크기가 같으므로 두 삼각형은 AA 닮음이에요. △TAB ∽ △TCD
다음 그림을 보고, x°, y°의 값을 구하여라.
△TCD에서 삼각형 내각의 합 = 180°이므로 ∠TDC = 180° - (67.5° + 45°) = 67.5°
이므로 평행선에서 엇각에 의해 ∠TAB = ∠TCD에서 x° = 45°. ∠TBA = ∠TDC에서 y° = 67.5°
두 원이 내접할 때
두 원이 내접할 때, 두 원의 접점을 지나는 접선과 원의 현이 이루는 각이에요. 여기서도 역시 크기가 같은 각들의 위치가 중요해요. 두 원이 외접할 때보다는 각의 개수도 적고 위치도 알기 쉽게 되어 있네요.
그리고 평행한 현이 있다는 것과 닮은 삼각형이 있다는 것도 알 수 있어요.
접선과 현이 이루는 각에 번호를 매겼어요.
여기는 맞꼭지각이 없으니 접선과 현이 이루는 각에 의해 크기가 같아지는 각부터 찾아보죠.
① = ⑥ (호 AT를 포함하고 있는 각과 호 AT에 대한 원주각) ………(1)
② = ⑤ (호 BT를 포함하고 있는 각과 호 BT에 대한 원주각) ………(2)
① = ④ (호 CT를 포함하고 있는 각과 호 CT에 대한 원주각) ………(3)
② = ③ (호 DT를 포함하고 있는 각과 호 DT에 대한 원주각) ………(4)
(1), (3)에 의해서 ① = ④ = ⑥
(2), (4)에 의해서 ② = ③ = ⑤
총 여섯 개의 각 중에서 크기가 같은 각이 세 개씩 있네요.
와
의 두 선분과
가 만나서 생기는 동위각 ③과 ⑤가 같아요. 동위각의 크기가 같으면 두 직선은 평행선이 되므로
가 됩니다. (평행선의 성질)
△TAB와 △TCD에서 두 쌍의 대응각의 크기가 같으므로 두 삼각형은 AA 닮음이지요. △TAB ∽ △TCD
다음 그림을 보고, x, y의 값을 구하여라.
이므로 평행선에서 동위각에 의해 ∠TDC = ∠TBA, 즉 ∠x = ∠y죠.
접선과 현이 이루는 각에 의해 ∠PTA = ∠x이므로 x = y = 67.5(°)
함께 보면 좋은 글
접선과 현이 이루는 각
원주각과 중심각의 크기, 원주각의 성질
[중등수학/중1 수학] - 맞꼭지각, 동위각, 엇각
[중등수학/중1 수학] - 평행성의 성질, 평행선에서 동위각과 엇각
[중등수학/중2 수학] - 삼각형의 닮음 조건, 삼각형 닮음의 조건
접선과 현이 이루는 각
접선이 다시 나왔네요. 접선은 원과 한 점에서 만나는 직선이고, 만나는 한 점을 접점이라고 하죠. (원의 접선, 원의 접선의 길이)
이 글에서는 내용을 정리하기는 하겠지만 이게 글만 읽어서는 무슨 소리인지 이해하기가 힘들 거에요. 그 단어 하나하나를 그림에서 짚어가면서 이해해야 무슨 말인지 알아들을 수 있으니까 천천히 읽고 따라오세요.
접선과 현이 이루는 각은 원주각을 이용해서 구할 수 있어요. 어떤 방법으로 원주각을 이용해서 구하는지 알아보죠.
접선과 현이 이루는 각
원에 접선을 그으면 접점이 생겨요. 그 접점에서 원 위의 다른 한 점에 현을 그으면 현과 접선 사이에 각이 생기겠죠? 이 각은 현의 양 끝점(접점과 원 위의 한 점)으로 이루어진 호에 대한 원주각과 같아요.
말로 하면 어렵죠? 그림을 보세요.
원의 접선과 접점을 지나는 현이 이루는 각
= 각에 포함된 호의 원주각
원의 접선은 직선 AP, 접점은 점 A, 접점을 지나는 현은 현 AB이고, 이들이 이루는 각은 ∠BAP에요. ∠BAP 안에 호 AB가 들어있죠? ∠BAP와 호 AB에 대한 원주각이 같다는 얘기예요.
윗글을 잘 읽으면서 어떤 각과 어떤 각이 같은지 이해해야 해요. 그냥 읽어보면 뭐랑 뭐가 같다는 말인지 금방 알아듣기가 어렵거든요. 두세 번 계속해서 읽어보세요.
접선과 현이 이루는 각이 예각, 둔각, 직각일 때 세 경우로 나눠서 증명해보죠.
접선과 현이 이루는 각이 예각일 때
접선과 현이 이루는 각(∠BAP)가 예각일 때에요.
원의 중심 O와 점 A를 지나는 현을 그려보죠. 이 현은 지름이에요. 그리고 이 현의 끝점 D에서 원주각이 있는 점 C에 현을 하나 더 그어요.
∠DAP를 보세요. ∠DAP는 두 개의 각으로 이루어졌어요.
∠DAP = ∠DAB + ∠BAP
원의 접선에서 반지름은 원의 접선과 수직이라고 했어요.
∠DAP = ∠DAB + ∠BAP = 90° ... ①
∠ACD를 볼까요? ∠ACD는 두 개의 각으로 이루어졌죠?
∠ACD = ∠ACB + ∠BCD
∠ACD는 원주각의 성질에 따라 지름의 원주각이므로 90°에요.
∠ACD = ∠ACB + ∠BCD = 90° ... ②
①, ②의 두 각이 모두 90°로 같아요. 식을 바꿔 쓰면 아래처럼 되겠죠?
∠DAB + ∠BAP = ∠ACB + ∠BCD = 90°
∴ ∠BAP = ∠ACB (∵ ∠DAB = ∠BCD, 호 BD의 원주각)
접선과 현이 이루는 각이 둔각일 때
이번에는 접선과 현이 이루는 각(∠BAP)이 둔각일 때에요. 이때도 마찬가지로 원의 중심 O와 접점 A를 지나는 현, 지름을 그어요. 그리고 지름의 반대쪽 점 D에서 원주각이 있는 점 C에 현을 그어요.
∠BAP를 보세요. ∠BAP는 두 개의 각으로 이루어졌어요.
∠BAP = ∠BAD + ∠DAP
원의 접선에서 반지름은 원의 접선과 수직이라고 했어요.
∠DAP = 90°
두 식을 정리하면 ∠BAP = ∠BAD + 90° ... ①
호 AB에 대한 원주각인 ∠ACB를 볼까요? ∠ACB는 두 개의 각으로 이루어졌죠?
∠ACB = ∠ACD + ∠BCD
∠ACD는 원주각의 성질에 따라 지름의 원주각이므로 90°에요.
∠ACD = 90°
두 식을 정리하면 ∠ACB = ∠BCD + 90° ... ②
①의 ∠BAD와 ②의 ∠BCD는 호 BD의 원주각으로 그 크기가 같아요. 따라서 ①, ②식을 정리하면 ∠BAP = ∠ACB임을 알 수 있어요.
접선과 현이 이루는 각이 직각일 때
이번에는 접선과 현이 이루는 각(∠BAP)이 직각일 때에요.
원의 접선에 본 것처럼 접선과 현이 이루는 ∠BAP = 90°라는 말은 현에 반지름이 포함되어 있다는 말이에요. 즉 현 AB가 지름이므로 원주각의 성질에 따라 호 AB의 원주각 ∠ACB = 90°라서 두 각은 크기가 같죠.
∠BAP = ∠ACB = 90°
결국, 접선과 현이 만나서 생기는 각이 예각이든 직각이든 둔각이든 상관없이 각에 포함된 호에 대한 원주각의 크기와 같다는 것을 알 수 있어요.
다음 그림을 보고 x°, y°의 값을 구하여라.
원주각의 성질에서 지름의 원주각은 90°라고 했어요. 따라서 호 BC의 원주각인 ∠BAC = 90°에요. 삼각형 내각의 합에 따라서 ∠ACB = 180° - (22.5° + 90°) = 67.5°가 됩니다.
원의 접선과 접점을 지나는 현이 이루는 각은 각에 포함되는 호의 원주각과 같아요.
∠BAP는 호 AB를 포함하고 있으므로 호 AB의 원주각과 같아요. x° = 67.5°
∠y는 호 AC를 포함하고 있으므로 호 AC의 원주각 22.5°가 됩니다.
두 접선과 현이 이루는 각
원 밖의 한 점에서는 원에 두 개의 접선을 그을 수 있어요. 점 P에서 원에 접선을 긋고 접점을 점 A, 점 B라고 하고, 호 AB의 원주각을 ∠ACB라고 해보죠.
원의 접선과 접점을 지나는 현이 이루는 각은 각에 포함되는 호의 원주각과 같죠. 접선과 현이 만나서 생기는 ∠BAP는 호 AB를 포함하고 있으므로 호 AB의 원주각인 ∠ACB와 크기가 같아요. 또, ∠ABP도 호 AB를 포함하고 있으므로 호 AB의 원주각인 ∠ACB와 크기가 같고요.
∠BAP = ∠ACB = ∠ABP
두 각의 크기가 같은 건 다른 방법으로도 알 수 있어요.
원의 접선에서 원 밖의 한 점에서 그은 두 접선의 길이는 같다고 했으니까 △PAB는 이등변삼각형이에요. 이등변삼각형은 두 밑각의 크기가 같으므로 ∠BAP = ∠ABP이죠.
함께 보면 좋은 글
원의 접선, 원의 접선의 길이
원주각과 중심각의 크기, 원주각의 성질
원주각의 크기와 호의 길이
사각형이 원에 내접하기 위한 조건
현의 길이
현에 대한 두 번째로 현의 길이에 대한 내용입니다.
현의 수직이등분선에서 두 가지 성질을 알아봤는데, 첫 번째는 원의 중심에서 현에 내린 수선은 현을 수직이등분한다였죠. 두 번째는 현의 수직이등분선은 원의 중심을 지난다였고요. 이 글에서도 이 두 가지 성질을 그대로 이용합니다. 따라서 잘 기억하고 있어야 해요.
이 글에서 배울 내용도 그다지 어렵지 않아요. 증명도 쉬울 뿐 아니라 증명만 제대로 이해한다면 문제도 쉽게 풀 수 있어요. 그냥 쭉 한 번 읽어만 봐도 쉽게 알 수 있을 겁니다.
현의 길이
현의 길이도 두 가지 성질이 있어요. 하나는 명제이고 다른 하나는 그 명제의 역이에요. (명제, 명제의 가정과 결론, 명제의 역)
하나라고 해도 상관없으니까 한 가지만 제대로 알면 다른 건 그냥 자연스럽게 따라서 이해하게 되어 있어요.
한 원에서 원의 중심에서 같은 거리에 있는 현의 길이는 같다.
원의 중심에서 현까지의 거리가 같으면 두 현의 길이가 같아요.
점 O에서 점 A와 점 C에 선을 그어보죠.
직각삼각형이 두 개 생겼어요.
△OMA와 △ONC에서
=
(원의 중심에서 같은 거리에 있는 현, 가정)
∠AMO = ∠CNO = 90° =
= 반지름 r
직각삼각형에서 빗변의 길이가 같고, 한 변의 길이가 같은 RHS 합동이에요. △OMA ≡ △ONC
대응변의 길이는 같으므로 =
죠. 현의 수직이등분선에서 원의 중심에서 현에 내린 수선은 현을 수직이등분한다고 했어요.
= 2
,
= 2
따라서 =
(증명 끝.)
다음 그림을 보고 △OCD의 넓이를 구하여라.
삼각형의 넓이를 구하려면 밑변의 길이, 높이를 알아야 하는데, 높이는 4cm라고 나와 있네요.
밑변의 길이는 인데,
는 이 원의 현이고, 원의 중심으로부터 거리가 4cm에요.
도 원의 중심에서 4cm 떨어진 현이고요. 원의 중심에서 같은 거리에 있는 현의 길이는 같으므로
=
에요.
의 길이를 구해보죠.
원의 중심에서 현에 내린 수선은 현을 수직이등분하므로 =
이에요.
= 2
= 8cm이죠.
△OCD = ½ × 4 × 8 = 16cm2
한 원에서 길이가 같은 현은 원의 중심에서 같은 거리에 있다.
이번에는 위와 반대에요. 현의 길이가 같으면 원의 중심으로부터의 거리가 같아요.
점 O에서 점 A와 점 B에 선을 그어보죠.
△OMA와 △ONC에서
=
(가정에서
=
이고,
= 2
,
= 2
현의 수직이등분선)
∠AMO = ∠CNO = 90° =
= 반지름 r
직각삼각형에서 빗변의 길이가 같고, 한 변의 길이가 같은 RHS 합동이에요. △OMA ≡ △ONC
대응변의 길이는 같으므로 =
(증명 끝.)
함께 보면 좋은 글
현의 수직이등분선
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중2 수학] - 직각삼각형의 합동, 직각삼각형의 합동 조건
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
현의 수직이등분선
1학년 때 여러 가지 도형의 종류와 정의에 대해서 배웠다면 2학년, 3학년 때는 각 도형의 성질을 배워요. 2학년 때는 여러 가지 사각형과 삼각형의 닮음에 대해서 배웠지요?
3학년 때는 원에 대해서 자세히 알아볼 거예요. 원에 대한 내용 중 첫 번째로 현에 관한 내용이에요. 현은 1학년 원과 부채꼴, 호, 현, 활꼴, 중심각에서 공부한 적이 있어요. 현의 정의에 대해서는 위 글을 참고하세요.
여기에서는 현의 수직이등분선의 성질에 대해서 알아보고, 그 성질을 증명해보죠.
현의 수직이등분선
현은 원 위의 두 점을 이은 직선을 말하죠? 원의 중심과 현 사이에는 한 가지 성질이 있어요. 이 한 가지 성질을 이렇게도 말하고 반대로도 말해요.
이 성질을 증명하기는 별로 어렵지 않아요. 그리고 나오는 문제들도 매우 쉽고요. 짧게 설명하고 넘어갈게요.
원의 중심에서 현에 내린 수선은 현을 수직이등분한다.
원의 중심 O에서 에 수선을 내리면
는
를 수직이등분해요. 수선이니까 당연히 수직이겠죠. 이등분하는지만 증명해보면 되겠네요.
점 O에서 점 A와 점 B로 선을 그어보죠.
△OAH와 △OBH가 생겨요. 두 삼각형에서
∠OHA = ∠OHB = 90° (는 수선)
는 공통
= 반지름 r
따라서 두 삼각형은 RHS 합동이에요. 대응변의 길이가 같으므로 이죠. (증명 끝.)
다음 그림을 보고 의 길이를 구하여라.
△OAH가 직각삼각형이에요. 피타고라스의 정리를 이용하면 = 4cm고요.
= 2
= 8cm입니다.
현의 수직이등분선은 원의 중심을 지난다.
명제의 결론인 원의 중심을 지나는지를 증명하기는 까다로워요. 그래서 다른 방법으로 증명하지요. 현의 중점과 원의 중심을 연결해요. 그리고 이 선이 현에 수직인지를 증명하는 거죠.
의 중점을 H라고 하고 원의 중심 O와 점 H을 연결해요.
와
가 수직인지를 증명해보죠.
점 O에서 점 A와 점 B로 선을 그어요.
△OAH와 △OBH에서
(점 H는
의 중점)
는 공통
= 반지름 r
따라서 두 삼각형은 SSS 합동이에요. 대응각의 크기가 같으므로 ∠OHA = ∠OHB이죠. ∠OHA + ∠OHB = 180°(평각)이므로 ∠OHA = ∠OHB = 90°에요. (증명 끝.)
함께 보면 좋은 글
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
현의 길이
접선과 현이 이루는 각
원과 부채꼴, 호, 현, 활꼴, 중심각
다각형에 이어 이번에는 원이에요.
다각형은 여러 개의 선분으로 둘러싸인 평면도형이었어요.
이번에는 선분이 아닌 것들로 둘러싸인 도형을 공부할 거예요. 바로 원과 그 친구들이죠.
원은 초등학교 때 지름, 반지름, 넓이 구하는 걸 하면서 공부했어요. 그때의 내용이 또 나와요. 하지만 고맙게도 계산은 훨씬 쉬워졌어요. 기대하세요.
원, 호, 현, 활꼴, 부채꼴
원은 한 점으로부터 일정한 거리에 있는 점들로 이루어진 도형이에요. 그리고 그 한 점을 원의 중심이라고 하고, 일정한 거리를 우리는 반지름이라고 하지요.
호는 원의 일부분인데, 원 위의 두 점을 양 끝으로 하는 원의 일부를 말해요. 이때 양 끝점이 A, B이면 호 AB라고 부르고 기호로 로 나타내요. 선분 AB는 AB 위에 반듯한 선을 그어서
로 표시했는데, 호는 AB 위에 곡선을 그어서 표시해요.
A와 B를 양 끝점으로 하고, 중간에 점 C를 지나는 호는 정확한 경로를 알 수 있게 호 ACB라고 불러요.
현은 원 위의 두 점을 이은 선분을 말해요. 현이 지나는 두 점이 AB이면 현 AB라고 부르고 기호로 로 표시해요. 현은 반듯한 선분이라서 기호도 그냥 선분 기호를 사용해요.
현 중에서 원의 중심을 지나는 현을 지름이라고 하고, 지름은 현 중에서 길이가 가장 길어요.
활꼴은 이름 그대로 활처럼 생겼어요. 호와 현으로 이루어진 도형을 말해요.
부채꼴은 부채모양처럼 생겼고요. 호와 원의 반지름 두 개로 이루어진 도형이에요. 부채꼴에는 두 반지름이 원의 중심에서 만나서 생기는 각이 있지요? 이 각을 부채꼴의 중심각이라고 불러요.
부채꼴과 중심각
부채꼴의 중심각은 중요한 의미가 있어요. 바로 중심각에 따라 부채꼴 호의 길이와 부채꼴의 넓이가 달라지기 때문이죠.
하나의 원이나 합동인 두 원에서
- 부채꼴의 중심각의 크기가 같으면 호의 길이가 같다
- 부채꼴의 중심각의 크기가 같으면 부채꼴의 넓이도 같다.
- 부채꼴의 중심각의 크기가 같으면 현의 길이도 같다.
- 부채꼴의 중심각 ∝ 부채꼴 호의 길이
- 부채꼴의 중심각 ∝ 부채꼴의 넓이
- 부채꼴의 중심각과 현의 길이는 정비례하지 않는다.
위에서 ∝ 표시는 정비례 표시에요. 중심각이 2배, 3배로 커지면 그에 따라 부채꼴 호의 길이도 2배, 3배로 길어진다는 뜻이에요. 부채꼴의 넓이도 마찬가지고요. 단, 현의 길이는 정비례하지 않아요.
아래 그림을 보고 x의 길이를 구하시오.
위 그림에서 x는 부채꼴 호의 길이에요. 한 원에서 부채꼴의 중심각과 부채꼴 호의 길이는 정비례한다고 했어요.
위에 있는 부채꼴의 중심각은 40°이고, 호의 길이는 xcm예요. 아래에 있는 부채꼴의 중심각은 120°이고 호의 길이는 9cm고요. 정비례하니까 비례식으로 풀어보죠.
40° : xcm = 120° : 9cm
120° × xcm = 40° × 9cm
x = 40 × 9 ÷ 120
x = 3
x는 3cm네요.
함께 보면 좋은 글
원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이
다각형 내각의 크기의 합과 외각 크기의 합
원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
원뿔의 겉넓이와 부피, 각뿔의 겉넓이와 부피
[중등수학/중3 수학] - 원뿔의 높이와 부피, 원뿔의 부피 공식