등식
여러가지 유리식의 풀이
유리식은 종류가 많아요. 부분분수 공식, 번분수, 가비의 리, 비례식 등이 있지요. 그 외도 여러 가지 분수식이 있는데, 여기서 다뤄볼게요.
여러 가지 유리식의 풀이에서는 그 전에 공부했던 곱셈공식, 인수분해 공식 등을 활용해야 합니다. 다 기억하고 있어야겠죠? 문제에 조건식과 답을 구해야 하는 식 두 가지가 나오는데, 조건식을 여러 공식을 이용해서 모양을 바꾸어 문제의 식에 대입해서 답을 구합니다.
모양을 바꾸는 방법은 몇 가지 유형이 있으니까 유형만 잘 알고 있으면 돼요. 문제의 유형과 풀이법을 알아보죠.
유리식의 계산
조건식이 방정식일 때
조건이 방정식일 때는 방정식의 모양을 바꿔서 분수식으로 만드는데 이때 곱셈공식이나 곱셈공식의 변형을 이용해요. 가장 많이 나오는 게 분수꼴 곱셈 공식의 변형이에요.
아래 공식을 잘 기억해두세요. 유도하는 과정은 곱셈공식의 변형에 나와 있어요.
x2 + x + 1 = 0일 때 다음을 구하여라.
(1) x3
(2) x3 +
(1) 인수분해 공식 중에 a3 + b3 = (a + b)(a2 - ab + b2 ), a3 - b3 = (a - b)(a2 + ab + b2)이 있어요.
x2 + x + 1 = 0의 양변에 (x - 1)을 곱해보죠.
x2 + x + 1 = 0
(x - 1)(x2 + x + 1) = 0·(x - 1)
x3 - 1 = 0
x3 = 1
x2 - x + 1 = 0이었다면 양변에 x + 1을 곱해서 같은 방법으로 풀면 돼요.
(2) 이죠? 그러니까 x2 + x + 1 = 0으로 x +
의 값을 구해야 해요.
x2 + x + 1 = 0
x2 + 1 = -x
x + = -1 (∵ 양변 ÷ x)
좌변에 x = 0을 대입하면 식이 성립하지 않으므로 x = 0이 아니에요. 따라서 양변을 x로 나눌 수 있어요. 양변을 x로 나누면 분수꼴이 돼요.
= (-1)3 - 3(-1)
= -1 + 3
= 2
이차방정식이 조건식으로 주어졌을 때, 일차항을 이항하고 양변을 x로 나누는 방법은 자주 사용하는 방법이니까 잘 기억해두세요.
조건식이 두 문자가 있는 등식일 때
이번에도 조건식을 문제에 맞게 변형해야 해요. 조건식이 등식이면 한 문자에 대하여 정리합니다. 정리한 문자를 식에 대입해서 한 문자에 관한 식으로 바꾸면 문자는 약분돼 없어지고 숫자만 남아요.
조건식이 방정식일 때: 곱셈공식, 곱셈공식의 변형을 이용하여 방정식을 변형
조건식이 등식일 때: 한 문자에 관해 정리한 후 문제에 대입
4x = 2y일 때 을 구하여라.
4x = 2y이므로 y에 대하여 정리하면
y = 2x
y= 2x를 문제에 대입
x = 2y = 3z일 때, 을 구하여라.
x = 2y
y = x
x = 3z
z = x
y와 z에 대하여 정리했으니까 이걸 문제에 대입해보죠.
마지막에는 번분수의 성질을 이용해서 약분도 하고, 분수로 바꾼 겁니다.
함께 보면 좋은 글
유리식, 분수식, 유리식의 사칙연산
부분분수 공식, 번분수
가비의 리, 비례식 푸는 법
곱셈공식, 곱셈공식 유도
곱셈공식의 변형, 곱셈공식의 변형 유도
항등식과 항등식의 성질
항등식은 중학교 1학년 때 방정식을 배우면서 잠깐 공부했어요. [중등수학/중1 수학] - 방정식과 항등식, 등식의 뜻. 항등식이 뭔지 알아보고, 주어진 식이 항등식인지 아닌지 판단하면 됐었죠.
고등학교에서 공부하는 항등식의 뜻은 똑같아요. 다만 이제는 하나의 식을 주면서 항등식이라는 걸 미리 알려줘요. 그 대신에 주어진 식에서 여러 가지 값을 구하는 거죠.
이런 값을 구하는 방법에서 가장 먼저 생각해야 하는 게 항등식의 성질인데, 이 글에서는 항등식의 성질을 공부할 겁니다.
항등식
등식은 등호를 이용해서 등호 양쪽이 서로 같다는 걸 나타내는 식이에요. 등식에서는 미지수를 사용하기도 하는데, 미지수의 값에 따라 참이 되기도 하고 거짓이 되기도 하는 등식을 방정식이라고 하죠. 미지수가 있지만 미지수에 상관없이 항상 성립하는 등식을 항등식이라고 해요.
항등식을 여러 가지 다른 표현을 사용하기도 해요. 다음은 모두 다 항등식을 나타내는 표현이니까 알아두세요.
모든 x에 대하여 … 일 때
임의의 x에 대하여 … 일 때
어떠한 x에 대하여도 … 일 때
x에 관계없이 … 일 때
x에 대한 항등식 …
항등식의 성질
ax + b = 0이라는 식이 x에 관한 항등식일 때, a, b의 값을 알아보죠.
x가 어떤 값을 갖더라도 이 등식은 참이 되므로
x = 1일 때, a + b = 0
x = 2일 때, 2a + b = 0
x = 3일 때, 3a + b = 0
세 개 중에 두 개를 선택하면 연립방정식이죠? a + b = 0, 2a + b = 0에서 a = 0, b = 0이라는 값을 구할 수 있어요.
0x + 0 = 0이라는 거죠. 이건 모든 항등식의 기본 꼴이라고 할 수 있어요. 미지수의 계수도 0, 상수항 0, 우변도 0이죠.
ax2 + bx + c = 0이 항등식일 때는 어떨까요? 이것도 마찬가지로 x2, x, 상수항, 우변이 모두 0이면 항등식이에요. 즉, a = b = c = 0이면 항등식인 거죠.
ax + b = cx + d이 항등식일 때, a, b, c, d를 구해볼까요? 우변에 있는 항들을 모두 좌변으로 이항시켜보죠.
ax + b = cx + d
(a - c)x + b - d = 0
x의 계수 a - c = 0, 상수항 b - d = 0이면 항등식이에요. 따라서 a = c, b = d에요.
ax2 + bx + c = a'x2 + b'x + c'
(a - a')x2 + (b - b')x + c - c' = 0
a = a', b = b', c = c' 이면 항등식이 돼요.
모든 항을 좌변으로 이항 → 동류항 정리 → 0x + 0 = 0이면 항등식
ax + b = 0이 x에 대한 항등식 ⇔ a = b = 0
ax2 + bx + c = 0이 x에 대한 항등식 ⇔ a = b = c = 0
좌변과 우변에서 차수가 같은 문자의 계수끼리 서로 같으면 항등식
ax + b = cx + d가 x에 대한 항등식 ⇔ a = c, b = d
ax2 + bx + c = a'x2 + b'x + c가 x에 대한 항등식 ⇔ a = a', b = b', c = c'
임의의 x에 대하여 다음이 성립할 때, a, b, c의 값을 구하여라.
(1) a(x - 2)2 + b(x + 3) + (c + 4) = 0
(2) a(x + 1)2 + bx - c - 3 = 4x2 + 2x + 4
임의의 x에 대하여 성립한다는 말은 항등식이라는 얘기죠.
(1)번은 일단 전개부터 해야겠네요. 모든 항을 좌변으로 이항했을 때, x의 계수와 상수항이 0이면 항등식이에요
a(x - 2)2 + b(x + 3) + (c + 4) = 0
a(x2 - 4x + 4) + bx + 3b + c + 4 = 0
ax2 - 4ax + 4a + bx + 3b + c + 4 = 0
ax2 + (b - 4a)x + 4a + 3b + c + 4 = 0
a = 0, b - 4a = 0, 4a + 3b + c + 4 = 0 이면 항등식이므로 a = 0, b = 0, c = -4
(2)도 전개해야 하는데, 우변에 식이 있어요. 좌변으로 모두 이항해서 x의 계수와 상수항이 0인지 확인해도 되고요. 아니면 좌변을 전개해서 우변에 있는 계수들과 같은 값을 가질 때 a, b, c를 구해도 되죠.
a(x + 1)2 + bx - c - 3 = 4x2 + 2x + 4
a(x + 2x + 1) + bx - c - 3 = 4x2 + 2x + 4
ax2 + 2ax + a + bx - c - 3 = 4x2 + 2x + 4
ax2 + (2a + b)x + (a - c - 3) = 4x2 + 2x + 4
a = 4, 2a + b = 2, a - c - 3 = 4면 항등식이에요.
a = 4, b = -6, c = -3
함께 보면 좋은 글
미정계수법 - 계수비교법, 수치대입법
나머지정리, 인수정리
무리수가 서로 같을 조건
[중등수학/중1 수학] - 방정식과 항등식, 등식의 뜻
등식의 변형, 한 문자에 대하여, 한 문자에 대한 식
등식의 변형은 등식의 성질과 이항을 이용해서 등식의 모양을 바꾸는 걸 말해요. 이항이라는 게 어차피 등식의 성질을 응용한 것이니까 등식의 성질만 잘 알고 있어도 되죠.
1학년 때 해봤던 대입도 다시 공부할 거니까 기억나지 않는다면 대입, 식의 값을 얼른 읽어보고 오세요.
이 글에서는 한 문자에 대하여와 한 문자에 대한 식을 공부할 건데, ~ 대하여와 ~ 대한 식이라는 글자에 따라 의미가 엄청나게 달라지니까 잘 구별해야 합니다.
등식의 변형을 잘 이용하면 거리, 속력, 시간처럼 같은 내용으로 이루어진 모양이 비슷한 공식도 쉽게 외울 수 있어서 상당히 도움이 많이 되는 내용이에요.
등식의 변형
식의 대입
1학년 때 대입과 식의 값을 공부했어요. 대입은 대신 넣는 거고, 식의 값은 문자에 특정한 값을 대입해서 얻은 결과를 말해요. a = 3을 a + 2에 대입하면 3 + 2 = 5라는 식의 값을 얻었죠?
여기서 공부할 대입은 식의 문자에 일정한 값을 대입하는데, 대입하는 값이 숫자가 아니라 다항식이에요.
x = 3a + 5를 2x + 3에 대입해보죠. 대입하면 x를 3a + 5로 바꾸는 거예요.
2x + 3
= 2(3a + 5) + 3 ∵ 식의 대입
= 6a + 10 + 3 ∵ 분배법칙
= 6a + 13 ∵ 식의 값
식을 대입할 때는 괄호를 꼭 넣어야 해요. 만약 위의 계산 과정에서 괄호를 넣지 않는다면 어떻게 될까요?
2x + 3
= 2 × 3a + 5 + 3
= 6a + 8
괄호를 있을 때와 괄호가 없을 때의 식의 값이 달라지죠? 괄호를 넣지 않으면 답을 틀리게 돼요.
한 문자에 대하여
"한 문자에 대하여"와 "한 문자에 관하여"는 같은 말이라는 걸 미리 얘기해 둘께요.
일차방정식을 풀 때 좌변에는 x가 있는 항, 우변에는 상수항이 오도록 이항했죠? 그리고 마지막에 x의 계수로 양변을 나눠줬어요. 이렇게 하는 걸 문자 x에 대하여 푼다고 해요.
x에 대하여 푼다는 건 좌변에는 x만 남기고 그 이외의 문자와 숫자들은 모두 우변으로 이항하는 거예요. 만약에 y에 대하여 푼다고 한다면 y가 있는 항을 좌변, 그 외의 항을 우변으로 이항하는 거고요.
x에 대하여 푼다. → x = (x가 없는 항) + 상수항
y에 대하여 푼다. → y = (y가 없는 항) + 상수항
이때 좌변에 있는 문자의 계수는 1이 되어야 해요. 또 정해진 문자를 제외한 모든 문자는 숫자 취급해요.
2x = 4y + 2 (X)
x = 2y + 1 (O)
첫 번째는 x의 계수가 2라서 틀린 거고, 세 번째는 x의 계수가 y라서 틀렸어요. 양변을 각각 2와 y로 나눠준 두 번째, 네 번째 식이 맞아요.
한 문자에 대하여 풀 때는 등식의 성질을 이용해요.
- 해당 문자가 들어있는 항은 좌변으로, 나머지 항은 모두 우변으로 이항
- 해당 문자의 계수로 양변을 나눈다.
x + 2y - 4 = 10을 x에 대하여 풀어보죠. x가 있는 항만 좌변, x가 없는 항은 우변으로 이항해요.
x + 2y - 4 = 10
x = -2y + 4 + 10
x = -2y + 14
다음 식을 a에 대하여 풀어라.
(1) 3a - 2b = 6a + b - 3
(2) 2(a + 3b) - 3(2a - b) = b + 8
a에 대하여 풀라고 했으니 a = (a가 없는 항)의 꼴이 되어야 해요.
(1) 3a - 2b = 6a + b - 3
3a - 6a = b - 3 + 2b
-3a = 3b - 3
a = -b + 1
(2)는 괄호가 있으니 분배법칙으로 먼저 괄호를 풀어야 해요.
2(a + 3b) - 3(2a - b) = b + 8
2a + 6b - 6a + 3b = b + 8
-4a + 9b = b + 8
-4a = b + 8 - 9b
-4a = -8b + 8
a = 2b - 2
윗변의 길이가 a, 밑변의 길이가 b, 높이가 h인 사다리꼴의 넓이를 S라고 할 때, a, b, h, S의 관계식을 높이 h에 대하여 풀어라.
높이 h에 대하여 풀면 h = (……………)의 꼴이니까 h는 좌변으로, h가 아닌 다른 문자는 모두 우변으로 보내야 해요. 넓이 식을 써보면 문자가 계수처럼 되어있는데, 여기서 h가 아닌 문자는 모두 숫자 취급해서 처리합니다.
참고로 는 좌변에 S만 있으니까 S에 대하여 풀어서 나타낸 거예요.
거리, 속력, 시간에 관한 공식은 세 가지가 있어요. 세 개를 외우는 건 정말 헷갈려요. 이럴 때는 공식을 하나만 외우세요. 거리를 s, 시간을 t, 속력을 v라고 할게요.
만 외웠다고 해보죠.
그럼 거리 s는 어떻게 구하나요? 위 식을 s에 대하여 풀면 돼요. 위 식의 양변에 t를 곱해보면 vt = s가 되네요.
이번에는 시간 t를 구해보죠. t에 대하여 풀면 되겠죠? vt = s에서 양변을 v로 나눠주면 t = s ÷ v가 돼요.
이뿐만 아니라 소금물의 농도 구하는 공식도 둘 중 하나만 외우면 같은 방법으로 다른 값을 구하는 공식을 만들어 낼 수 있어요. 헷갈리는 공식도 다 외우면 좋지만, 굳이 헷갈리면서까지 외우기보다는 하나만 완전히 외우고 나머지는 이런 방법으로 구할 수 있다는 것도 알아두세요.
한 문자에 대한 식
"한 문자에 대한"과 "한 문자에 관한"은 같은 말이에요.
한 문자에 대한 식은 어떤 식을 해당 문자와 상수항만으로 표현하는 걸 말해요. 그러니까 주어진 문자를 제외한 문자를 모두 없애야 하는 거죠.
없애려고 하는 문자에 식을 대입하면 해당 문자는 없어지잖아요. 이걸 이용하는 거예요. y를 없애려면 y = (………) 식을 y자리에 대입하는 거죠.
x + y = 3일 때, 2x + 3y + 6을 x에 대한 식으로 나타낸다고 해보죠. 순서를 잘 보세요.
- x + y = 3을 y에 대하여 풀어서 정리
y = - x + 3 - ①식을 2x + 3y + 6에 대입
2x + 3(-x + 3) + 6 - ②식을 전개하여 정리
2x + 3(-x + 3) + 6
= 2x - 3x + 9 + 6
= -x + 15
한 문자에 대한 식의 문제에서는 식이 2개 이상 나와요. 한 문자로 나타낼 식과 다른 문자를 제외할 수 있도록 대입할 수 있는 식이요.
x에 대하여 | x에 대한 식 |
---|---|
x = (x가 없는 항) + 상수항 | 어떤 식 = (x가 있는 항) + 상수항 |
x와 상수항이 다른 변 | x와 상수항이 같은 변 |
하나의 등식을 정리 | 두 개의 식 중 한 식을 정리하여 다른 식에 대입 |
x - y = 6일 때 다음을 구하여라.
(1) 2x + 3y + 7을 x에 대한 식으로 나타내어라.
(2) 2x + 3y + 7을 y에 대한 식으로 나타내어라.
어떤 식을 한 문자에 대한 식으로 나타내려면 주어진 문자가 아닌 문자는 모두 없애야 해요. 이때 없앨 문자에 대하여 식을 정리해서 대입합니다.
(1)에서는 x에 대한 식이므로 x와 상수항만 남기고 y를 지워야 해요. 주어진 식을 y에 대하여 풀어서 대입해야겠네요.
x - y = 6
-y = -x + 6
y = x - 6
2x + 3y + 7
= 2x + 3(x - 6) + 7
= 2x + 3x - 18 + 7
= 5x - 11
(2)에서는 y에 대한 식이므로 y와 상수항만 남기고 x를 지워야 해요. 주어진 식을 x에 대하여 풀어서 대입해야겠군요.
x - y = 6
x = y + 6
2x + 3y + 7
= 2(y + 6) + 3y + 7
= 2y + 12 + 3y + 7
= 5y + 19
함께 보면 좋은 글
[중등수학/중1 수학] - 등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
[중등수학/중1 수학] - 일차방정식의 풀이, 일차방정식의 뜻, 이항
[중등수학/중1 수학] - 대입, 식의 값
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
방정식과 항등식, 등식의 뜻에서 등식과 방정식, 항등식에 대해서 공부했어요.
이제는 등식의 성질을 공부할 거예요. 등식의 특징이 있는데, 이 특징을 잘 이용하면 방정식의 해를 쉽게 구할 수 있거든요. 앞으로 배울 단원이 일차방정식인 걸 고려하면 이 등식의 성질은 앞으로 계속해서 사용할 아주 중요한 성질이라는 알 수 있겠죠?
그렇다고 성질을 공식처럼 외울 필요는 없어요. 그 의미를 제대로 파악하고 실제 식에서 사용할 수 있으면 돼요.
등식의 성질
등식에는 아주 중요한 성질이 있어요. 이 성질은 꼭 알고 있어야 합니다.
참인 등식은 등호(=) 양쪽에 있는 좌변과 우변이 같아요.
2 + 3 = 5는 참인 등식이죠. 이 등식의 양변에 4를 더해볼까요?
2 + 3 + 4 = 5 + 4
양변에 똑같이 4를 더하면, 좌변, 우변의 값은 9로 달라지지만, 양쪽 모두 9니까 서로 같은 건 그대로죠. 만약에 양변에 똑같이 4를 뺀다면 어떨까요? 값은 1이 되지만 양변 모두 1이니까 양변이 같은 건 그대로 에요.
즉, 참인 등식에서 양변에 같은 수를 더하거나 빼더라도 그 등식은 계속 참인 거죠.
양변에 같은 수를 더하거나 뺄 때뿐 아니라 같은 수를 곱하거나 나눌 때도 똑같아요. 이걸 등식의 성질이라고 해요.
등식의 성질
- 등식의 양변에 같은 수를 더해도 등식은 성립한다.
a = b이면 a + c = b + c - 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
a = b이면 a - c = b - c - 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
a = b이면 ac = bc - 등식의 양변을 0이 아닌 같은 수로 나누어도 등식은 성립한다.
a = b이면 a ÷ c = b ÷ c (c ≠ 0)
한 가지 주의할 건 양변을 같은 수로 나눌 때 0으로 나누는 건 안 되요. 나눗셈은 분수로 바꿀 수 있는데, 분모가 0인 분수는 없으니까 0으로 나누는 경우는 없어요. 문제에서 "등식의 양변을 같은 수로 나누어도 등식은 성립한다."라는 말이 나오면 틀린 거예요.
등식의 성질을 이용한 일차방정식의 풀이
등식의 성질이 왜 중요하면 방정식을 풀 때 이용하기 때문이에요.
방정식의 해를 구할 때, x = 1, 2, 3, …처럼 숫자를 하나씩 넣으면서 구할 수는 없어요. 해가 1, 2, 3안에 있으면 괜찮지만 100일 수도 있고, -1일 수도 있잖아요. 혹은 일 수도 있고요.
이때, 등식의 성질을 이용하면 방정식의 해를 조금 더 쉽게 구할 수 있어요.
4x + 2 = -10이라는 방정식이 있다고 해보죠. x = (숫자) 꼴로 나타내면 미지수 x의 값을 구할 수 있죠? 이 미지수 x의 값이 방정식의 해고요. 방정식의 좌변에 x만 남도록 식의 모양을 바꿔보죠.
4x + 2 = -10에서 좌변에서 일단 2를 없애보죠. 2를 없애려면 2를 빼면 되는데, 좌변에서 2를 빼면, 우변에도 똑같이 2를 빼줘야 등식이 성립해요.
4x + 2 = -10
4x + 2 - 2 = -10 - 2 (등식의 양변에서 똑같은 수를 빼도 등식은 성립한다.)
4x = -12
이제 좌변에 4x만 남았네요. 4x는 원래는 4 × x로 곱셈기호가 생략된 거예요. 4로 나눠주면 x만 남겠죠? 좌변을 4로 나누면 우변도 4로 나눠줘야 등식이 성립해요.
4x = -12
4x ÷ 4 = -12 ÷ 4 (등식의 양변을 0이 아닌 같은 수로 나누어도 등식은 성립한다.)
x = -3
해를 구했어요.
등식의 성질을 이용한 방정식의 풀이
x = (숫자) 꼴로 방정식의 모양을 바꾼다.
x가 없는 항을 먼저 정리하고, 마지막에 x의 계수로 양변을 나눈다.
등식의 성질을 이용하여 다음 방정식을 풀어라.
(1) -3x + 2 = 8
(2) 5x - 5 = 30
x = (숫자) 꼴로 방정식의 모양을 바꾸는데, 이때 등식의 성질을 이용해요.
(1)에서 먼저 2를 없앤 다음에, x에 곱해져 있는 (-3)을 없애야겠네요.
-3x + 2 = 8
-3x + 2 - 2 = 8 - 2
-3x = 6
-3x ÷ (-3) = 6 ÷ (-3)
x = -2
(2) 5x - 5 = 30
5x - 5 + 5 = 30 + 5
5x = 35
5x ÷ 5 = 35 ÷ 5
x = 7
함께 보면 좋은 글
방정식과 항등식, 등식의 뜻
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이
일차방정식의 활용 첫번째
일차방정식의 활용 2
방정식과 항등식, 등식의 뜻
이번 글은 아주아주 중요합니다. 앞으로 배울 수학에서 가장 기본이 되는 식을 배울 거거든요. 여기서 공부할 방정식은 앞으로 배울 부등식, 함수 등 모든 식의 기본이 되는 식이에요.
다만 한가지 다행인 건 우리가 이제까지 알게 모르게 해왔던 것 과정이라는 거지요. 이름을 몰랐을 뿐이고, 그 정확한 정의를 몰랐을 뿐이에요.
방정식과 항등식은 비슷해 보이지만 다른 식이에요. 둘을 구별할 수 있도록 차이를 잘 비교해보세요.
등식
2 + 3을 계산해보세요. 2 + 3 = 5 이렇게 계산할 거예요.
위 계산에서 = 라는 기호를 사용했어요. 등호라고 부르는 이 기호는 = 양쪽이 서로 같다는 뜻이에요.
등식은 등호(=)의 양쪽이 서로 같음을 나타내는 식이에요. 등호의 왼쪽을 좌변, 오른쪽은 우변이라고 부르고, 좌변과 우변을 통틀어 양변이라고 불러요.
식에 등호가 있으면 식이 맞든 틀리든 상관없이 등식이라고 해요. 식이 맞으면 참인 등식, 틀리면 거짓인 등식이라고 해요.
2 + 3 = 6이라는 식이 있어요. 좌변과 우변이 다른데, 등호를 써서 같다고 했으니 잘못된 식이죠? 이게 바로 거짓인 등식이에요.
방정식과 항등식
방정식
문자와 식에서 문자를 사용해서 식을 세울 수 있다고 공부했어요. 문자를 왜 쓰나요? 모르는 어떤 수를 □라고 쓰는 대신 문자로 썼었죠? 이 모르는 수를 미지수라고 합니다. 미지수는 보통 x를 쓰지만 정해진 건 아니니까 아무 문자나 사용해도 상관없어요.
예전 같으면 "□ + 3 = 5에서 □는 2입니다." 했다면 이제는 "x + 3 = 5에서 x = 2입니다."로 바뀐 것뿐이에요.
방정식은 미지수가 있어서, 그 미지수에 따라 식이 참이 되기도 하고 거짓이 되기도 하는 식이에요. 등호와 미지수가 같이 있어야 해요.
x + 3 = 5에서
x가 1이면 좌변은 4, 우변은 5여서 이 식은 거짓이에요.
x가 2면 좌변과 우변이 모두 5로 같지요. 이때 식은 참이에요.
x가 3이면 좌변이 6, 우변은 5여서 거짓이 되지요.
미지수 x에 따라서 참이 되기도 하고 거짓이 되기도 하니까 x + 3 = 5는 방정식이라고 할 수 있는 거지요.
방정식이 참이 될 때의 미지수를 방정식의 해 또는 방정식의 근이라고 해요. x + 3 = 5에서는 x가 2일 때, 식이 참이었으니 이 방정식의 해는 2에요.
문제의 답을 구하는 걸 문제를 푼다고 하지요? 방정식에서 해를 찾는 걸 방정식을 푼다고 해요.
방정식: 미지수에 따라 참이 되기도 하고 거짓이 되기도 하는 등식
방정식의 해: 방정식을 참이 되게 하는 미지수. 방정식의 근
방정식을 푼다: 방정식의 해를 구하는 것.
항등식
항등식은 미지수에 어떤 수를 대입해도 참이 되는 등식이에요. 항상 참인 등식이죠.
x + 1 = 1 + x라는 식에서
x = 1이면 좌변과 우변이 모두 2로 같아요. 참이죠.
x = 2이면 좌변과 우변 모두 3으로 같아요. 역시 참이에요.
x + 1 = 1 + x는 x에 어떤 값을 넣어도 참이 돼요. 항등식이죠.
방정식과 항등식 구별
방정식 | 항등식 |
---|---|
미지수가 특정한 값을 가질 때만 참 | 미지수가 어떤 값을 가져도 참 |
좌변과 우변이 다른 식 | 좌변과 우변이 같은 식 |
x + 1 = 1 + x을 보세요. 좌변 x + 1은 덧셈에 대한 교환법칙에 의해서 1 + x와 같죠. 결국, 좌변과 우변이 모두 1 + x에요. 양변이 서로 같으니까 항등식인 거죠.
x + x = 2x라는 식도 한 번 볼까요. 좌변을 동류항 덧셈을 해보면 2x가 돼요. 이건 우변인 2x와 같은 식이죠. 그래서 이 등식은 항등식이 되는 거예요.
x + 3 = 5라는 등식에서 좌변은 식을 더는 바꿀 수 없죠? 그 상태에서 좌변과 우변의 식이 달라요. 그래서 이 등식은 항등식이 아니라 방정식인 거예요.
다음 중 방정식과 항등식을 모두 고르시오.
(1) 2x + 3 = 3 + 2x
(2) 2x - 1 < 5
(3) 2x - x = x
(4) 3 + 5 = 8
(5) 2x - 4 = 6
방정식은 미지수가 있어서 미지수에 따라 참이 되기도 하고 거짓이 되기도 하는 등식이에요. 항등식은 항상 참인 등식으로 좌변과 우변이 같은 식으로 되어 있어요.
(1) 2x + 3 = 3 + 2x은 좌변의 2x + 3을 교환법칙에 따라 자리를 바꾸면 3 + 2x가 되어 우변과 같은 식이 되므로 항등식이에요.
(2) 2x - 1 < 5은 등호가 아니라 부등호가 있어서 등식이 아니에요.
(3) 2x - x = x에서 좌변 2x - x를 동류항 계산해보면 x가 되어 우변과 같으므로 이 식은 항등식이네요.
(4) 3 + 5 = 8은 미지수가 없네요. 미지수가 없으니까 방정식도 아니고 항등식도 아닌 그냥 등식입니다.
(5) 2x - 4 = 6은 미지수 x가 있지만, 좌변과 우변이 서로 다르고 x = 5일 때만 참이 되는 방정식이네요.
따라서 방정식은 (5)이고, 항등식은 (1), (3) 입니다.
함께 보면 좋은 글
문자와 식, 문자를 포함한 식
단항식과 다항식, 항, 상수항, 계수, 차수
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
부등식의 성질
부등식이란 무엇인지 이해하셨나요?
부등식을 이해할 때 등식과 비교해서 이해하면 좀 더 쉽게 이해할 수 있어요. 등식과 부등식은 이름에서 알 수 있듯이 사촌(?) 관계에요. 등호 대신 부등호를 사용하는 게 부등식이죠.
부등식과 등식이 비슷한 부분이 있는데, 같은 부분은 그대로 이해하면 되고, 다른 부분만 조금 더 생각하면 돼요. 두 가지 빼면 등식의 성질과 완전히 같아요. 등식의 성질을 다 알고 있겠지만 한 번 더 정리해보죠.
등식의 성질
- 등식의 양변에 같은 수를 더해도 등식은 성립한다.
a = b이면 a + c = b + c - 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
a = b이면 a - c = b - c - 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
a = b이면 ac = bc - 등식의 양변을 같은 수로 나누어도 등식은 성립한다.
a = b이면 a ÷ c = b ÷ c (c ≠ 0)
등식에서는 양변에 같은 수를 더하거나 빼거나 곱하거나 나누어도 등식은 성립하는 성질이 있어요. 부등식에도 비슷한 성질이 있어요.
부등식의 성질
부등식의 양변에 똑같은 수를 더할 때: 부등호의 방향은 바뀌지 않는다.
8 > 4라는 부등식을 이용해보죠.
위 부등식의 양변에 똑같이 2를 더해볼까요? 8 + 2 > 4 + 2는 10 > 6이 되어서 부등호의 방향이 그대로예요. 양변에 음수를 더해볼까요? 8 + (-2) > 4 + (-2)을 하면 6 > 2이 되어서 부등호의 방향은 역시 바뀌지 않아요.
부등식의 양변에서 똑같은 수를 뺄 때: 부등호의 방향은 바뀌지 않는다.
이번에는 양변에서 같은 수를 빼보죠. 2를 빼 볼게요. 8 - 2 > 4 - 2는 6 > 2가 되어서 부등호가 그대로예요. 음수를 빼 볼게요. 8 - (-2) > 4 - (-2)은 10 > 6이 되어서 마찬가지로 부등호가 그대로군요.
부등식의 양변에 똑같은 수를 곱할 때: 양수를 곱하면 그대로, 음수를 곱하면 바뀐다.
자 이번에는 같은 수를 곱해볼게요. 8 × 2 > 4 × 2은 16 > 8이 되어서 부등호가 그대로예요. 음수를 곱해보죠. 좌변은 8 × (-2) = -16, 우변은 4 × (-2) = -8이 돼요. 부등호가 어떻게 되어야 하죠? -16 < -8처럼 부등호가 바뀌어야 참이죠?
부등식의 양변을 똑같은 수로 나눌 때: 양수로 나누면 그대로, 음수로 나누면 바뀐다.
나누기를 해보죠. 8 ÷ 2 > 4 ÷ 2 는 부등호 방향이 그대로예요. 음수인 (-2)로 나눠볼까요? 8 ÷ (-2)과 4 ÷ (-2) 중 어떤 게 더 큰가요? -4 < -2가 되어야 참이 되네요.
위의 내용을 다 이해했다면 이것만 기억하세요.
부등식의 성질
부등식의 양변에 음수를 곱하거나 음수로 나눌 때만 부등호의 방향이 바뀐다. 그 외에는 그대로이다
a < b일 때 다음 괄호에 알맞은 부등호를 넣어라.
(1) a+5 ( ) b+5
(2) a-3 ( ) b-3
(3) 10a ( ) 10b
(4) -2a ( ) -2b
(5) -5a + 9 ( ) -5b + 9
(1)에서 a < b 이고, 양변에 같은 수인 5를 더했으므로 부등호의 방향은 바뀌지 않고, 그대로 즉, a + 5 < b + 5가 되고요.
(2)도 마찬가지로 양변에서 같은 수를 뺐으므로 부등호의 방향이 그대로예요. a - 3 < b - 3
(3)은 양변에 양수인 10을 곱했으니까 부등호의 방향이 그대예요. 10a < 10b
(4)는 양변에 음수인 -2를 곱했어요. 그러니까 부등호의 방향이 바꿔야겠죠? -2a > -2b
(5)에는 항이 두 개가 되었는데, a, b의 계수가 바뀐 것 즉, -5를 곱해준 계산이 먼저예요. 음수인 -5를 곱했으니 부등호가 바뀌겠죠? -5a > -5b가 돼요. 거기에 양변에 9를 더했으니까 부등호의 방향은 그대로 즉, -5a + 9 > -5b + 9가 돼요.
함께 보면 좋은 글
[중등수학/중1 수학] - 등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
부등식, 부등식의 뜻
일차부등식의 풀이
여러가지 일차부등식