대소관계
절대부등식, 부등식의 증명에 이용되는 실수의 성질
절대부등식이라는 새로운 용어가 나오는데, 이 절대부등식은 증명을 통해서 이게 절대적인 힘(?)을 가지고 있다는 것을 보여줘야 해요.
절대부등식을 증명할 때 여러 가지 조건들과 성질들을 이용하는데, 이런 성질들을 잘 기억하고 있어야 해요. 새로운 성질을 공부하는 건 아니고 그동안 공부했던 여러 가지를 정리하는 차원이라고 생각하세요.
증명을 해야 하니까 내용이 조금 어려울 수 있으니 집중해서 보세요.
절대부등식
등식에 미지수가 있을 때, 미지수에 어떤 값을 대입해도 항상 성립하는 등식을 항등식이라고 해요. 부등식에도 미지수가 있을 때, 미지수에 어떤 값을 대입해도 성립하는 부등식이 있는데 그걸 바로 절대부등식이라고 하지요.
이차부등식이 항상 성립할 조건을 공부했었죠? 이처럼 항상 성립하는 부등식이 절대부등식이에요.
어떤 부등식을 보고 이게 진짜로 항상 참이 되는지 알아볼 필요가 있겠죠? 절대부등식은 증명을 통해서 그게 항상 참인지 밝혀야 해요.
부등식의 증명에 이용되는 실수의 성질
부등식은 부등호로 되어 있는데, 부등호는 기본적으로 대소관계를 나타내는 거죠? 그래서 부등식의 증명에서는 실수의 대소관계에 대한 기본 성질을 이용합니다.
그 외에도 몇 가지가 더 있는데, 부등식의 증명에 사용하는 실수의 성질을 정리해보면 아래와 같아요.
- a > b ⇔ a - b > 0
- a2 ≥ 0
- a > 0, b > 0일 때
- a > b ⇔ a2 > b2
- a > 0, b > 0일 때,
- |a| ≥ a, |a|2 = a2, |a||b| = |ab|
실수의 대소비교를 할 때는 차를 이용해서 비교해요. 차가 양수면 앞에 있는 수가 더 큰 수잖아요. 그리고 모든 실수의 제곱은 0보다 크거나 같고요.
세 번째에 있는 건, 근호나 절댓값을 포함한 식을 비교할 때인데 이때는 두 식의 제곱의 차를 이용해서 대소를 비교해요.
네 번째는 절댓값의 성질이에요. 절댓값은 0 또는 양수니까 계산한 결과가 0 또는 양수라면 절댓값 기호를 그냥 없애도 상관없잖아요.
a, b, c가 실수일 때 다음 부등식을 증명하고 등호가 성립하는 경우를 구하여라.
(1) a2 + b2 + c2 ≥ ab + bc + ca
(2) (단, a > 0, b > 0)
(3) |a| + |b| ≥ |a + b|
(1) 우변에 있는 항을 좌변으로 이항해서 정리해보죠.
a2 + b2 + c2 ≥ ab + bc + ca
a2 + b2 + c2 - ab - bc - ca ≥ 0 × 2(a2 + b2 + c2 - ab - bc - ca) ≥ 0
× (2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca) ≥ 0
× (a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2) ≥ 0
{(a - b)2 + (b - c)2 + (c - a)2} ≥ 0
(a - b)2 ≥ 0, (b - c)2 ≥ 0, (c - a)2 ≥ 0이므로 위 등식은 참. a = b = c일 때 등호 성립
원래 곱셈공식의 변형에 나오는 건데 등호만 부등호로 바뀐 거예요.
(2) 번은 근호가 있어요. a > 0, b > 0이니까 이예요. 모두 양수니까 제곱해서 비교할 수 있어요.
양변이 모두 양수이고 제곱했을 때 좌변이 크니까 제곱하지 않았을 때도 좌변이 커요. a > 0, b > 0이니까 등호가 성립할 수는 없겠죠?
(3) |a| + |b| ≥ |a + b|도 절댓값으로 모든 항이 양수니까 제곱해서 비교해보죠. 그리고 절댓값이 있으니까 |a|2 = a2, |a||b| = |ab|도 기억하고요.
|a| + |b| ≥ |a + b|
(|a| + |b|)2 ≥ (|a + b|)2
|a|2 + 2|a||b| + |b|2 ≥ (a + b)2
a2 + 2|ab| + b2 ≥ a2 + 2ab + b2
2|ab| - 2ab ≥ 0
2(|ab| - ab) ≥ 0
|ab| ≥ ab이므로 부등식이 참. |ab| = ab일 때 즉 ab ≥ 0일 때 등호 성립. (a, b의 부호가 같거나 적어도 하나가 0일 때)
함께 보면 좋은 글
절대부등식 증명 - 산술, 기하, 조화평균
코시 슈바르츠 부등식 증명
이차부등식이 항상 성립할 조건
연립이차부등식, 연립이차부등식의 풀이
실수의 대소관계, 실수의 대소관계에 대한 기본 성질
실수의 대소관계, 실수의 대소관계에 대한 기본 성질
두 실수가 있을 때, 크기를 비교하는 방법이에요.
실수의 크기비교는 [중등수학/중3 수학] - 실수의 대소관계, 실수의 크기비교에서 해본 적이 있어요. 여기에서 했던 방법에 하나만 더 추가하는 거예요.
두 수의 부호를 이용해서 두 수의 합과 곱, 다른 수와의 합, 차, 곱의 부호를 알 수 있는 성질을 공부할 거예요. 그리고 둘의 크기비교도 해볼거고요. 너무 당연한 성질이라서 읽어보면 왜 그런지 금방 이해할 수 있을 정도로 매우 쉬운 내용이에요.
실수의 대소관계에 대한 기본 성질
실수가 있다면 이 실수는 양수, 0, 음수 중 하나에요. 세 가지가 아닌 실수는 없어요. 실수는 아래와 같은 성질을 가져요.
a는 a > 0, a = 0, a < 0중 하나
a > 0 ⇔ -a < 0
a > 0, b > 0 ⇔ a + b > 0, ab > 0
a2 ≥ 0
두 번째는 부등식의 성질에서 공부했던 거죠? 음수를 곱하면 부등호의 방향이 바뀐다. a를 이항했다고 생각해도 되고요.
세 번째, 양수와 양수를 더했으니 결과는 당연히 양수죠. 곱한 것도 물론 양수고요.
네 번째, 양수와 음수는 제곱하면 양수가 되고, 0은 제곱해도 0이니까 어떤 실수든 제곱하면 0보다 크거나 같아요.
이번에는 세 실수에 관한 성질을 알아보죠.
a > b, b > c ⇔ a > c
a > b ⇔ a + c > b + c, a - c > b - c
a > b, c > 0 ⇔ ac > bc
a > b, c < 0 ⇔ ac < bc
두 번째, 세 번째, 네 번째는 부등식의 성질을 그대로 옮겨놓은 거네요.
a - b < 0, ab < 0일 때, a, b의 부호를 구하여라.
a - b < 0에서 a < b에요. ab < 0이라는 말은 하나는 양수고 하나는 음수라는 얘기죠.
따라서 크기가 큰 b > 0, 크기가 작은 a < 0이에요.
실수의 대소비교
위 성질을 이용해서 실제로 두 실수의 크기를 비교하는 방법을 알아보죠.
실수의 대소비교는 [중등수학/중3 수학] - 실수의 대소관계, 실수의 크기비교에서 해봤어요. 두 수의 차를 이용했었죠?
a - b > 0 ⇔ a > b
a - b = 0 ⇔ a = b
a - b < 0 ⇔ a < b
한 수에서 다른 수를 빼서, 결과의 부호에 따라 두 수의 크기를 비교할 수 있었어요.
제곱근이나 절댓값처럼 양수인 경우에 제곱의 차를 이용해서 크기를 비교해요. 한 개라도 음수면 사용할 수 없어요.
a > 0, b > 0일 때
a2 - b2 > 0 ⇔ a > b
a2 - b2 = 0 ⇔ a = b
a2 - b2 < 0 ⇔ a < b
[중등수학/중3 수학] - 제곱근의 대소관계에서 제곱근 밖의 숫자를 제곱해서 제곱근 안으로 넣어서 크기를 비교했죠? 이번에는 제곱근 안으로 넣지 않고, 그냥 전체를 제곱하는 거예요.
다음 두 수의 크기를 비교하여라.
(1) 4, 2
제곱근이 있긴 한데, 둘 다 양수죠? 이럴 때는 제곱을 구해서 뺀 결과의 부호로 크기 비교를 해요.
42 - (2)2
= 16 - 12
= 4 > 0
제곱의 차가 양수이므로 앞에 있는 4가 더 커요. 4 > 2
함께 보면 좋은 글
[중등수학/중3 수학] - 실수의 대소관계, 실수의 크기비교
[중등수학/중2 수학] - 부등식의 성질
실수의 대소관계, 실수의 크기비교
실수라는 수를 알아봈으니까 두 실수중에 어떤 것이 더 큰지 알수도 있어야겠죠? 기본적으로 실수 = 유리수 + 무리수이므로 실수의 대소관계 = 유리수의 대소관계 + 무리수의 대소관계에요. 여기까지는 알고있죠?
거기에 새로운 걸 하나 추가할꺼에요. 새로운 방법이긴 하지만 그게 별로 어렵지는 않아요. 아주 간단히 뺄셈을 하면 되거든요.
어떻게 하면 뺄셈으로 실수의 대소관계를 알 수 있는 지와 뺄셈으로 안될 때는 또 어떤 방법을 이용하는지도 공부해보죠. 참고로 뺄셈으로 할 수는 있는데, 현재 단계에서는 뺄셈 자체가 안되는 경우가 있어서 다른 방법을 사용하는 거에요.
실수의 대소관계
실수의 대소관계는 유리수의 대소관계 + 제곱근의 대소관계에요.
실수의 대소관계에서 제일 먼저 해야할 일은 부호를 비교하는 거예요. 음수 < 0 < 양수의 순서죠. 숫자를 볼 필요도 없이 부호만 가지고도 대소를 알 수 있어요.
만약에 부호가 양수라면 숫자가 큰 게 커요. 무리수라면 근호안의 숫자가 큰 게 크죠. 부호가 모두 음수라면 숫자가 작은 게 크죠. 무리수는 근호안의 숫자가 작은 음수가 더 커요.
이게 우리가 알고 있는 수의 크기 비교죠.
이번에는 다른 방식으로 접근해 볼꺼에요.
a, b가 실수일 때a - b > 0 이면 a > b
a - b = 0 이면 a = b
a - b < 0 이면 a < b
간단한 내용이에요. a - b > 0 은 부등호가 있는 부등식이잖아요. -b를 이항하면 a > b가 되죠? 반대로 a > b에서 b를 좌변으로 이항하며 a - b > 0이 되고요. 둘이 왜 같은 뜻인지 알겠죠?
두 수의 차를 이용해서 실수의 대소관계를 알아볼 수 있어요. 어떤 두 수가 있다면 한 수에서 다른 수를 빼서 결과의 부호를 보는 거죠. 결과가 양수이면 앞의 수가 크고, 0이면 둘이 같고, 음수이면 뒤의 수가 더 커요.
5와 3이 있어요. 5 - 3 > 0이므로 앞에 있는 5가 뒤에 있는 3보다 큰 걸 알 수 있지요. 5와 8에서는 5 - 8 < 0이므로 뒤에 있는 8이 더 크죠.
제곱근의 근삿값을 이용하는 방법도 있어요. 다른 근삿값은 상관없지만 가장 많이 사용하는 아래 세 가지 경우는 외워두는 게 편리해요.
1 + 와
의 크기를 비교해볼까요? 차를 이용하면 (1 +
) -
이 되는데 이거는 0보다 큰 지 작은 지 알 수가 없어요. 이 때 근삿값을 이용하세요.
1 + ≒ 1 + 1.414 = 2. 414
≒ 2.236
따라서 1 + 가 더 크네요.
한 실수에서 다른 실수를 뺏을 때, 실수의 유리수 부분이 없어지거나 무리수 부분(제곱근)이 없어질 때는 차를 이용하면 좋고, 그렇지 않은 경우에는 근삿값을 대입해서 대소관계를 알아보는 게 좋아요. 제곱근의 뺄셈은 나중에 공부할 텐데, 그 때까지 덮어두죠.
실수의 대소관계실수의 부호를 보고 판단
두 실수의 차의 부호를 이용
제곱근의 근삿값을 대입
다음 괄호 안에 알맞는 부등호를 넣어라.
(1) 3 - ( )
- 3
(2) 2 + ( )
+ 2
(3) 5 ( ) 3 +
실수의 대소관계를 파악할 때 첫번째는 두 실수의 부호를 먼저 살펴보는 거에요. 두 번째는 한 실수에서 다른 실수를 빼서 그 결과의 부호를 보고 실수의 대소관계를 알 수 있어요. 결과가 양수이면 앞에 게 큰 거, 결과가 음수이면 뒤에 것이 큰 거에요. 세번째는 근삿값을 직접 대입해서 그 결과를 보고 알 수도 있고요.
(1)번은 두 실수를 빼도 유리수 부분이 없어지지않으니까 대신 근삿값을 대입해보죠.
3 - ≒ 3 - 1.732 = 1.268
- 3 ≒ 1.732 - 3 = -1.268
3 - >
- 3
(2)번은 차를 이용해보죠.
2 + - (
+ 2)
= 2 + -
- 2
= -
≒ 1.732 - 1.414
= 0.318 > 0
따라서 2 + >
+ 2
(3)번도 빼보죠.
5 - (3 + )
= 5 - 3 -
= 2 -
≒ 2 - 1.414
= 0.586 > 0
따라서 5 > 3 +
제곱근의 대소관계, 제곱근의 크기비교
제곱근의 뜻과 표현, 성질을 알아봤어요.
이번 글에서는 제곱근의 크기를 비교하는 걸 해볼꺼에요. 제곱근끼리의 크기비교도 해볼꺼고요. 제곱근과 제곱근이 아닌 수와의 크기 비교도 해볼꺼에요.
제곱근도 하나의 수이므로 대소비교를 하는데, 기존에 해봤던 정수의 대소관계나 유리수의 대소관계의 성질과 별로 다르지 않아요. 정수와 유리수는 음수, 0, 양수의 세 수로 나눌 수 있었어요. 음수는 숫자가 작을수록 크고, 양수는 숫자가 클수록 크죠? 이것만 기억하고 있으면 돼요.
제곱근의 대소관계
넓이가 3cm², 5cm², 7cm²인 정사각형이 세 개가 있어요. 정사각형의 넓이는 한 변의 길이를 제곱해서 구하니까 정사각형 한 변의 길이는 각각 에요.
정사각형 한 변의 길이의 순서는 넓이의 순서와 같죠? 따라서 작은 것부터 순서대로 쓰면 에요.
정수의 대소관계나 유리수의 대소관계에서 수직선에서 오른쪽에 있을수록 크기가 크다고 했죠? 제곱근도 마찬가지로 수직선으로 나타냈을 때 오른쪽에 있을수록 크기가 더 커요. 음수, 0, 양수의 순서죠.
정수, 유리수에서 대소비교할 때 양수는 숫자가 크면 크고, 음수는 숫자가 작아야 크잖아요. 제곱근의 대소관계에서는 그냥 숫자가 아니라 근호 안의 숫자의 크기를 가지고 얘기해요.
제곱근이 양수일 때는 근호 안의 숫자가 클수록 크고
제곱근이 음수일 때는 근호 안의 숫자가 작을수록 커요.
제곱근과 유리수의 대소관계
제곱근끼리의 대소비교는 근호 밖의 부호(음수, 0, 양수)와 근호안의 숫자 크기를 비교하면 알 수 있어요. 그러면 제곱근과 유리수의 크기 비교는 어떻게 할까요? 유리수는 근호가 없어서 바로 비교할 수가 없잖아요.
제곱근의 근호를 없앨 수 있으면 근호를 없애서 유리수와 비교하면 되는데, 제곱근을 없애고싶다고 없앨 수 있는 건 아니에요.
그래서 반대로 유리수를 근호안에 넣어서 제곱근으로 모양을 바꾼 다음 비교를 해요. 근호 밖의 유리수를 제곱해서 근호 안으로 넣는 거죠. 이렇게 하면 모두 제곱근이 되고, 위에서 했던 것처럼 근호 안의 숫자의 크기를 비교해서 제곱근과 유리수의 크기를 비교할 수 있어요.
다음을 크기가 작은 순서대로 나열하여라.
몇 개는 정수로 되어있네요. 정수로 되어있는 건 근호 안에 넣어줘야 해요. 근호 안에 넣어줄 때는 숫자를 제곱해서 넣어야 하죠.
정수든 유리수든 제곱근이든 대소비교를 할 때 가장 먼저 해야할 건 부호에 따라서 크기를 나누는 거예요. 음수, 0, 양수로 나눠볼까요?
음수는 근호 안의 숫자가 큰 게 작아요. 양수는 근호 안의 숫자가 큰 게 크지요. 16 < 5, ½ < 3 < 4 이므로
순서대로 배열했으니까 처음 문제에서 줬던 숫자로 다시 써보면
을 만족하는 자연수 x를 모두 구하여라.
2, 3이 근호 밖에 있으니까 근호 안에 넣어서 크기를 비교해야 해요.
따라서 x가 될 수 있는 자연수는 5, 6, 7, 8 네 개네요.
이런 문제를 조금 더 쉽게 풀기 위해서는 2, 3을 근호 안에 넣는 것도 좋지만 각 항을 모두 제곱해버리는 게 좋아요. 각 항을 제곱하면 4 < x < 9가 바로 나오지요?
유리수와 수직선, 절댓값, 유리수의 대소관계
수직선, 절댓값 이런 용어는 정수의 절댓값과 수직선에서 공부한 것들이죠. 유리수에서의 절댓값과 수직선도 정수에서 같은 특징이 있어요. 유리수의 대소관계도 정수의 대소관계와 똑같아요.
이 글에서 배울 내용은 모두 정수에서 했던 내용과 완전히 같아요. 단지 숫자만 정수에서 유리수로 바뀐 것뿐이에요.
거저먹는 거라고 할 수 있는 내용이죠. 정수에서 공부했던 내용을 복습한다 생각하면 될 것 같네요.
수직선과 절댓값
수직선
수직선은 직선을 긋고 직선 위의 점들과 숫자를 대응시킨 걸 말해요. 수직선에 0을 찍고 그 오른쪽에는 양의 유리수를, 왼쪽에는 음의 유리수를 적는 거지요. 정수에서의 수직선과 다른 점은 정수뿐 아니라 정수 아닌 유리수도 있다는 것 정도예요. 이나
, 1.5, -3.2 같은 수들도 수직선 위에 나타낼 수 있는 거죠.
절댓값
절댓값은 수직선 위의 점들이 원점으로부터 거리가 얼마나 떨어져 있느냐를 말해요. 절댓값은 | |를 써서 나타내는데, 유리수에서 부호 떼고 숫자만 적으면 됩니다.
, |1.5| = 1.5 , |-3.2| = 3.2
절댓값은 거리므로 양의 유리수에요. 그런데 0의 절댓값은 0이죠. 따라서 유리수의 절댓값은 0보다 크거나 같아요. 또 원점에서 멀어질수록 거리가 멀어지니까 절댓값도 커지죠. 절댓값이 같은 수는 양의 유리수, 음의 유리수 2개가 있어요.
유리수의 크기 비교, 유리수의 대소관계
숫자는 기본적으로 수직선에서 오른쪽에 있을수록 더 커요. 이게 제일 중요합니다.
유리수는 양의 유리수, 0, 음의 유리수가 있어요. 일단 숫자의 크기를 비교할 필요없이 부호만 보면 음의 유리수 < 0 < 양의 유리수에요.
부호가 같을 때는 절댓값의 크기를 비교해야 해요. 양의 유리수는 절댓값이 크면 더 크고, 음의 유리수는 절댓값이 더 크면 작아요.
유리수의 대소관계
음의 유리수 < 0 < 양의 유리수
양의 유리수는 절댓값이 클수록 크다.
음의 유리수는 절댓값이 작을수록 크다
다만 절댓값이 분수일 때가 있어요. 분수는 크기비교를 할 때 분모를 통분해서 비교하죠? 아니면 소수로 바꿔서 비교해도 되고요. 숫자에 맞게 편한 방법을 골라서 비교하세요.
다음 유리수를 작은 것부터 순서대로 나열하여라.
음의 유리수 < 0 < 양의 유리수 순이에요.
음의 유리수는 -0.7, 이 있네요.
양의 유리수는 가 있고요.
= -0.75이므로 -0.7보다 절댓값이 커요. 음의 유리수에서는 절댓값이 크면 작으므로
< -0.7이 되네요.
가 있는데, 이 둘은 통분해서 크기를 비교해보죠.
네요.
정리해보면,
함께 보면 좋은 글
유리수, 유리수의 분류
유리수와 수직선, 절댓값, 유리수의 대소관계
정수의 대소관계, 정수의 크기비교
유리수의 덧셈과 뺄셈
유리수의 곱셈과 나눗셈, 혼합계산