연립부등식
연립부등식의 영역, 연립부등식의 영역 구하기
연립부등식의 영역은 부등식의 영역 두 개를 합쳐놓은 걸 말해요. 부등식을 두 개 이상 합쳐놓은 게 연립부등식이니까요.
연립부등식을 푸는 방법과 연립부등식의 영역을 구하는 방법은 근본적으로 같아요. 연립부등식에서는 수직선에 그렸다면 연립부등식의 영역에서는 좌표평면에 그림을 그린다는 차이가 있을 뿐이에요.
그래프를 그려야 해서 복잡해 보이지만 (연립부등식의 영역) = (부등식의 영역) + (연립부등식) 이라는 사실만 기억하고, 관련된 두 내용만 잘 기억하고 있다면 크게 어렵지는 않을 거예요.
연립부등식의 영역
연립부등식의 풀이에서는 각각의 부등식의 해를 구하고 이를 수직선에 그려서 공통인 부분의 해를 찾았어요. 연립부등식의 영역도 똑같아요. 각각의 부등식의 영역을 그린 다음 공통인 부분을 구하면 됩니다.
f(x, y) = 0은 원의 방정식, g(x, y) = 0은 직선의 방정식이라고 한다면, f(x, y) < 0, g(x, y) > 0의 그래프는 아래와 같아요.
f(x, y) < 0, g(x, y) > 0의 공통부분을 칠한 오른쪽 그림이라는 연립부등식의 영역이 됩니다.
식과 부등호의 방향은 바뀌겠지만, 그 방법은 모두 같아요.
연립부등식의 영역
각각의 부등식의 영역을 그린다.
두 부등식의 영역의 공통부분(교집합)을 구한다.
곱으로 표시된 연립부등식의 영역
이번에는 연립부등식이 조금 다른 형태인데요.
f(x, y)·g(x, y) < 0이라는 부등식이에요.
두 식을 곱해서 0보다 작다는 얘기는 부호가 서로 반대라는 얘기예요. 하나가 양수이면 다른 하나는 음수여야 하죠.
총 네 개의 부등식의 영역 그러니까 두 개의 연립부등식의 영역이 생겼어요. or이니까 연립부등식의 영역 두 개를 합한 거예요.
좀 복잡하지만, 집합으로 나타내보면 다음과 같아요.
[{f(x, y) > 0} ∩ {g(x, y) < 0}] ∪ [{f(x, y) > 0} ∩ {g(x, y) < 0}]
이번에는 f(x, y)·g(x, y) > 0을 보죠.
어떤 두 식을 곱해서 0보다 크다는 말은 두 식이 모두 양수이거나 모두 음수여야 하죠?
역시 마찬가지로 네 개의 부등식의 영역, 두 개의 연립부등식이 생겼어요. or이니까 역시 각각의 연립부등식의 영역을 구한 다음 서로 합쳐야 하죠.
부등식의 영역을 네 개가 구해야 하고, 어떤 건 교집합, 어떤 건 합집합이어서 상당히 복잡하죠? 쉽게 구하는 방법이 있어요.
곱으로 표시된 연립부등식의 영역 구하는 순서
- f(x, y) = 0, g(x, y) = 0의 도형의 방정식을 그린다.
- 경계선 위에 있지 않은 임의의 점을 처음 부등식에 대입한다. 계산이 편리한 (0, 0), (1, 0) 등
- 조건에 맞는 영역을 칠한다.
- 대입한 점이 부등식을 만족하면 그 점이 속한 영역 및 건너뛴(이웃하지 않은) 영역
- 대입한 점이 부등식을 만족하지 않으면 그 점이 속하지 않은 영역 및 건너뛴(이웃하지 않은) 영역
다음 부등식의 영역을 좌표평면 위에 나타내어라.
(1)
(2) (x + y - 1)(x2 + y2 - 4) < 0
x2 + y2 < 4의 영역은 왼쪽 그림이고 x + y - 1< 0의 영역은 가운데, 이 둘의 공통부분이 오른쪽 그림이에요.
(2) 번. (x + y - 1)(x2 + y2 - 4) < 0
두 개의 연립부등식의 영역으로 나눠서 구해도 되고, 점을 대입해서 영역을 구해도 돼요. x + y - 1 = 0과 x2 + y2 - 4 = 0의 그래프를 좌표평면에 그렸더니 네 개의 영역으로 나뉘어졌어요.
(0, 0)은 경계선 위에 있지 않으므로 점을 대입해보면
(0 + 0 - 1)(02 + 02 - 4) < 0
4 < 0
부등식을 만족하지 않으므로 (0, 0)이 포함되어 있지 않은 ①번 영역과 ① 영역의 건너뛴(이웃하지 않은) ③ 영역이 구하는 영역이 되겠네요.
함께 보면 좋은 글
부등식의 영역 - y > f(x), y < f(x)
부등식의 영역 2 - f(x, y) > 0, f(x, y) < 0
[중등수학/중2 수학] - 연립부등식, 연립부등식의 풀이
[중등수학/중2 수학] - 여러가지 연립부등식
연립이차부등식, 연립이차부등식의 풀이
중학교 2학년 때 부등식을 공부했어요. 그리고 연립부등식도 공부했지요. 이차부등식을 공부했으니까 이제는 연립이차부등식을 공부할 차례죠?
연립이차부등식의 풀이는 이차부등식의 풀이 + 연립부등식 풀이에요. 그러니까 이차부등식, 이차부등식의 해, [중등수학/중2 수학] - 연립부등식의 풀이에 대해서 잘 알고 있어야 해요.
연립이차부등식의 해를 구할 때는 수직선을 이용하면 편해요. 물론 수직선을 그리지 않고 바로 해를 구할 수 있으면 더 좋고요.
연립이차부등식
부등식을 여러 개 묶어놓은 걸 연립부등식이라고 하는데, 이 중 차수가 가장 높은 부등식이 이차식일 때, 이 연립부등식을 연립이차부등식이라고 해요.
연립이차부등식의 해는 연립된 모든 부등식을 만족하는 해로, 각각의 부등식의 해의 교집합이에요.
- 각각의 이차부등식의 해를 구한다.
- 구한 해의 공통부분이 해
연립이차부등식 의 해를 구하여라.
두 개의 이차부등식으로 되어 있는데, 각각의 해를 구해보죠.
(1) x2 - 4x + 3 > 0
(x - 1)(x - 3) > 0
x < 1 or x > 3
(2) x2 - 2x - 3 ≤ 5
x2 - 2x - 8 ≤ 0
(x - 4)(x + 2) ≤ 0
-2 ≤ x ≤ 4
따라서 해는 -2 ≤ x < 1 or 3 < x ≤ 4
연립이차부등식 의 해가 2 ≤ x < 6일 때, a의 범위를 구하여라.
(1) x2 - 5x - 6 < 0
(x - 6)(x + 1) < 0
-1 < x < 6
(2) x2 - (a + 2)x + 2a ≥ 0
(x - a)(x - 2) ≥ 0
(2)에서 a > 2이면 해는 x ≤ 2 or x ≥ a일 테고, a < 2 이면 x ≤ a or x ≥ 2가 되겠죠? a = 2라면 해는 모든 실수고요.
먼저 수직선에 (1)의 해 -1 < x < 6은 그림에서 빨간선처럼 돼요. 그런데 연립이차부등식의 해가 2 ≤ x < 6라고 했으니 (2)의 해는 그림에서 파란선처럼 그려줘야만 해요. x ≤ a or x ≥ 2일 때죠. 일단 a < 2이어야 하네요.
수직선에서 a가 -1보다 오른쪽에 있으면 (-1 < a < 2이라면), -1 < x ≤ a라는 해가 생기므로 문제의 조건에 맞지 않아요. a는 -1보다 왼쪽에 있어야 해요. a < -1
하나 더 살펴보죠. 만약에 a = -1이면 어떻게 될까요? (1)식에는 부등호에 등호가 없기 때문에 a = -1이 되어도 겹치는 부분이 없어요. a = -1이 되어도 괜찮아요.
따라서 a ≤ -1 입니다.
함께 보면 좋은 글
이차부등식, 이차부등식의 해
이차부등식의 풀이, 판별식과 이차부등식의 해
이차부등식의 작성, 해가 주어졌을 때 이차부등식 구하기
이차부등식이 항상 성립할 조건
연립이차방정식의 풀이
연립이차방정식의 풀이 2
[중등수학/중2 수학] - 연립부등식, 연립부등식의 풀이
[중등수학/중2 수학] - 여러가지 연립부등식
부등식의 활용, 연립부등식의 활용
부등식이 뭔지, 부등식은 어떻게 푸는지 알아봤다면 이제 부등식을 실제 어떤 방법으로 활용하는지 배워봐야죠.
사실, 많은 분이 "수학 배워서 어디 써먹느냐?" 하지만 부등식의 활용만큼은 실생활에서도 많이 사용할 수 있어요. 휴대전화 요금제를 정할 때라든가 두 곳의 가게 중에서 더 싼 곳을 찾을 때도 부등식은 아주 유용합니다.
부등식의 활용은 큰 틀에서는 방정식의 활용과 같아요. 미지수 정하고 식 세우고, 푸는 순서로 이루어집니다.
일차부등식과 연립부등식에서 나오는 문제의 유형은 같아요. 식의 개수만 차이가 있을 뿐이에요.
부등식의 활용
- 미지수 결정
문제에서 구하고자 하는 것을 x로 놓는다. - 문제의 뜻에 맞게 식 세우기
문제의 조건에 맞는 식을 만드는 데 연립부등식이라면 식을 두 개 만드세요. - 부등식 풀기
부등식의 성질을 이용해서 부등식을 풀어서 해를 구합니다. - 문제의 뜻에 맞는 해 선택
문제에서 요구하는 해를 찾습니다. 문제에서 해의 범위를 준 경우는 물론 개수나 사람 수 등은 자연수가 되는 것에도 주의하세요.
한가지 주의해야 할 것은 등호에 관한 건데요. 식을 그냥 주면 크게 신경 쓰지 않아도 되지만, 식을 만들어야 할 때는 등호가 들어가야 하는지 들어가면 안 되는지를 잘 파악해야 해요.
부등식의 활용 유형
거리, 속력, 시간에 관한 문제
거리, 속력, 시간에 관한 문제는 방정식, 부등식을 가리지 않고 나오는 활용문제에요. 공식은 반드시 외워야 해요.
농도에 관한 문제
농도 문제 역시 방정식, 부등식을 가리지 않고 나오는 문제에요.
두 소금물 A, B를 하나로 섞었을 때
- (A + B)의 소금의 양 = A 소금의 양 + B 소금의 양
- (A + B) 소금물의 양 = A 소금물의 양 + B 소금물의 양
- (A + B) 의 농도 = (A + B)의 소금의 양 ÷ (A + B) 소금물의 양 × 100
어떤 경우에도 농도는 +/-로 구할 수 없어요. 두 소금물을 더했다고 해서 각각의 농도를 더해서 구하면 안된다는 얘기예요. 위 농도 공식에 있는 방법으로만 농도를 구해야 해요.
소금물 A를 가열했을 때(증발시켰을 때)
- 가열한 후의 소금양 = 가열 전 의 소금양
- 가열한 후의 소금물의 양 = 가열 전 소금물의 양 - 증발한 물의 양
예금에 관한 문제
예금에 관한 문제에서 놓치지 말아야 할 것은 처음에 가지고 있는 예금이에요. x개월 후의 예금은 (처음 예금 + x 개월 동안 입금한 금액)이에요.
현재 수정이의 예금 통장에는 12,500원, 진리의 예금 통장에는 14,000원이 예금되어 있다. 다음 달부터 매월 수정이는 1,200원씩, 진리는 900원씩 예금할 때 수정이가 예금한 돈이 진리가 예금한 돈보다 많아지는 것은 몇 개월째부터인지 구하여라.
몇 개월째부터인지 구하라고 했으니까 월을 x라고 놓아야겠네요.
수정이는 현재 12,500원을 가지고 있고, 매달 1,200원씩 예금하면, x개월 뒤에 수정이의 총 예금은 (12500 + 1200x)원이죠.
진리는 현재 14,000원을 가지고 있고, 매달 900원씩 예금했을 때, x개월 뒤의 진리의 예금은 (14000 + 900x)원이 되겠네요.
수정이의 예금이 진리의 예금보다 많아진다고 했으니까 12500 + 1200x > 14000 + 900x가 되어야 해요.
12500 + 1200x > 14000 + 900x
125 + 12x > 140 + 9x
12x - 9x > 140 - 125
3x > 15
x > 5
5보다 커야 되니까 6개월 후에 수정이의 예금이 진리의 예금보다 많아지겠네요.
물건의 개수에 관한 문제
두 개의 물건을 샀을 때, 총 수량이 나오는 경우에는 한 물건의 개수를 x개라고 하면, 다른 물건의 개수는 (총수량 - x)가 되는 걸 이용해요.
4,500원으로 한 자루에 150원인 연필과 200원인 볼펜을 합하여 25자루를 사려고 한다. 볼펜을 연필보다 많이 사려고 할 때, 볼펜은 몇 자루를 사면 되는지 구하여라.
볼펜을 몇 자루 살 수 있는지를 물어봤으니까 볼펜의 개수를 x라고 할게요. 총 25자루를 산다고 했으니까 연필은 (25 - x) 자루가 되겠네요. 그런데 볼펜의 개수가 연필의 개수보다 많이 사려고 하니까 x > 25 - x라는 식을 세울 수 있어요.
연필과 볼펜을 사는데 드는 총비용은 200x + 150(25 - x)원일 텐데 가진 돈이 4,500원이니까 4,500원보다는 적어야겠죠. 단, 이때 4,500원이 되어도 괜찮으니까 등호가 있어도 되겠군요.
200x + 150(25 - x) ≤ 4500
두 개의 부등식이 만들어졌어요. 연립부등식 문제네요.
x > 25 - x 200x + 150(25 - x) ≤ 4500
2x > 25 4x + 3(25 - x) ≤ 90
x > 12.5 4x + 75 - 3x ≤ 90
x ≤ 15
12. 5 < x ≤ 15이고 개수는 자연수여야 하므로, 볼펜은 13, 14, 15 자루를 살 수 있어요.
과부족 문제
과부족 문제는 부등식의 풀이에서 어려운 유형이에요.
어느 반 학생들이 의자에 앉으려고 한다. 한 의자에 4명씩 앉으면 7명이 앉지 못하고, 6명씩 앉으면 의자 2개가 남을 때 의자의 개수는 최대 몇 개인지 구하여라.
의자의 개수를 구하라고 했으니까 x라고 놓을게요.
의자의 개수도 모르지만 학생 수도 몰라요. 그러니까 학생 수를 먼저 구해보죠. "한 의자에 4명씩 앉으면 7명이 앉지 못하고"에서 학생 수를 알 수 있어요. (4x + 7)명
이제부터가 중요해요. 한 의자에 6명씩 앉으면 2개가 남는다고 했는데요. 이 말이 꼭 모든 의자에 6명씩 앉았다는 뜻은 아니에요. 학생이 앉은 마지막 의자에는 6명을 다 채우지 못할 수도 있거든요. 한 명이 앉아있을 수도 있고 두 명이 앉아있을 수도 있고, 6명이 다 앉아있을 수도 있어요. 또 한 명이 앉아있다 하더라도 의자를 사용했으니까 남은 의자는 아니겠죠?
마지막 의자를 뺀 다른 의자에는 모두 6명씩 앉았을 테니까 그 학생 수는 6(x - 3)이 될 거예요. x - 3에서 3은 남은 의자 2개, 마지막 의자 1개를 나타냅니다.
마지막 의자에 한 명이 앉았을 때는 학생 수가 가장 적을 때, 6명이 앉아있으면 학생 수가 가장 많을 때죠? 그런데 학생 수는 4x + 7이니까 이걸 식으로 나타내면
6(x - 3) + 1 ≤ 4x + 7 ≤ 6(x - 3) + 6
6(x - 3) + 1 ≤ 4x + 7 4x + 7 ≤ 6(x - 3) + 6
6x - 18 + 1 ≤ 4x + 7 4x + 7 ≤ 6x - 18 + 6
2x ≤ 24 -2x ≤ -19
x ≤ 12 x ≥ 9.5
9.5 ≤ x ≤ 12 이므로 의자의 최대 개수는 12개가 되네요.
다시 강조하지만 과부족 문제에서는 마지막 의자의 학생 수를 계산하는 부분에 주의하세요.
연속하는 세 수에 관한 문제
연속하는 세수에서는 가운데 수를 x로 놓으면 돼요.
연속하는 세 자연수(정수): x - 1, x, x + 1
연속하는 세 홀수(짝수): x - 2, x, x + 2
함께 보면 좋은 글
일차부등식의 풀이
여러가지 일차부등식
연립부등식, 연립부등식의 풀이
여러가지 연립부등식
여러가지 연립부등식
연립부등식의 풀이는 공통해를 찾는 과정이 중요해요. 수직선을 통해서 충분히 연습해봐야 합니다.
연립방정식에서 A = B = C 꼴의 연립방정식을 푼 기억이 나죠? 어떻게 풀었나요? A = B, B = C, A = C 중 두 개를 선택해서 연립방정식으로 풀었었죠?
이렇게 생긴 게 연립부등식에서 있어요. A < B < C인데요. 방법이 약간 달라요.
이거는 무조건 A < B, B < C를 연립해서 풀어야 해요. A < C라는 식을 만들어서는 안 됩니다. A < C라는 식에서는 A와 B, B와 C 사이의 대소를 알 수가 없잖아요. 그래서 엉뚱한 답이 나오거든요.
A < B < C → A < B and B < C
3x - 2 ≤ 2x + 4 < 20 + 4x의 해를 구하여라.
A < B < C 꼴이기 때문에 A < B와 B < C로 나누어서 연립부등식을 만들어야 해요.
3x - 2 ≤ 2x + 4와 2x + 4 < 20 + 4x로 나눌 수 있겠군요.
3x - 2 ≤ 2x + 4 2x + 4 < 20 + 4x
3x - 2x ≤ 4 + 2 2x - 4x < 20 - 4
x ≤ 6 -2x < 16
x > -8
해는 x ≤ 6과 x > -8의 공통부분인 -8 < x ≤ 6이에요.
해가 특별한 연립부등식
미지수가 2개인 일차방정식 두 개를 묶은 연립방정식에서는 보통 해가 한 쌍이었어요. 그런데 해가 특수한 연립방정식에서는 해가 무수히 많거나 하나도 없는 경우가 있었죠?
연립부등식에서도 보통은 해가 일정한 범위를 갖게 나오는데요, 그렇지 않은 경우가 있어요. 해가 한 개일 때도 있고 해가 하나도 없을 때도 있어요.
수직선으로 표현해보면 더 쉽게 이해할 수 있을 거예요.
아래 그림에서는 두 부등식의 해의 공통부분이 a라는 수로 딱 떨어져요. 이때는 x = a라는 하나의 해만 갖게 돼요.
다음에는 해가 하나도 없을 때가 있어요. 즉 공통부분이 하나도 없다는 거지요. 빈 동그라미와 까맣게 칠해진 동그라미를 잘 구별해야 해요.
함께 보면 좋은 글
해가 특수한 연립방정식
여러가지 일차부등식
연립부등식, 연립부등식의 풀이
부등식의 활용, 연립부등식의 활용
연립부등식, 연립부등식의 풀이
연립부등식에 대해서 배워볼까요? 연립이라는 단어는 연립방정식에서 이미 들어본 단어입니다. 방정식을 두 개 이상 묶어놓은 것이었죠. 연립부등식은 부등식을 두 개 이상 묶어놓은 걸 말해요.
연립방정식의 해는 묶여있는 방정식들을 모두 만족시키는 미지수의 값이었죠? 마찬가지로 연립부등식의 해는 묶여있는 모든 부등식을 만족시키는 해에요. 부등식들의 해의 공통부분을 찾으면 돼요.
연립방정식과 연립부등식의 차이를 알아보죠.
우리가 배운 연립방정식은 미지수가 x, y 두 개가 있었어요. 하지만 연립부등식은 미지수가 x 하나에요.
연립방정식을 풀 때는 가감법, 대입법을 이용해서 풀었는데, 이 방법들은 기본적으로 미지수의 개수를 줄이는 방법이에요. 그런데 연립부등식은 미지수가 하나니까 따로 특별한 방법이 필요한 게 아니에요.
연립부등식은 미지수도 하나고, 특별한 방법이 필요한 것이 아니라서 연립방정식보다 조금 더 쉬워요.
연립부등식의 풀이
연립방정식에서는 두 식을 한꺼번에 이용해요. 두 식을 더하거나 한 식을 다른 식에 대입하거나요.
하지만 연립부등식은 두 식을 한꺼번에 이용하지는 않아요. 식의 독립성(?)을 유지해요. 부등식별로 따로 해를 구한 다음에 공통인 부분을 찾아서 표시합니다.
- 각 부등식의 해를 구한다.
- 두 부등식의 해의 공통부분을 찾는다.
연립부등식 3x - 4 < 2x + 3 와 3x - 6 ≥ 2x - 1을 풀어라.
3x - 4 < 2x + 3 3x - 6 ≥ 2x - 1
3x - 2x < 3 + 4 3x - 2x ≥ -1 + 6
x < 7 x ≥ 5
각 부등식의 해를 구했으니까 이제 공통인 부분을 찾아야 하는데, 수직선으로 표시해보면 쉽게 알 수 있어요.
연립부등식의 해 - 수직선으로 구하기
제일 오른쪽에서 보라색으로 표시된 부분이 바로 두 부등식의 공통부분 즉, 연립부등식의 해에요. 5 ≤ x < 7
각각의 해를 수직선에 그린 뒤 두 수직선을 합치면 되는데, 실제로 문제를 풀 때는 수직선 하나에 함께 그리세요. 높이를 다르게 해서 구분하면 되니까요.
나중에 익숙해지면 수직선을 그리지 않고 바로 구할 수도 있어요.
함께 보면 좋은 글
일차부등식의 풀이
여러가지 일차부등식
여러가지 연립부등식
부등식의 활용, 연립부등식의 활용
연립방정식이란