엇각

이번에는 원이 두 개일 때, 두 원의 접선과 현이 이루는 각에 대해서 알아볼 거예요.

두 원과 접선의 관계부터 따져보죠. 두 원의 위치관계는 총 여섯 가지가 있어요. 여기서 다룰 내용은 그중에서도 내접과 외접 두 경우입니다. 접선은 두 원의 접점을 지나는 공통접선이에요. 두 원의 접점이 아닌 다른 곳을 지나는 접선은 다루지 않아요.

두 원과 접선의 세 도형이 한 점에서 만날 때, 접선과 현이 이루는 각의 특징에 대해서 알아보죠. 도형을 많이 그리기 때문에 조금 복잡할 수 있어요. 주의해서 잘 보세요.

두 원에서 접선과 현이 이루는 각

두 원이 외접할 때

두 원이 외접할 때, 접점을 지나는 접선과 현이 이루는 각들을 표시한 그림이에요.

두 원에서 접선과 현이 이루는 각 - 두 원이 외접할 때

위 그림에서 총 세 가지를 알 수 있어요. 첫 번째는 크기가 같은 각들이에요. 각의 수가 많은데 헷갈리지 않도록 주의하세요. 그다음은 평행한 직선이고, 세 번째는 닮은 삼각형이에요. 크기가 같은 각들의 위치만 정확히 알면 되는데요. 혹시 외우기가 어려우면 두 번째, 세 번째 내용을 이용해서 찾을 수도 있어요.

위 세 가지를 증명해보죠. 공통접선, 현이 만나서 생기는 각에 번호를 붙여봤어요.

두 원에서 접선과 현이 이루는 각 - 두 원이 외접할 때 증명

가운데 복잡한 부분에서 크기가 같은 각들을 찾아보죠.

② = ⑤ (가 만나서 생기는 맞꼭지각) ………(1)
① = ④ (가 만나서 생기는 맞꼭지각) ………(2)
③ = ⑥ (가 만나서 생기는 맞꼭지각) ………(3)

이번에는 접선과 현이 이루는 각에 의해 크기가 같아지는 각을 찾아볼까요?

① = ⑧ (호 AT를 포함하고 있는 각과 호 AT에 대한 원주각) ………(4)
③ = ⑦ (호 BT를 포함하고 있는 각과 호 BT에 대한 원주각) ………(5)
④ = ⑨ (호 CT를 포함하고 있는 각과 호 CT에 대한 원주각) ………(6)
⑥ = ⑩ (호 DT를 포함하고 있는 각과 호 DT에 대한 원주각) ………(7)

(1)에 의해 ② = ⑤
(2)와 (4), (6)에 의해서 ① = ④ = ⑧ = ⑨
(3)과 (5), (7)에 의해서 ③ = ⑥ = ⑦ = ⑩

크기가 같은 모든 각을 찾았어요.

의 두 선분과 가 만나서 생기는 엇각 ⑦과 ⑩이 같아요. 엇각의 크기가 같으면 두 직선은 평행선이 되므로 가 됩니다. (평행선의 성질)

마지막으로 중요한 건 아닌데 그래도 알고 넘어가면 좋은 것 하나 추가 하자면요. △TAB와 △TCD에서 두 쌍의 대응각의 크기가 같으므로 두 삼각형은 AA 닮음이에요. △TAB ∽ △TCD

다음 그림을 보고, x°, y°의 값을 구하여라.
두 원에서 접선과 현이 이루는 각 - 두 원이 외접할 때 예제

△TCD에서 삼각형 내각의 합 = 180°이므로 ∠TDC = 180° - (67.5° + 45°) = 67.5°

이므로 평행선에서 엇각에 의해 ∠TAB = ∠TCD에서 x° = 45°. ∠TBA = ∠TDC에서 y° = 67.5°

두 원이 내접할 때

두 원이 내접할 때, 두 원의 접점을 지나는 접선과 원의 현이 이루는 각이에요. 여기서도 역시 크기가 같은 각들의 위치가 중요해요. 두 원이 외접할 때보다는 각의 개수도 적고 위치도 알기 쉽게 되어 있네요.

그리고 평행한 현이 있다는 것과 닮은 삼각형이 있다는 것도 알 수 있어요.

두 원에서 접선과 현이 이루는 각 - 두 원이 내접할 때

접선과 현이 이루는 각에 번호를 매겼어요.

두 원에서 접선과 현이 이루는 각 - 두 원이 내접할 때 증명

여기는 맞꼭지각이 없으니 접선과 현이 이루는 각에 의해 크기가 같아지는 각부터 찾아보죠.

① = ⑥ (호 AT를 포함하고 있는 각과 호 AT에 대한 원주각) ………(1)
② = ⑤ (호 BT를 포함하고 있는 각과 호 BT에 대한 원주각) ………(2)
① = ④ (호 CT를 포함하고 있는 각과 호 CT에 대한 원주각) ………(3)
② = ③ (호 DT를 포함하고 있는 각과 호 DT에 대한 원주각) ………(4)

(1), (3)에 의해서 ① = ④ = ⑥
(2), (4)에 의해서 ② = ③ = ⑤

총 여섯 개의 각 중에서 크기가 같은 각이 세 개씩 있네요.

의 두 선분과 가 만나서 생기는 동위각 ③과 ⑤가 같아요. 동위각의 크기가 같으면 두 직선은 평행선이 되므로 가 됩니다. (평행선의 성질)

△TAB와 △TCD에서 두 쌍의 대응각의 크기가 같으므로 두 삼각형은 AA 닮음이지요. △TAB ∽ △TCD

다음 그림을 보고, x, y의 값을 구하여라.
두 원에서 접선과 현이 이루는 각 - 두 원이 내접할 때 예제

이므로 평행선에서 동위각에 의해 ∠TDC = ∠TBA, 즉 ∠x = ∠y죠.

접선과 현이 이루는 각에 의해 ∠PTA = ∠x이므로 x = y = 67.5(°)

함께 보면 좋은 글

접선과 현이 이루는 각
원주각과 중심각의 크기, 원주각의 성질
[중등수학/중1 수학] - 맞꼭지각, 동위각, 엇각
[중등수학/중1 수학] - 평행성의 성질, 평행선에서 동위각과 엇각
[중등수학/중2 수학] - 삼각형의 닮음 조건, 삼각형 닮음의 조건

 
그리드형

삼각형의 성질에 이어 사각형의 성질입니다.

그 첫 번째로 평행사변형의 성질인데요. 평행사변형이 어떻게 생겼는지는 알고 있을 거예요.

이 글에서는 평행사변형을 어떻게 정의하는지 그리고 평행사변형은 어떤 성질을 가졌는지 알아보고, 그 성질들을 증명해볼 거예요. 증명은 어렵지 않아요. 모든 성질이 하나의 증명방법으로 증명되거든요.

여러 사각형이 나오고 사각형 별로 비슷하면서도 다른 성질을 가지고 있으니 잘 구별할 줄 알아야 합니다.

평행사변형이란?

평행사변형이라는 이름을 잘 들여다보세요. 평행은 두 직선이 서로 만나지 않은 걸 말하죠? 사변은 네 개의 변을 말해요. 즉 네 개의 변이 있는데 이게 평행하다는 거예요. 네 개가 다 평행한 게 아니고 이 중 두 쌍의 대변이 각각 평행한 사각형을 말하는 거죠.

삼각형의 정의, 대변, 대각에서 대변과 대각의 정의에 대해서 공부했었어요. 대변은 마주 보는 변이고, 대각은 마주 보는 각이죠.

평행사변형

평행사변형의 성질

두 쌍의 대각의 크기가 각각 같다. → 이웃한 두 각의 크기의 합은 180°

평행사변형의 성질 1 - 두 쌍의 대각의 크기가 같다.

점 A와 점 C를 연결하는 선을 그으면 △ABC와 △CDA가 생기죠?

평행사변형의 정의에 따르면 가 평행하므로 ∠BAC = ∠DCA (엇각) … (1)    (평행선의 성질, 평행선에서 동위각과 엇각)
가 평행하므로 ∠BCA = ∠DAC (엇각) … (2)
는 공통 … (3)

(1), (2), (3)에 의해서 ASA 합동으로 △ABC ≡ △CDA가 돼요.

대응각인 ∠B = ∠D이 되죠.
또 ∠A = ∠BAC + ∠DAC = ∠DCA + ∠BCA = ∠C가 됩니다.

따라서 ∠B = ∠D, ∠A = ∠C입니다.       (증명 끝.)

이 성질에서 나온 다른 성질이 하나 있는데, 알아두면 좋을 겁니다.

평행사변형의 성질 - 이웃한 두 각의 크기의 합은 180°

∠B = ∠D, ∠A = ∠C이므로 ∠A + ∠B + ∠C + ∠D = 2∠A + 2∠B = 360°가 돼요.

∠A + ∠B = 180°라는 결론이 나오죠. ∠A = ∠C니까 A와 C를 바꿔도 되겠죠? 또 ∠B = ∠D니까 B와 D를 바꿔도 되고요.

결국, 이웃한 두 각의 크기의 합은 180°가 되는 겁니다.

아래 그림을 보고 x + y를 구하여라.
평행사변형의 성질 예제 1

이웃한 두 각의 크기의 합은 180°에요. x° + 80° = 180°이므로 x = 100가 됩니다. 마주 보는 두 각, 즉 대각은 크기가 같으므로 2y° = 80°에서 y = 40이 되고요.

따라서 x + y = 100 + 40 = 140

두 쌍의 대변의 길이가 각각 같다.

평행사변형의 성질 2 - 두 쌍의 대변의 길이가 같다.

점 A와 점 C를 연결하는 선을 그어 △ABC와 △CDA를 만듭니다.

평행사변형의 정의에 따르면 가 평행하므로 ∠BAC = ∠DCA (엇각) … (1)    (평행선의 성질, 평행선에서 동위각과 엇각)
가 평행하므로 ∠BCA = ∠DAC (엇각) … (2)
는 공통 … (3)

(1), (2), (3)에 의해서 ASA 합동으로 △ABC ≡ △CDA가 돼요.

대응변인 = , = 가 됩니다.       (증명 끝.)

다음 그림을 보고 평행사변형 ABCD의 둘레의 길이를 구하여라.
평행사변형의 성질 예제 2

두 대변의 길이는 같으므로 2x + 4 = 3x + 1이에요. x = 3이네요. x = 3을 대입하면,  = = 10cm이고요. = = 14cm죠.

따라서 평행사변형 ABCD의 둘레는 2 × (14 + 10) = 48(cm)입니다.

두 대각선은 서로 다른 대각선을 이등분한다.

평행사변형의 성질 3 - 두 대각선은 다른 대각선을 이등분한다.

대각선을 긋고 대각선의 교점을 점 O라고 하죠.

△OAB와 △OCD를 볼게요. 위 평행사변형의 성질 증명에서 = 임을 알 수 있어요. … (1)
평행사변형의 정의에 따르면 가 평행하므로 ∠OAB = ∠OCD (엇각) … (2)
가 평행하므로 ∠OBA = ∠ODC (엇각) … (3)
(1), (2), (3)에 의해서 △OAB ≡ △OCD (ASA 합동)

따라서 대응변인 , 가 됩니다.       (증명 끝.)

점 O가 평행사변형 ABCD의 대각선의 교점일 때 △OAB의 둘레의 길이를 구하여라.
평행사변형의 성질 예제 3

평행사변형에서 두 대변의 길이는 같으므로 = = 6cm

평행사변형의 대각선은 서로를 이등분하므로  =  =  × = 5cm

마찬가지로  =  × = 4cm

삼각형 △OAB의 둘레는 6 + 4 + 5 = 15(cm)

평행사변형의 성질
두 쌍의 대각의 크기가 각각 같다. → 이웃한 두 각의 크기의 합은 180°
두 쌍의 대변의 길이가 각각 같다.
두 대각선은 서로 다른 대각선을 이등분한다.

함께 보면 좋은 글

평행사변형이 되는 조건
평행사변형과 넓이
사각형의 정의와 성질, 조건
여러가지 사각형 사이의 관계

정리해볼까요

평행사변형

  • 두 쌍의 대변이 각각 평행한 사각형
  • 두 쌍의 대각의 크기가 각각 같다.
    이웃한 두 내각의 크기의 합은 180°
  • 두 쌍의 대변의 길이가 각각 같다.
  • 두 대각선은 서로 다른 대각선을 이등분한다.
<<    중2 수학 목차    >>
 
그리드형

직선의 이등분선, 각의 이등분선에 이어서 이번에는 크기가 같은 각 평행선작도하는 방법을 알아보죠.

크기가 같은 각을 만약 각도기로 그린다면 몇 °인지를 재서 바로 그리면 되겠지만 작도는 각도기를 이용하지 않으니까 좀 더 복잡해지죠

하지만 앞에서 해봤던 것처럼 그리는 흐름을 이해하고, 연습만 몇 번 해보면 작도도 생각보다 어렵지는 않아요.

이 글에서 공부할 크기가 같은 각의 작도와 평행선의 작도는 원리가 같으니까 하나만 제대로 이해하면 돼요.

크기가 같은 각의 작도

크기가 같은 각을 작도해보죠.

하나의 각을 주고, 이 각과 크기가 같은 각을 그리는 거예요. 이 각을 ∠XOY라고 해볼게요.

크기가 같은 각의 작도

  1. 이 ∠XOY에서 점 O에 컴퍼스를 대고 원을 그려요. 원과 선분 OX가 만나는 점을 P, 원과 선분 OY가 만나는 점을 Q라고 하지요.
  2. 일단 이렇게 해놓은 상태에서 크기가 같은 새로운 각을 그릴 선분을 하나 그어요. 선분 l이라고 할까요?
  3. 선분 l의 한쪽 끝점 A에 컴퍼스 바늘을 놓고 ①에서 그렸던 원과 반지름이 같은 원을 그려요. 이 원이 선분 l과 만나는 점을 B라고 해보죠.
  4. 컴퍼스를 이용해서 점 P와 점 Q 사이의 거리만큼을 재요. 그리고 점 B에 컴퍼스의 바늘을 놓고 원을 그립니다. 이 원과 ③에서 그린 원과의 교점이 생겨요. 이 교점을 C라고 할게요.
  5. 점 A와 점 C를 자를 대고 연결해요.

이 ∠BAC가 ∠POQ와 크기가 같은 각입니다.

평행선의 작도

평행선의 성질, 평행선에서 동위각과 엇각에서 공부했던 두 직선이 한 직선과 만날 때 동위각 또는 엇각의 크기가 같으면 두 직선이 평행하다는 성질을 기억하나요?

평행선의 작도는 동위각 또는 엇각을 이용해서 크기가 같은 각을 만드는 과정이에요.

점 P를 지나고 직선 l에 평행한 직선을 작도해보죠.

평행선의 작도

  1. 직선 l과 직선 위에 있는 않은 점 P를 그려요.
  2. 점 P를 지나고 직선 l과 한 점에서 만나는 직선을 그려요. 직선 l과 만나는 점을 점 O라고 하고요.
  3. 점 O에 컴퍼스 바늘을 대고 원을 그려요. 이때 원이 직선 OP와 만나는 점을 점 A라고 하고 원과 직선 l이 만나는 점을 점 B라고 하지요.
  4. ③에서 그렸던 원과 같은 반지름으로 점 P에 컴퍼스 바늘을 놓고 원을 그려요. 이 원과 직선 OP가 만나는 점을 C라고 해보죠.
  5. 컴퍼스를 이용해서 점 A와 점 B의 거리를 재고, 이 길이를 반지름으로하여 점 C에 컴퍼스 바늘을 놓고 원을 그려요. 이 원과 ④에서 그렸던 원의 교점을 점 D라고 합니다.
  6. 점 P와 점 D를 직선으로 연결해요.

이 직선 PD가 점 P를 지나고 직선 l에 평행한 평행선이에요.

④에서 점 C의 위치가 점 P와 직선 l 사이에 있으면 평행선에서 엇각을 이용하고, 점 C가 점 P보다 위에 있으면 평행선의 동위각을 이용하는 거예요.

위 예에서는 점 C가 점 P보다 위에 있으니 동위각을 이용해서 평행선을 그린 거죠.

동위각 ∠AOB = ∠CPD라는 성질을 이용해서 평행선을 그려봤어요. ③번 이후의 과정은 크기가 같은 각을 작도하는 방법과 완전히 같아요. 그러니까 크기가 같은 각을 그리는 작도를 연습해봐야겠죠?

함께 보면 좋은 글

작도, 수직이등분선의 작도
각의 이등분선의 작도, 직각의 삼등분선의 작도
평행성의 성질, 평행선에서 동위각과 엇각

정리해볼까요

크기가 같은 각의 작도

  1. ∠XOY에서 점 O에 컴퍼스를 대고 원을 그려 선분 OX와의 교점을 P, 선분 OY와의 교점을 Q라고 한다.
  2. 선분 l을 그린다.
  3. 선분 l의 한쪽 끝점 A를 중심으로 ①과 같은 반지름의 원을 그린다. 이때 l과의 교점을 B라고 한다.
  4. 선분 PQ의 길이를 반지름으로하는 원을 점 B를 중심으로 그리고 ③에서 그린 원과의 교점을 점 C라고 한다.
  5. 점 A와 점 C를 자를 대고 선을 연결한다.

평행선의 작도

  • 두 직선이 한 직선과 만날 때 동위각과 엇각의 크기가 같으면 두 직선은 평행하다는 성질 이용
  • 동위각 또는 엇각과 크기가 같은 각을 작도하는 과정
  1. 점 P를 지나고 직선 l과 한 점에서 만나는 직선을 그어 교점을 점 O라고 한다.
  2. 이후는 ∠O와 크기가 같은 각을 그리는 과정
 
그리드형

기찻길은 선로가 두 개예요. 이 선로는 간격이 일정해서 아무리 멀리까지 가도 서로 만나지 않아요. 이렇게 한 평면 위에 있는 두 직선이 만나지 않을 때 두 직선은 평행하다고 해요.

평행한 두 직선을 줄여서 평행선이라고 하고 기호로는 //로 나타내요. 평행한 직선 두 개를 오른쪽으로 약간 기울여서 그린 모양이죠.

두 직선 l, m이 평행하면 l //이라고 쓰는 겁니다. 거꾸로 l // m이라고 되어있으면 l과 m이 평행하다는 뜻이고요.

평행선의 성질

평행선에는 중요한 성질 두 가지가 있는데, 바로 맞꼭지각, 동위각, 엇각에서 공부했던 동위각과 엇각이에요.

맞꼭지각은 마주 보고 있어서 각의 크기가 같다고 했어요. 그런데 동위각엇각은 크기가 다를 수 있지요. 하지만 평행선에서는 이게 조금 달라지거든요.

평행선에서 동위각의 크기는 같다.

평면 위에서 평행선과 다른 한 직선이 만나서 생기는 교각 중에는 맞꼭지각도 있고 동위각, 엇각이 있어요.

동위각, 엇각

위 그림은 평행하지 않은 두 직선 l, m이 다른 직선 n과 만났을 때 생기는 교각의 모습이에요. ∠d와 ∠h가 동위각이죠? 그런데 얼핏 봐도 두 각의 크기는 달라요.

다음은 평행선과 한 직선이 만나서 생기는 교각이에요.

평행선에서 동위각

∠a와 ∠b의 크기가 어떤가요?

아래에 있는 직선 m을 그대로 위로 밀어 올린다고 생각해보죠. 그대로 위로 올리면 l과 만나겠죠? 두 직선은 평행하니까 단순히 만나기만 하는 게 아니라 완전히 일치하게 돼요. l이 m과 일치하니까 l과 이루는 ∠a이나 m과 이루는 ∠b가 서로 같은 건 당연하지요.

종이를 대서 실제로 위로 움직여서 확인 보세요.

평행선에서 엇각의 크기는 같다.

엇각은 서로 대각선 방향에 있는 각이라고 했어요. 그리고 엇각을 찾는 다른 방법은 동위각의 맞꼭지각을 찾는 거라고 했지요?

앞에서 동위각은 서로 크기가 같다고 했어요. 그리고 맞꼭지각도 서로 크기가 같죠? 따라서 원래 각의 동위각의 맞꼭지각인 엇각도 원래의 각과 크기가 같게 되는 거지요.

원래 각 = 동위각 = 맞꼭지각

평행선에서 엇각

위 그림에서 ∠b와 ∠c는 서로 엇각이에요.

∠b는 ∠a와 동위각이라서 크기가 같아요. ∠a와 ∠c는 맞꼭지각이니까 크기가 같죠.

∠b = ∠a = ∠c 관계가 있어서 결국 ∠b = ∠c가 되는 거죠.

평행선의 성질
평면 위의 평행선이 다른 직선과 만날 때
동위각의 크기가 같다
엇각의 크기가 같다.

다음 그림에서 l, m이 서로 평행일 때 x의 크기를 구하여라.

그림만 보면 위와 아래에 평행선이 있어요. 그런데 구하는 각은 평행선에 있는 각이 아니라 중간에 떠 있는(?) 각이죠? 이럴 때는 각에 선을 하나 그어주세요. 위, 아래에 있는 선과 평행해야 합니다. 그러면 총 세 개의 평행선이 생기는 거예요.

x가 새로 그은 선 때문에 둘로 나뉘었어요. 윗부분(①)과 아랫부분(②)을 더해서 x를 구해볼까요? 윗부분은 45°와 엇각이에요. 평행선에서 엇각은 크기가 같으니까 여기는 45°가 될 거예요.

아랫부분은 110° 부분을 볼까요? 110° 아래에 있는 각은 70°죠? 직선이니까 평각(180°)잖아요. 그럼 70°인 곳과 x의 아랫부분(②)은 동위각으로 크기가 같아요. 따라서 x의 아랫부분(②)은 70°예요.

x를 두 부분으로 나눴는데, ①은 45°, ②는 70°이니까 둘을 더해서 x = 115°네요.

평행선의 조건

어떤 두 직선이 있어요. 그 두 직선이 얼핏 봐서는 평행한 것처럼 보이지만 평행인지 아닌지 확신할 수가 없어요. 이때 두 직선이 평행인지 아닌지 어떻게 판단할까요?

원리는 바로 앞에서 공부한 평행선의 성질 두 가지를 이용하는 거예요.

평행선은 다른 직선과 만나서 생기는 각 중에서 동위각과 엇각의 크기가 같아요..

그러니까 그림에 선이 그어져 있다면 그 각을 보고, 동위각과 엇각의 크기가 같으면 두 직선은 평행선이고 다르면 평행선이 아닌 것이죠.

평행선에서는 동위각과 엇각이 같다. → 동위각과 엇각이 같은 두 직선은 평행선

함께 보면 좋은 글

맞꼭지각, 동위각, 엇각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
평면의 결정 조건

정리해볼까요

평행선의 성질

  • 동위각의 크기가 같다.
  • 엇각의 크기가 같다.
<<    중1 수학 목차    >>
 
그리드형

맞꼭지각, 동위각, 엇각

2012. 7. 21. 12:30

평각, 직각, 예각, 둔각에서 각이란 무엇인지, 크기에 따라 각을 어떻게 나누는지 알아봤어요. 이번 글에서는 다른 각을 위치에 따라 구분하는 방법에 대해서 알아보죠.

이번 글에서는 맞꼭지각, 동위각, 엇각을 설명할 건데, 이게 글로 설명하기는 참 어려운 내용이에요. 그래서 정신줄 꽉 잡고 한 줄 한 줄 정독해야 이해할 수 있어요. 설명과 그림을 왔다 갔다 하면서 주의 깊게 보세요.

아마 한 번 봐서는 이해하기가 어려울 거예요.

맞꼭지각

선과 선, 면과 선이 만나는 점을 뭐하고 했지요? 교점이라고 했어요. 면과 면이 만나서 생기는 선은 교선이라고 했고요.

그럼 교각은 뭘까요? 만나서 생기는 각이겠지요. 뭐가 만나느냐면 바로 두 직선이 만나요. 그러니까 선과 선이 만나는 교점에 각이 생긴다는 얘기지요. 근데 교각은 항상 네 개가 생겨요. 그래서 이 네 개를 전부 다 교각이라고 합니다.

아래는 두 직선 l과 m이 만나서 생기는 교각을 표시한 그림이에요. a, b, c, d 모두 교각입니다.

교각, 맞꼭지각

이때 네 개의 교각 중에서 서로 마주 보고 있는 두 각을 서로의 맞꼭지각이라고 해요. 꼭짓점을 맞대고 있다는 뜻이죠. ∠a와 ∠c가 서로 마주 보고 있죠? 그래서 ∠a와 ∠c가 맞꼭지각이고, ∠b와 ∠d도 서로 맞꼭지각이에요.

맞꼭지각은 서로 크기가 같아요. ∠a = ∠c이고 ∠b = ∠d란 얘기죠

∠a + ∠b = ∠a + ∠d = 180° (평각)
∠b = ∠d

∠a + ∠b = ∠b + ∠c = 180° (평각)
∠a = ∠c

동위각, 엇각

맞꼭지각이 두 직선이 만나서 생기는 각이라면, 동위각과 엇각은 세 직선이 만나는 곳에서 생겨요. 두 직선 l, m이 다른 직선 n과 만나면 교각이 8개가 생겨요. l, n이 만나는 곳에서 4개, m, n이 만나는 곳에서 4개요.

동위각은 같은 위치에 있는 각이라는 뜻이에요. 교점을 중심으로 해서 같은 위치에 있다는 뜻인데요. 교점을 중심으로 해서 상하좌우의 위치가 같으면 동위각이라고 해요.

동위각을 쉽게 찾는 방법을 알려드릴게요. 동위각은 두 직선 l, m과 다른 직선 n이 만나서 생기는 거라고 했어요. 다른 직선 n을 가로축(또는 세로축)으로 놓으세요. 그런 다음 교점을 중심으로 오른쪽 위, 오른쪽 아래, 왼쪽 위, 왼쪽 아래 등으로 위치를 비교하면 동위각을 금방 찾을 수 있어요.

동위각

아래 그림에서는 n을 세로로 생각해보죠. ∠a는 직선 l과 n이 만나는 교점의 왼쪽 위에 있고, ∠b는 왼쪽 아래에 있죠? ∠c는 오른쪽 아래, ∠d는 오른쪽 위에 있어요. ∠e는 직선 m과 n이 만나는 교점의 왼쪽 위, ∠f는 왼쪽 아래, ∠g는 오른쪽 아래, ∠h는 오른쪽 위에 있어요.

동위각, 엇각

동위각을 찾아보죠. 왼쪽 위에 있는 동위각은 ∠a, ∠e, 왼쪽 아래 있는 동위각은 ∠b, ∠f, 오른쪽 아래 있는 동위각은 ∠c, ∠g, 오른쪽 위에 있는 동위각은 ∠d, ∠h가 되는 거예요.

동위각 찾는 건 몇 번 해봐서는 금방 이해가 되지 않으니까 연습을 많이 하세요.

엇각은 서로 엇갈린 위치에 있는 각이에요. 맞꼭지각도 아니고 동위각도 아닌 각이죠. 한 가지 중요한 게 있는데, 엇각은 8개의 각 모두에 있는 게 아니에요. 교점이 하나만 있는 두 직선 l, m 사이에 있는 4개의 각(∠b, ∠c, ∠e, ∠h) 사이에서만 찾아요. 선 밖의 각 4개는 전혀 생각하지 마세요.

엇각은 대각선 방향에 있는 각을 찾으면 되는데, ∠c의 엇각을 찾아볼까요? ∠c는 오른쪽 아래에 있으니까 대각선 방향은 왼쪽 위가 되겠네요. 왼쪽 위에 있는 각 즉, 대각선 방향에 있는 각은 ∠e죠? 그래서 ∠c와 ∠e가 서로 엇각이에요. ∠b는 왼쪽 아래에 있으니까 오른쪽 위에 있는 ∠h와 엇각이고요.

엇각을 찾는 다른 방법은 동위각의 맞꼭지각을 찾으면 돼요. ∠c의 동위각은 ∠g인데, ∠g의 맞꼭지각이 ∠e에요. 이 방법으로 찾아도 똑같이 ∠e가 나와요. 편한 방법으로 연습하세요.

아래 그림을 보고 다음을 구하여라.
(1) ∠a의 동위각
(2) ∠g의 엇각
(3) ∠i와 크기가 각
동위각, 엇각, 맞꼭지각 예제

이 문제는 어려운 유형의 문제에요. 교점이 3개이고 교각이 12개나 되거든요. 이렇게 교점이 세 개인 문제에서는 교점을 하나 가려서 없다고 생각하고 남은 교점 두 개에서 동위각과 엇각을 찾으세요. 그다음 다른 교점을 가리고 찾고, … 이렇게 여러 번 하는 방법으로 풀어야 해요.

(1) ∠a의 동위각을 찾으라고 했는데, 먼저 l과 m이 만나는 교점을 가리고 해보죠. n을 세로축으로 놓으면 ∠a의 동위각은 ∠e라는 걸 찾을 수 있어요.

그다음에는 m, n이 만나는 교점을 가려보세요. 그림을 왼쪽으로 약간 기울여서 l을 가로축으로 놓으면 ∠a는 왼쪽 위에 있는 각이 돼요. ∠i, ∠j, ∠k, ∠o 중에서 왼쪽 위에 있는 각은 어떤 각일까요? ∠i가 왼쪽 위에 있는 각이에요.

그래서 ∠a의 동위각은 ∠e와 ∠i네요.

(2) 엇각은 두 직선 사이에 있는 경우에만 찾는다고 했어요. 그림의 왼쪽 부분(직선 l과 n의 교점, 직선 m과 n의 교점)에서는 엇각을 고려할 수 있는 게 ∠b, ∠c, ∠e, ∠h뿐이에요. 여기에서는 ∠g는 엇각을 얘기하지 않으니까 이곳에 ∠g의 엇각은 없어요.

이번에는 직선 m과 n의 교점, 직선 l과 m의 교점을 생각해보죠. 두 직선 사이에 있는 각은 ∠h, ∠g, ∠j, ∠k네요. 여기에는 ∠g가 있어서 엇각을 고려해볼 수 있어요. 엇각은 대각선 방향에 있는 각이니까 오른쪽 아래에 있는 ∠g의 엇각은 왼쪽 위에 있는 ∠j가 되는군요.

(3) 직선이 만나는 곳에 교각이 생기는데 크기가 같으면 서로 맞꼭지각이어야 해요. ∠i와 맞꼭지각인 것은 ∠k니까 ∠i와 ∠k의 크기가 같아요.

글 처음에 말한 것처럼 동위각, 엇각을 찾는 건 쉬운 문제가 아니에요. 위에서 알려드린 몇 가지 팁을 이용해서 연습을 많이 해보세요.

함께 보면 좋은 글

두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
평행선의 성질, 평행선에서 동위각과 엇각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리

정리해볼까요

맞꼭지각

  • 교각: 두 직선이 만나서 생기는 각. 4개
  • 맞꼭지각: 교각 중에서 서로 마주보고 있는 각
  • 맞꼭지각은 서로 크기가 같다

동위각, 엇각

  • 두 직선과 다른 한 직선이 만나서 생기는 각. 교점 2개, 교각 8개
  • 동위각: 교점을 중심으로 같은 위치에 있는 각
  • 엇각: 서로 엇갈려 있는 각. 두 직선 사이에 있는 각만을 대상으로 함.
  • 동위각, 엇각 쉽게 찾는 법: 두 직선과 만나는 한 직선을 가로축(또는 세로축)으로 놓고 왼쪽 위, 왼쪽 아래, 오른쪽 위, 오른쪽 아래의 네 방향으로 나누어 비교
 
그리드형

+ 최근글