삼차방정식

삼차방정식 중에서 특이한 형태의 삼차방정식 하나를 더 공부할 거예요. x3 = 1인데요. 그냥 보면 x = 1이라는 실근이 하나보이죠? x = 1 말고 허근이 더 있는데, 이 허근을 오메가(ω)라고 해요. 그런데 이 ω가 재밌는 성질이 있어요. 그래서 이 글에서는 오메가의 성질에 대해서 알아볼 거예요.

오메가 (ω)의 성질을 외울 수 있으면 외우면 좋아요. 너무 헷갈려서 외우기 어렵다면 성질을 유도할 수 있어야 해요. ω2이 정확하게 무슨 값인지는 몰라도 "ω2이 특정한 값을 갖고 있다"는 사실은 기억하고 있어야 한다는 얘기죠. 성질의 정확한 값을 모르더라도 성질이 있다없다 정도만 기억하고 있다가 문제에 맞게 유도할 수 있을 정도는 되어야 합니다.

x3 = 1 허근 오메가(ω)의 성질

삼차방정식 x3 = 1의 해를 구해보죠.

x3 = 1
x3 - 1 = 0
(x - 1)(x2 + x + 1) = 0
x = 1 or 삼차방정식의 허근 오메가

인수분해 공식 a3 - b3 = (a - b)(a2 + ab + b2)을 이용해서 인수분해 했고, 근의 공식을 이용해서 근을 구했어요.

허근 삼차방정식의 허근 오메가를 볼까요? 삼차방정식의 허근 오메가 1 = ω (오메가)라고 한다면 켤레근을 삼차방정식의 허근 오메가 2 = 삼차방정식의 허근의 성질 - 오메가 바 (오메가 바)라고 할 수 있죠?

일단 ω와 삼차방정식의 허근의 성질 - 오메가 바는 x3 = 1의 근이니까 ω3 = 1, 삼차방정식의 허근 오메가 바의 세제곱 = 1이에요.

또, x2 + x + 1의 두 근이기도 하므로 ω2 + ω + 1 = 0, 삼차방정식 허근의 성질이에요. 이차방정식의 근과 계수와의 관계에 의해서 두 근의 합과 곱도 구할 수 있어요. 삼차방정식 허근의 성질 - 두 허근의 합과 곱

삼차방정식 허근의 성질 - 두 허근의 곱이라는 얘기는 ω와 삼차방정식의 허근의 성질 - 오메가 바가 서로에게 곱셈에 대한 역원 즉, 역수라는 얘기예요. 삼차방정식 허근의 성질 - 두 허근은 서로 역수 1, 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2

또 위 성질들을 합쳐서 다음 성질도 유도해 낼 수 있어요.

삼차방정식 허근의 성질 유도 - 오메가 제곱 = 오메가 바

x3 = 1의 허근 ω의 성질
x3 = 1의 한 허근 ω 켤레근 삼차방정식의 허근의 성질 - 오메가 바
ω3 = 1 삼차방정식의 허근 오메가 바의 세제곱 = 1
ω2 + ω + 1 = 0 삼차방정식 허근의 성질
삼차방정식 허근의 성질 - 두 허근의 합과 곱
삼차방정식 허근의 성질 - 두 허근은 서로 역수 1 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
삼차방정식 허근의 성질 - 오메가 제곱 = 오메가 바 삼차방정식 허근의 성질 - 오메가 바의 제곱 = 오메가

x3 = 1의 한 허근을 ω라고 할 때 다음을 구하여라.
(1) ω2013 + ω2014 + ω2015 + … + ω2019
(2) 삼차방정식 허근의 성질 예제

x3 = 1
x3 - 1 =0
(x - 1)(x2 + x + 1) = 0
ω3 = 1, ω2 + ω + 1 = 0, 삼차방정식 허근의 성질 - 두 허근의 합과 곱 등 많은 성질이 있어요.

(1) ω2013 + ω2014 + ω2015 + … + ω2019
= ω2013(1 + ω + ω2) + ω2016(1 + ω + ω2) + ω2019
= (ω3)671(1 + ω + ω2) + (ω3)672(1 + ω + ω2) + (ω3)673
= 1 × 0 + 1 × 0 + 1           (∵ ω3 = 1, ω2 + ω + 1 = 0)
= 1

삼차방정식 허근의 성질 예제 풀이

x3 = -1 허근 오메가(ω)의 성질

삼차방정식 x3 = -1에서도 비슷한 성질을 알 수 있어요. 둘을 헷갈리지 마세요.

x3 = -1
x3 + 1 = 0
(x + 1)(x2 - x + 1) = 0
x = -1 or 삼차방정식 허근 - 근의 공식

한 허근삼차방정식의 허근 - 오메가 = ω, 켤레근 삼차방정식의 허근 - 오메가 바 = 삼차방정식의 허근의 성질 - 오메가 바라고 해보죠.

x3 = 1에서와 같은 방법을 이용하면 아래의 성질을 유도할 수 있어요.

x3 = -1의 허근 ω의 성질
x3 = -1의 한 허근 ω 켤레근 삼차방정식의 허근의 성질 - 오메가 바
ω3 = -1 삼차방정식의 허근 오메가 바의 세제곱 = -1
ω2 - ω + 1 = 0 삼차방정식 허근의 성질 2
삼차방정식 허근의 성질 2- 허근의 합과 곱
삼차방정식 허근의 성질 - 두 허근은 서로 역수 1 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
삼차방정식 허근의 성질 2 - 오메가의 제곱 = -오메가 바 삼차방정식 허근의 성질 2 - 오메가 바의 제곱 = -오메가

함께 보면 좋은 글

삼차방정식 근과 계수와의 관계
이차방정식의 켤레근
이차방정식의 근과 계수와의 관계
인수분해, 인수분해 공식
항등원과 역원, 연산법칙

정리해볼까요

x3 = 1의 허근의 성질

  • x3 = 1의 한 허근을 ω라고 할 때, 켤레근 삼차방정식의 허근의 성질 - 오메가 바
  • ω3 = 1, 삼차방정식의 허근 오메가 바의 세제곱 = 1
  • ω2 + ω + 1 = 0, 삼차방정식 허근의 성질
  • 삼차방정식 허근의 성질 - 두 허근의 합과 곱
  • 삼차방정식 허근의 성질 - 두 허근은 서로 역수 1, 삼차방정식 허근의 성질 - 두 허근은 서로 역수 2
  • 삼차방정식 허근의 성질 - 오메가 제곱 = 오메가 바, 삼차방정식 허근의 성질 - 오메가 바의 제곱 = 오메가
<<  수학 1 목차  >>
 
그리드형

이차방정식 근과 계수와의 관계에서는 이차방정식의 두 근의 합과 곱, 계수 사이의 재밌는 관계를 공부했었죠?

삼차방정식에도 세 근의 합과 곱, 계수 사이의 재미있는 관계를 공부할 거예요. 이 관계를 알면 삼차방정식만 보고 세 근의 합과 곱을 구할 수 있어요. 또, 합과 곱이 포함된 여러 가지 응용된 식의 값도 구할 수 있고요.

삼차방정식의 근과 계수와의 관계는 세 근의 합과 곱, 곱셈공식이 섞여서 나오니까 곱셈공식을 다 외우고 있어야 풀 수 있어요. 곱셈공식을 얼른 보고 오세요.

삼차방정식 근과 계수와의 관계

이차방정식은 보통 ax2 + bx + c = 0 (a ≠ 0)으로 쓰죠? 삼차방정식은 보통 ax3 + bx2 + cx + d = 0 (a ≠ 0)으로 써요. 또 이차방정식의 두 근은 α, β라고 하고, 삼차방정식의 세 근은 α, β, γ라고 해요.

이차항의 계수가 a이고 α, β를 근으로 하는 이차방정식은 a(x - α)(x - β) = 0으로 쓰죠? 그럼 삼차항의 계수가 a이고 세 근이 α, β, γ인 삼차방정식은 어떻게 쓸까요? a(x - α)(x -  β)(x - γ) = 0으로 써요.

곱셈공식 중에 다음과 같은 공식이 있었어요. 이 곱셈공식을 이용해서 전개해보죠.

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

a(x - α)(x -  β)(x - γ) = 0
a{x3 - (α + β + γ)x2 + (αβ + βγ + γα)x - αβγ} = 0
ax3 - a(α + β + γ)x2 + a(αβ + βγ + γα)x - aαβγ = 0

이 전개식과 ax3 + bx2 + cx + d = 0을 비교하면 삼차방정식의 세 근과 계수와의 관계를 알 수 있어요.

b = - a(α + β + γ)  →  α + β + γ = 삼차방정식 근과 계수와의 관계 - 세 근의 합
c = a(αβ + βγ + γα)  →  αβ + βγ + γα = 삼차방정식 근과 계수와의 관계 - 두 개씩 곱한 것들의 합
d = - aαβγ  →  αβγ = 삼차방정식 근과 계수와의 관계 - 세 근의 곱

삼차방정식 근과 계수와의 관계
ax3 + bx2 + cx + d = 0 (a ≠ 0)의 세 근을 α, β, γ라고 할 때
α + β + γ = 삼차방정식 근과 계수와의 관계 - 세 근의 합
αβ + βγ + γα = 삼차방정식 근과 계수와의 관계 - 두 개씩 곱한 것들의 합
αβγ = 삼차방정식 근과 계수와의 관계 - 세 근의 곱

삼차방정식 2x3 - 4x2 + 6x - 8 = 0의 세 근을 α, β, γ라고 할 때 다음을 구하여라.
(1) α + β + γ
(2) αβ + βγ + γα
(3) αβγ
(4) 삼차방정식 근과 계수와의 관계 예제
(5) α2 + β2 + γ2
(6) α3 + β3 + γ3

근과 계수와의 관계에 이용해서 풀어야 해요. 특히 (5), (6)번은 곱셈공식곱셈공식의 변형까지 이용해야 하고요.

(1) α + β + γ = 삼차방정식 근과 계수와의 관계 예제 풀이 1 - 세 근의 합

(2) αβ + βγ + γα = 삼차방정식 근과 계수와의 관계 예제 풀이 2 - 두 개씩 곱한 것들의 합

(3) αβγ = 삼차방정식 근과 계수와의 관계 예제 풀이 3 - 세 근의 곱

삼차방정식 근과 계수와의 관계 예제 풀이 4

(5) 곱셈공식 중에 (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) 공식이 있었어요.

(α + β + γ)2 = α2 + β2 + γ2 + 2(αβ + βγ + γα)
22 = α2 + β2 + γ2 + 2 × 3
α2 + β2 + γ2 = -2

(6)번은 곱셈공식의 변형 중에서 a3 + b3 + c3 = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) + 3abc를 이용해요.
α3 + β3 + γ3
= (α + β + γ)(α2 + β2 + γ2 - αβ - βγ - γα) + 3αβγ
= (α + β + γ){α2 + β2 + γ2 - (αβ + βγ + γα)} + 3αβγ
= 2 × (-2 - 3) + 3 × 4
= 2

함께 보면 좋은 글

삼차방정식의 허근 ω의 성질
상반방정식
이차방정식의 근과 계수와의 관계
두 수를 근으로 하는 이차방정식, 두 근의 합과 곱이 주어졌을 때 이차방정식
곱셈공식, 곱셈공식 유도, 고1 곱셈공식
고1 곱셈공식의 변형, 곱셈공식의 변형 유도

정리해볼까요

삼차방정식 근과 계수와의 관계

  • ax3 + bx2 + cx + d = 0 (a ≠ 0)의 세 근을 α, β, γ라고 할 때
  • α + β + γ = 삼차방정식 근과 계수와의 관계 - 세 근의 합
  • αβ + βγ + γα = 삼차방정식 근과 계수와의 관계 - 두 개씩 곱한 것들의 합
  • αβγ = 삼차방정식 근과 계수와의 관계 - 세 근의 곱
<<  수학 1 목차  >>
 
그리드형

일차방정식, 이차방정식까지 공부했는데요. 이제부터는 그보다 차수가 더 높은 방정식을 공부할 거예요. 이차방정식보다 차수가 더 높으니까 삼차방정식, 사차방정식, … 이죠.

이런 방정식들을 고차방정식이라고 하는데, 고차방정식의 풀이방법을 공부할 거예요. 또 이차방정식을 인수분해했던 것처럼 고차방정식의 인수분해도 해볼거고요.

고차방정식은 차수가 높고 항이 많긴 하지만 기본 원리는 이차방정식과 같고, 다항식의 인수분해에서 삼차식, 사차식의 인수분해를 해봤던 걸 함께 적용하면 되는 거니까 앞의 내용을 잘 이해하고 있다면 비교적 쉽게 이해할 수 있을 거예요.

고차방정식의 풀이

x2 - 2x + 1 = 0은 x에 대한 이차방정식이죠? 그럼 x3 + x2 - 2x + 1 = 0은 뭘까요? 최고차항이 x에 대한 3차니까 삼차방정식이에요. x4 + x3 + x2 - 2x + 1 = 0은 x에 대한 최고차항이 4차라서 사차방정식이죠.

이처럼 3차 이상의 방정식을 고차방정식이라고 해요. 차수와 근의 개수가 같은 건 알고 있죠? 삼차방정식은 근이 세 개, 사차방정식은 근이 네 개예요.

이차방정식을 풀 때는 인수분해를 하거나 근의 공식을 이용해서 근을 구했어요. 고차방정식에서는 인수분해를 해서 근을 구할 수는 있지만, 근의 공식을 바로 적용할 수는 없어요.

따라서 고차방정식을 풀 때는 (일차식) × (일차식) × (일차식) = 0이나 (일차식) × (이차식) = 0, (이차식) × (이차식) = 0의 형태로 인수분해를 해서 일차식에서는 해를 바로 구하고, 이차식은 근의 공식으로 해를 구해야 해요.

고차방정식의 풀이

  1. 인수분해
  2. 일차식에서는 해를 바로 구하고
    이차식에서는 근의 공식 이용

고차방정식의 인수분해

이차방정식에서 인수분해를 하는 방법은 크게 두 가지였죠? 인수분해 공식을 이용하는 방법과 인수정리를 이용한 인수분해요. 고차방정식은 항의 개수와 차수가 다를 뿐 방법은 똑같아요.

고차방정식의 인수분해 - 인수분해 공식

인수분해 공식 중 차수가 3차 이상인 공식은 몇 개 안 되요. 잘 외워두세요.

x3 + y3 = (x + y)(x2 - xy + y2)
x3 - y3 = (x - y)(x2 + xy + y2)
x4 - y4 = (x2 + y2)(x2 - y2) = (x2 + y2)(x + y)(x - y)

다음 방정식의 해를 구하여라.
(1) x3 - 16x = 0
(2) x3 - 27 = 0
(3) x4 - 16 = 0

문제가 비슷비슷해 보이지만 조금씩 다르죠?

(1)번 인수분해에서 가장 기본은 공통인수로 묶기에요. 두 항에 공통인수 x가 있죠?
x3 - 16x = 0
x(x2 - 16) = 0
x(x + 4)(x - 4) = 0
x = 0 or ±4

(2)는 두 항이 모두 세제곱인 항이에요.
x3 - 27 = 0
x3 - 33 = 0
(x - 3)(x2 + 3x + 9) = 0

앞의 일차식은 해를 바로 구할 수 있지만, 뒤의 이차식은 근의 공식을 이용해야겠네요.

x = 3

고차방정식의 풀이 예제 풀이 1

x = 3 or 고차방정식의 풀이 예제 풀이 2

(4)번은 두 항이 모두 네제곱인 항이네요.
x4 - 16 = 0
(x4 - 24) = 0
(x2 + 22)(x2 - 22) = 0
(x2 + 22)(x + 2)(x - 2) = 0
(x2 + 4)(x + 2)(x - 2) = 0

x = ±2i or ±2

고차방정식의 인수분해 - 인수정리 이용

인수분해 공식이 몇 개 안 되다 보니까 인수분해가 안 되는 경우도 많아요. 이때는 인수정리와 조립제법을 이용해서 인수분해를 해야 해요.

인수정리를 이용한 인수분해가 뭐였죠? 다항식의 우변을 0으로 놓고 인수분해를 하는 거였잖아요. 다항식의 우변이 0인 게 바로 방정식이니까 그 방법 그대로 사용하면 돼요.

방정식 f(x)에서 f(α) = 0을 만족하는 α는 아래 방법으로 찾아요. 이렇게 찾은 α가 방정식의 해가 되는 거죠.

  1. ±1
  2. 인수정리를 이용한 고차방정식의 인수분해 - 인수정리

모든 해를 이 방법으로 찾을 필요는 없고요 한두 개를 찾은 다음에 인수분해해서 찾아야 해요. 근이 무리수이거나 복소수이면 이 방법으로 찾을 수 없으니까요.

다음 방정식의 해를 구하여라.
(1) x4 + x3 - 3x2 - x + 2 = 0
(2) x4 - 4x3 + 6x2 - 5x + 2 = 0

(1)번에서 f(x) =  x4 + x3 - 3x2 - x + 2라고 하면
f(1) = 1 + 1 - 3 - 1 + 2 = 0
f(-1) = 1 - 1 - 3 + 1 + 2 = 0

f(α) = 0이 되는 α = 1, -1로 두 개나 찾았네요. 그러면 굳이 α 찾는 공식을 적용할 필요가 없어요. 그냥 넘어가죠.

1과 -1을 이용해서 조립제법을 해보죠.

고차방정식의 인수분해 - 인수정리를 이용한 인수분해 예제 1 - 조립제법

x4 + x3 - 3x2 - x + 2 = 0
(x - 1)(x + 1)(x2 + x - 2) = 0
(x - 1)(x + 1)(x - 1)(x + 2) = 0
(x - 1)2(x + 1)(x + 2) = 0

인수정리와 조립제법을 이용했더니 식이 인수분해가 되었어요.

x = -2 or -1 or 1(중근) 이네요.

(2)번 f(x) =  x4 - 4x3 + 6x2 - 5x + 2라고 놓으면
f(1) = 1 - 4 + 6 - 5 + 2 = 0
f(-1) = 1 + 4 + 6 + 5 + 2 = 18

고차방정식의 풀이 예제 2 풀이 1

f(2) = 16 - 32 + 24 - 10 + 2 = 0
f(-2) = 16 + 32 + 24 + 10 + 2 = 84

f(α) = 0 이 되는 α = 1, 2네요. 조립제법을 해보죠.

고차방정식의 인수분해 - 인수정리를 이용한 인수분해 예제 2 - 조립제법

x4 - 4x3 + 6x2 - 5x + 2 = 0
(x - 1)(x - 2)(x2 - x + 1) = 0

뒤에 이차식은 인수분해가 안 되니까 근의 공식을 이용해서 근을 찾아야겠네요.

고차방정식의 풀이 예제 2 풀이 2

x = 1 or 2 or 고차방정식의 풀이 예제 2 풀이 3입니다.

함께 보면 좋은 글

인수분해, 인수분해 공식
복잡한 식의 인수분해 - 치환, 복이차식
조립제법 1 - 조립제법 하는 법
조립제법 2 - 나누는 식의 x 계수가 1이 아닐 때
인수정리를 이용한 인수분해
고차방정식의 풀이 2 - 치환, 복이차식

정리해볼까요

고차방정식

  • 최고차항의 차수가 3차 이상인 방정식
  • 인수분해 공식과 인수정리를 이용하여 인수분해
  • 근의 공식을 이용하여 해를 구한다.
<<    고1 수학 목차    >>
 
그리드형

+ 최근글