Cos

코사인법칙 두 번째 제2 코사인법칙이에요.

제2 코사인법칙은 제1 코사인법칙의 확장판이에요. 따라서 제1 코사인법칙에 대해서 알고 있어야 하고 증명도 할 줄 알아야 해요.

이 글에서는 제2 코사인법칙을 유도해보고 제2 코사인법칙을 활용해서 문제도 풀어볼 거예요. 제2 코사인법칙이 무엇을 의미하는지 어떤 경우에 제2 코사인법칙을 이용해서 문제를 푸는지 잘 기억해두세요.

제2 코사인법칙 증명

제2 코사인법칙을 보기 전에 먼저 제1 코사인법칙부터 볼까요?

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA

세 개의 식이 있는데 각각의 식에 좌변에 있는 항목(a, b, c)을 양변에 곱해보죠.

  • a2 = abcosC + cacosB …… ①
  • b2 = bccosA + abcosC …… ②
  • c2 = cacosB + bccosA …… ③

순서대로 ①식, ②식, ③식이라고 해보죠.

① - ② - ③을 하면

a2 - b2 - c2 = abcosC + cacosB - (bccosA + abcosC) - (cacosB + bccosA)
a2 - b2 - c2 = -2bccosA
a2 = b2 + c2 - 2bccosA

② - ③ - ①을 하면

b2 - c2 - a2 = bccosA + abcosC - (cacosB + bccosA) - (abcosC + cacosB)
b2 - c2 - a2 = -2cacosB
b2 = c2 + a2 - 2cacosB

③ - ① - ②를 하면

c2 - a2 - b2 = cacosB + bccosA - (abcosC + cacosB) - (bccosA + abcosC)
c2 - a2 - b2 = -2abcosC
c2 = a2 + b2 - 2abcosC

제2 코사인법칙
a2 = b2 + c2 - 2bccosA
b2 = c2 + a2 - 2cacosB
c2 = a2 + b2 - 2abcosC

제2 코사인법칙 - 삼각형ABC

일단 첫 번째 공식만 보죠. a2 = b2 + c2 - 2bccosA

각 항을 보면 a, b, c라는 세 변의 길이와 A라는 한 각의 크기로 되어 있어요. 세 변과 한 각 사이의 관계를 나타내는 식이죠.

b, c라는 두 변의 길이와 A의 각의 크기를 알면 나머지 한 변인 a를 구할 수 있어요. 여기서 A는 어떤 각인가요? a의 대변이자 b, c 사이의 끼인각이죠? 즉 두 변의 길이와 그 끼인각의 크기를 알면 끼인각의 대변의 길이를 구할 수 있다는 거예요.

조금 돌려서 얘기해볼까요?

a, b, c 세 변의 길이를 알면 어떨까요? cosA를 구할 수 있죠? 만약에 cosA가 우리가 외우고 있는 삼각비라면 A도 구할 수 있다는 얘기예요.

다음을 구하여라.
(1) a = 2cm, b = 3cm, C = 60°일 때, c
(2) a = 3cm, b = 3cm, c = 3cm일 때, A

(1) 두 변의 길이와 그 끼인각의 크기를 알려줬네요. 공식에 대입해보죠.

(2) 세 변의 길이를 알려주고 한 각의 크기를 구하라고 했어요. 코사인법칙은 세 변의 길이와 한 각의 관계를 나타내는 식이니까 공식을 이용해서 각을 구할 수 있어요.

A = 45°

함께 보면 좋은 글

사인법칙, 사인법칙 증명
코사인법칙, 제1코사인법칙 증명
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수

정리해볼까요

제2 코사인법칙

  • a2 = b2 + c2 - 2bccosA
  • b2 = c2 + a2 - 2cacosB
  • c2 = a2 + b2 - 2abcosC
<<     고1 수학 목차     >>
 
그리드형

사인법칙에 이어 코사인법칙이에요. 코사인법칙은 두 개가 있는데 이 글에서는 제1 코사인법칙에 대해서 알아볼 거예요.

제1 코사인법칙은 그리 많이 사용하는 법칙은 아니에요. 그렇다고 전혀 사용하지 않는 것도 아니고 특히 다음에 공부할 제2 코사인법칙을 유도하는 과정에서 꼭 필요하기 때문에 반드시 알아야 하는 법칙입니다.

공식의 모양이 특징을 가지고 있어서 모양만 잘 보면 금방 외울 수 있어요.

코사인법칙

사인법칙은 세 변의 길이와 세 각의 sin, 외접원의 반지름 사이의 관계였어요. 코사인법칙은 한 변의 길이와 다른 두 변, 그 대각 사이의 관계를 나타내는 식이에요.

△ABC의 세 각을 A, B, C라고 하고, 그 대변을 a, b, c라고 할 때 다음의 성질이 성립해요.

△ABC의 세 각을 A, B, C라 하고 그 대변을 a, b, c라고 할 때
a = bcosC + ccosB
b = ccosA + acosC
c = acosB + bcosA

코사인법칙을 잘 보면 a를 구할 때 b와 cosC를 곱한 것에 c와 cosB를 곱한 걸 더해주는 거예요. 두 각의 크기와 그 대변의 길이를 알 때 다른 한 변의 길이를 구하는 공식이지요. 두 변의 길이와 두 각의 cos을 교차로 곱해주는 게 특징이에요.

증명해 볼까요? a = bcosC + ccosB부터 증명해보죠. C를 이용해서 증명할 거예요.

코사인법칙 증명 - 예각일 때

첫 번째 c가 예각일 때에요.

코사인법칙 증명 - 예각일 때

 

A에서 에 수선을 내리고 수선의 발을 H라고 해보죠.

a =  + 에요.

cosB와 cosC를 이용해서 의 길이를 구해보죠.

△ABH에서

△ACH에서

결국 a =  +  = bcosC + ccosB라는 걸 알 수 있어요.

코사인법칙 증명 - 직각일 때

이번에는 C가 직각일 때에요.

코사인법칙 증명 - 직각일 때

 

C가 직각이면 따로 보조선을 그을 필요가 없어요.

cosC = cos90° = 0 → bcosC = 0

a = bcosC + ccosB가 성립해요.

코사인법칙 증명 - 둔각일 때

C가 둔각일 때에요.

코사인법칙 증명 - 둔각일 때

 

A에서 의 연장선에 수선을 내리고 수선의 발을 H라고 해보죠.

a =  - 에요.

cosB와 cosC를 이용해서 의 길이를 구해보죠.

△ABH에서

△ACH에서

a =  -  = ccosB + bcosC

세 경우를 통해서 C의 크기와 상관없이 a = bcosC + ccosB가 성립하는 걸 알 수 있어요. C가 아니라 A, B의 각을 바꿔가면서 같은 방법으로 증명하면 b = ccosA + acosC, c = bcosA + acosB가 성립하는 걸 확인할 수 있어요.

△ABC에서 A = 30°, B = 45°, a = 6cm일 때, b, c, C를 구하여라.

코사인법칙을 이용하려면 두 각의 크기와 그 대변의 길이를 알아야 해요. 하지만 문제에서는 한 변의 길이와 두 각의 크기를 알려줬어요. 두 각은 길이를 아는 변의 양 끝각이 아니네요.

일단 남은 한 각의 크기를 구해보죠. C = 180° - (30° + 45°) = 105°네요.

세 각의 크기를 알았어요. 원래 한 변의 길이는 알고 있으니 결국 한 변의 길이와 양 끝각의 크기를 알게 된 거죠. 그러면 사인법칙을 이용할 수 있지요.

sin105°를 우리는 외우고 있지 않죠? 물론 삼각함수표를 사용하면 그 값을 알 수 있지만 외우고 있지는 않아요. 그렇다고 c를 구할 수 없는 건 아니에요. 이제 두 각의 크기(A, B)와 그 대변의 길이(a, b)를 알고 있으니까 코사인법칙을 이용해서 구하면 돼요.

함께 보면 좋은 글

사인법칙, 사인법칙 증명
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법
삼각함수를 포함한 식의 최댓값과 최솟값
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수

정리해볼까요

△ABC의 세 각을 A, B, C라 하고 그 대변을 a, b, c라고 할 때

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA
<<     고1 수학 목차     >>
 
그리드형

삼각함수 그래프의 이동은 조금 어렵습니다. 자세히 하나씩 천천히 읽어보세요. sin 그래프, cos 그래프tan 그래프의 특징을 아주 제대로 이해하고 있어야 해요. 원래 그래프와 이동한 후의 그래프의 특징을 잘 비교해서 이해해야 하죠.

그래프의 이동이기 때문에 중학교 때 공부했던 이차함수 그래프의 평행이동, y = (x - p)2 + q와 함께 연결지어서 공부하면 조금 더 쉽게 이해할 수 있을 거예요.

그래프를 직접 그린 후에 특징을 잘 찾아서 어떻게 바뀌는지 그림을 통해서 이해하도록 노력해보세요.

먼저 y = sinx의 그래프의 이동을 설명한 후에 이를 바탕으로 해서 y = cosx, y = tanx의 그래프의 이동을 설명할게요.

삼각함수 그래프의 이동

y = sinx 그래프의 이동

y = 2sinx 그래프를 그려보죠. y = 2 × sinx 이므로 y = sinx에서 y가 두 배에요. (x, y)의 좌표를 (x, 2y)로 바꾸면 쉽게 그릴 수 있어요.

삼각함수의 이동 - y = asin(x)

그래프를 그려봤더니 y = sinx의 그래프보다 위아래로 더 길어졌죠? 주기는 2π고요. 0 ≤ x < 2π에서 최댓값은 x = 일 때, y = 2이고 최솟값은 x = 일 때, -2에요. 치역이 바뀌었지만 주기라든가 정의역 등 다른 특징은 그대로예요.

y = -2sinx의 그래프였다면 어떻게 될까요? y = -2sinx의 그래프는 y = 2sinx의 그래프와 x축 대칭이므로 위 그래프의 위아래를 바꾸면 돼요. 주기는 2π고요. 0 ≤ x < 2π에서 최댓값은 x = 일 때, y = 2이고 최솟값은 x = 일 때, -2에요.

만약에 y = 2sinx가 아니라 y = sinx를 그렸다면 어떻게 될까요? (x, 2y)가 아니라 (x, y)가 될 거고 그렇다면 y = sinx의 그래프보다 위아래로 더 줄어든 그래프가 될 거예요. 주기는 마찬가지로 2π일 거고, 0 ≤ x < 2π에서 최댓값은 x = 일 때, y = 이고 최솟값은 x = 일 때, -에요.

sinx 앞에 어떤 숫자가 있더라도 주기는 바뀌지 않고 2π라는 걸 알 수 있어요. 앞에 있는 숫자에 따라 최대, 최소는 바뀌죠. 최대, 최소가 달라지기 때문에 그래프는 위아래로 늘어나거나 줄어드는 형태예요. 그리고 바뀐 최댓값과 최솟값은 부호는 반대지만 절댓값이 같아요.

이걸 확장해서 y = asinx의 그래프의 특징으로 바꿔보죠.

y = sinx와 y = asinx의 그래프 비교
y = sinx y = asinx
주기 2π 2π
최댓값 1 |a|
최솟값 -1 -|a|

이번에는 y = sin(bx)의 그래프를 그려보죠.

y = sin(2x)의 그래프를 그려볼까요? y = sinx에서 x가 2x로 바뀌었고, y는 그대로예요. 따라서 (x, y) 대신에 (x/2, y)의 좌표를 연결하면 되죠.

삼각함수의 이동 - y = sin(bx)

그래프가 y = sinx의 그래프보다 폭이 더 좁아졌어요. 최대, 최소는 바뀌지 않았어요. 그대로 1, -1이에요. 주기는 π고요.

x앞에 숫자가 있을 때는 최대, 최소는 바뀌지 않고 주기가 바뀐다는 걸 알 수 있어요. 단순히 주기가 줄어든 게 아니고 원래 주기인 2π를 x앞의 숫자로 나눠준 게 주기예요. 주기는 양수로 나타내기 때문에 b에 절댓값을 씌워서 나눠야 합니다.

y = sinx와 y = sin(bx)의 그래프 비교
y = sinx y = sin(bx)
주기 2π
최댓값 1 1
최솟값 -1 -1

이번에는 y = sin(x + c) 형태의 그래프를 보죠.

이건 이차함수 그래프의 평행이동, y = a(x - p)2을 생각해보면 쉬워요. y = (x - p)2은 y = ax2의 그래프를 x축 방향으로 p만큼 평행이동한 그래프에요. x대신 x - p를 대입하면 되죠.

그럼 y = sin(x + c)는 어떨까요?

y = sin(x + c)
y = sin{x - (-c)}

x 대신 x - (-c)가 들어가 있죠? 따라서 y = sin(x + c)는 y = sinx의 그래프를 x축 방향으로 -c만큼 평행이동한 그래프에요.

삼각함수의 평행이동 - y = sin(x+c)

이차함수의 그래프에서 x축 방향으로 평행이동을 하더라도 그래프의 폭이나 방향, 최대, 최소 등은 바뀌지 않았어요. y = sinx의 그래프에서도 주기와 최대, 최소는 바뀌지 않아요.

y = sinx + d의 그래프를 보죠. 마찬가지로 이차함수 그래프의 평행이동, y = ax2 + q의 그래프를 생각해보세요.

y = ax2 + q의 그래프는 y = ax2의 그래프를 y축 방향으로 q만큼 평행이동한 그래프에요.

같은 이유로 y = sinx + d는 y = sinx의 그래프를 y축 방향으로 d만큼 평행이동한 그래프에요.

삼각함수의 평행이동 - y = sin(x) + d

이차함수의 그래프를 y축 방향으로 평행이동하면 폭과 방향은 그대로지만 최대, 최소는 바뀌죠? y = sinx의 그래프에서도 y축 방향으로 d만큼 평행이동하면 처음의 최대, 최소보다 d만큼 더해줘야 해요. 주기는 바뀌지 않아요.

y = sinx의 그래프와 y = sin(x + c)의 그래프, y = sinx + d 비교
y = sinx y = sin(x + c) y = sinx + d
주기 2π 2π 2π
최댓값 1 1 1 + d
최솟값 -1 -1 -1 + d

위 내용을 한 번에 정리해보죠.

y = asin(bx + c) + d의 그래프와 원래 y = sinx의 그래프와 비교해보죠.

y = sinx와 y = asin(bx + c) + d의 그래프 비교
y = sinx y = asin(bx + c) + d
주기 2π
최댓값 1 |a| + d
최솟값 -1 -|a| + d

a와 d는 최대, 최소에 영향을 줘요. 특히 a는 그래프를 위, 아래로 늘리거나 줄인 형태로 모양을 바꿔서 최대, 최소에 영향을 주고요. d는 그래프의 모양을 그대로 두고 그래프를 위, 아래로 움직여서 최대, 최소에 영향을 줍니다. b는 그래프를 좌우로 늘이거나 줄이는 모양으로 바꿔서 주기에 영향을 줘요. c는 전체적인 그래프의 모양은 바꾸지 않고 좌우로 움직이기만 합니다.

y = cosx 그래프의 이동

y = sinx의 그래프와 y = cosx의 그래프는 주기가 2π로 같고, 최대가 1, 최소가 -1로 같아요. 물론 최대, 최소가 생기는 x는 다르지만요. 삼각함수의 그래프에서 가장 중요한 것은 주기, 최대, 최소에요. y = sinx와 y = cosx의 그래프는 특징이 같으니까 이동 후에 바뀌는 특징도 같아요. 한꺼번에 적용할 수 있다는 뜻이에요.

y = tanx의 그래프의 이동

하지만 y = tanx의 그래프의 이동은 달라요. 주기는 π이고, 최대, 최소는 없어요. 게다가 점근선이라는 것까지 있지요. 그러니까 서로 다른 방법으로 이해해야 합니다.

y = atan(bx + c) + d꼴을 보죠.

a는 그래프의 모양을 위아래로 늘리거나 줄여서 최대, 최소에 영향을 줘요. 그래프의 모양을 위아래 늘이거나 줄일 수는 있지만, 최대, 최소는 원래부터 구할 수 없으니까 이동한 결과도 최대, 최소를 구할 수 없어요.

b는 그래프를 좌우로 늘리거나 줄여서 주기에 영향을 줘요. y = tanx의 주기는 π니까 이동한 그래프의 주기는 입니다. 또 점근선에 영향을 줘요.

c는 그래프의 모양은 그대로 두고 좌우로 움직이기만 하죠. 이때 점근선도 함께 움직입니다. 점근선과 관련된 내용은 굳이 외울 필요는 없어요. 그냥 바뀌는구나 정도로만 이해하고 있으면 돼요.

d는 그래프의 모양은 그대로 두고 위, 아래로 움직여서 최대, 최소에 영향을 주죠. 하지만 최대, 최소는 구할 수 없어요.

삼각함수 그래프의 이동
y = asin(bx + c) + d
y = acos(bx + c) + d
y = atan(bx + c) + d
최댓값 |a| + d 없음
최솟값 -|a| + d 없음
주기
점근선 없음. (n은 정수)

위에서 한 내용이 어려운 내용이에요. 원래 처음의 그래프의 특징을 잘 이해해야 하고, 이동할 때 숫자가 어디에 붙는지에 따라 어떤 특징이 어떻게 달라지는지 잘 기억해두세요.

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 그래프 - tan 그래프

<<     고1 수학 목차     >>
 
그리드형

삼각함수 그래프 세 번째 tan의 그래프예요. tan의 그래프는 앞서 했던 sin, cos의 그래프와 많이 다릅니다. 그래서 주의해서 봐야 해요. 다른 함수의 그래프와 헷갈릴 일은 없으니까 어쩌면 다행이기도 하죠.

tan의 그래프를 그릴 때 조금 어렵다면 삼각함수의 사촌 격인 삼각비의 tan를 생각하세요. 그때 공부했던 내용을 참고하면 tan 그래프를 그리고 이해하는 데 도움이 많이 될 거예요.

각 그래프의 특징을 보고 실제로 그래프를 종이에 예쁘게 그리는 연습을 하세요. 종이에 여러 번 그리는 게 그래프의 특징을 좀 더 빨리 파악하고 외우는 데 많은 도움이 됩니다.

삼각함수의 그래프 - tan 그래프

[중등수학/중3 수학] - 예각의 삼각비, 0°와 90°의 삼각비 구했던 거 기억나죠? 그것과 비슷해요. 삼각비와 삼각함수는 한 끗 차이니까요.

좌표평면 위의 단위원과 동경 가 만나는 점을 점 P(x, y)라고 하고 점 P에서 x축에 내린 수선의 발을 H라고 해보죠. 의 연장선과 x = 1이 만나는 점을 P'(x', y')이라고 하고요. 그리고 이때 동경 가 나타내는 각을 θ라고 해보죠.

△OPH ∽ △OP'H'이므로  (∵ x' = 1)

tanθ는 동경 의 연장선과 x = 1의 교점 P'의 y좌표, 높이라는 걸 알 수 있어요. 이를 이용해서 tanθ의 그래프를 그려보죠.

θ = 0일 때 P'의 y좌표는 0이므로 tanθ = 0이에요.

θ가 1사분면의 각일 때 θ가 커지면 높이도 커지므로 tanθ도 커져요.

θ = 90° = 이면 직각이라서 그 값을 알 수가 없어요. [중등수학/중3 수학] - 0°와 90°의 삼각비에서 tan90°는 그 값을 정할 수 없다고 했잖아요.

θ가 2사분면의 각일 때 x = 1과 교점이 아니라 x = -1과의 교점의 높이로 구해야겠죠?
  (∵ x' = -1)

그래서 tanθ의 부호가 (-)예요. θ가 커지면 높이가 줄어들지만, 부호가 (-)이므로 tanθ는 커져요.

θ = 180° = π이면 높이 = 0이므로 tanθ = 0이지요.

θ가 3사분면의 각이면 θ가 커질수록 tanθ도 커져요. 이때 x' = -1, y' < 0이므로 tanθ > 0이지요.

θ = 270° = 이면 역시 tanθ는 값을 정할 수 없어요.

θ가 4사분면의 각이면 x' = 1로 tanθ = y' < 0이므로 θ가 커질수록 높이는 작아지지만 tanθ는 커져요.

θ가 360° = 2π보다 커지면 위와 같은 내용이 반복돼요. 주기를 2π라고 생각할 수 있어요. 그런데 이 내용을 잘 보면 1사분면의 각일 때와 3사분면의 각일 때, 2 사분면의 각일 때와 4사분면의 각일 때의 변화가 같아요. 즉 주기가 π라는 걸 알 수 있죠. 삼각함수 각의 변환 2 - π ± θ, π/2 ± θ에서 tan(π + θ) = tanθ였어요.

tan 그래프의 가장 큰 특징은 sin 그래프, cos 그래프와 달리 물결 모양이 아니라는 거예요. 그리고 모든 영역에서 값이 커져요. 전부 다 오른쪽 위로 향하고 있어요.

그리고 , …… 처럼 nπ + (n은 정수)일 때, 값을 정할 수 없다는 거죠. 그래서 정의역은 nπ + (n은 정수)가 아닌 모든 실수고 치역은 모든 실수예요.

tan(-x) = -tanx이므로 원점에 대하여 대칭이에요.

nπ + (n은 정수)일 때 값을 정할 수는 없지만, 그때의 값에 계속 가까워지고 있어요. 무리함수의 그래프에서 점점 가까워지는 선을 점근선이라고 했죠? x = nπ + (n은 정수)가 바로 점근선이에요.

y = tanx 그래프의 특징
정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
원점에 대하여 대칭
주기는 π
점근선은 x = nπ + (n은 정수)

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 총정리

정리해볼까요

y = tanx 그래프의 특징

  • 정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
  • 원점에 대하여 대칭
  • 주기는 π
  • 점근선은 x = nπ + (n은 정수)
<<     고1 수학 목차     >>
 
그리드형

삼각함수의 그래프 두 번째 cos의 그래프에요. 이 글에서는 cos의 그래프를 그리는 방법과 정의역, 치역, 주기, 대칭 같은 특징에 대해서 알아볼 거예요.

삼각함수 각의 변환에서 sin과 cos은 서로 바뀌기도 했었죠. 그만큼 이 둘은 관계가 깊어요. cos의 그래프도 앞서 했던 삼각함수 sin 그래프와 거의 비슷해요. 그래프를 그리는 방법도 그래프의 모양과 성질까지 아주 비슷하죠. 그래서 헷갈릴 수 있어요. 반대로 조금의 차이만 제대로 기억하면 아주 쉽다는 뜻이에요. 마지막에 sin 그래프와 cos 그래프의 차이를 비교하는 내용이 있으니까 잘 봐두세요.

삼각함수의 그래프 - cos 그래프

cos 그래프를 그릴 때도 좌표평면 위의 단위원을 이용하는데요.

 

삼각함수의 그래프 그리는 법

θ를 나타내는 동경 와 단위원이 만나는 점을 P(x, y)라고 하고 cosθ를 구해보죠.

즉 θ가 커지고 점 P가 움직일 때 cosθ는 x좌표의 값과 같아요.

이걸 이용해서 y = cosθ의 그래프를 그려보죠.

sin 그래프 그릴 때는 단위원이 있는 좌표평면을 그대로 이용했다면 여기서는 왼쪽으로 90° 돌려서 보면 편해요. x의 값이 중요하니까 왼쪽으로 돌리면 마치 x를 높이처럼 사용할 수 있거든요. 아래 왼쪽 그림에서 세로 방향이 x, 가로 방향이 y에요.

 

삼각함수의 그래프 - cos 그래프

왼쪽 그림에서 삼각함수 cosθ가 x 좌표(높이)와 같다고 했어요. θ가 커지면 x 좌표의 값, 즉 cosθ의 값이 어떻게 바뀌는지 살펴보죠.

θ = 0일 때, cosθ = 1이네요.

θ가 제 1 사분면 위의 각일 때, θ가 점점 커지면 cosθ는 작아져요.

θ = 90° = 일 때, 동경이 y축의 양의 방향과 일치하니까 cosθ = 0이네요.

θ가 제 2 사분면 위의 각일 때, θ가 커지면 cosθ는 음수가 돼서 점점 작아져요. 그러다가 θ = 180° = π가 될 때 cosθ = -1이죠.

θ가 제 3 사분면 위의 각일 때, θ가 커지면 cosθ는 점점 커지고, θ = 270° = 가 되면 cosθ = 0이 되네요.

θ가 제 4 사분면 위의 각일 때, θ가 더 커지면 cosθ도 커지고 θ = 360° = 2π일 때, cosθ = 1이 돼요.

θ가 360보다 더 커지면 어떻게 되나요. 그래도 동경의 위치가 같으니까 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 했던 것처럼 cosθ = cos(2nπ + θ)가 돼요. 앞서 설명한 cosθ의 변화가 반복되는 거죠.

θ의 크기가 커지는 것과 cosθ의 관계를 나타낸 게 오른쪽 그래프에요. 마치 물결모양을 길게 그려놓은 것처럼 생겼죠.

cosθ의 값을 보면 처음에 1로 시작했다가 0까지 작아지고, 다시 -1까지 작아지고, 0이 되었다가 1까지 커지는 과정을 반복해요. -1부터 1 사이의 값만 가지요. 치역이 {y| -1 ≤ y ≤ 1}이에요. 반면 θ는 계속 커지기도 하고 계속 작아질 수 있으므로 정의역은 실수 전체의 집합이에요.

삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 cos(-θ) = cosθ가 됐었어요. θ가 음수가 되어도 cosθ는 양수이므로 이런 관계는 y축에 대하여 대칭이죠. 그래프를 보면 확인할 수 있어요.

y = cosθ는 y = cos(2nπ + θ)이므로 2π가 더해질 때마다 같아져요. 따라서 cosθ는 주기가 2π인 주기함수예요.

삼각함수 cosθ의 그래프의 성질
정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
y축에 대하여 대칭
주기가 2π인 주기함수

y = sinx와 y = cosx 그래프 비교
y = sinx y = cosx
정의역
치역
정의역: 모든 실수
치역 {y| -1 ≤ y ≤ 1}
주기 2π
대칭 원점에 대하여 대칭 y축에 대하여 대칭
0 ~ 2π까지 값의 변화 0 → 1 → 0 → -1 → 0 1 → 0 → -1 → 0 → 1

표 마지막에 있는 "0 ~ 2π까지 값의 변화"는  순서로 값이 바뀌는 나타낸 거예요. 이걸 잘 이해하면 그래프를 그릴 수 있어요.

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리

정리해볼까요

삼각함수 cosθ의 그래프의 성질

  • 정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
  • y축에 대하여 대칭
  • 주기가 2π인 주기함수
<<    고1 수학 목차    >>
 
그리드형

삼각함수를 공부했으니까 이제 그 그래프에 대해서도 알아봐야겠죠. 삼각함수의 그래프 중에서 첫 번째로 sin 함수의 그래프에 대해서 알아보죠. sin 함수의 그래프를 그리는 방법과 sin 함수의 그래프의 특징이에요.

sin함수의 그래프를 그리는 방법과 sin 그래프의 특징은 cos의 그래프 그리는 법과 특징과 거의 같아요. 따라서 이거 하나만 잘해놓고 cos 함수의 그래프와 차이만 알아두면 편하죠. tan 그래프는 조금 다르니까 나중에 따로 하고요.

주기함수와 주기라는 새로운 용어도 나오는데 그 의미를 잘 알아두면 삼각함수의 그래프의 특징을 이해하는 데 많은 도움이 될 거예요.

삼각함수의 그래프

sin 그래프

삼각함수의 그래프를 그릴 때는 좌표평면 위에 단위원(반지름의 길이가 1인 원)을 그려서 하는 게 편해요.

삼각함수의 그래프 그리는 법

θ를 나타내는 동경 와 단위원이 만나는 점을 P(x, y)라고 하고 sinθ를 구해보죠.

즉 θ가 커지고 점 P가 움직일 때 sinθ는 y좌표의 값과 같아요.

이걸 이용해서 y = sinθ의 그래프를 그려보죠.

삼각함수 그래프 - sin 그래프

θ와 sinθ의 관계를 함수로 나타내면 y = sinθ로 나타낼 수 있어요. 여기서 y는 좌표평면에서 사용했던 y와는 다른 y입니다. 일반적으로 함수를 나타내는 y = f(x)에서의 y에요. f(x)는 x에 관한 식이므로 여기서는 x 대신 θ를 썼으니까 y = f(θ)라고 하는 게 맞겠네요. θ에 관한 식이 sinθ이므로 이 둘을 합쳐서 y = sinθ라는 함수가 되는 거예요.

왼쪽 그림은 좌표평면 위의 x, y이고 오른쪽 그림에서 x, y는 θ와 sinθ를 함수로 표현한 x, y에요. 차이를 분명히 이해해야 해요.

왼쪽 그림에서 삼각함수 sinθ가 y 좌표(높이)와 같다고 했어요. θ가 커지면 y 좌표의 값, 즉 sinθ의 값이 어떻게 바뀌는지 살펴보죠.

θ = 0일 때, sinθ도 0이네요.

θ가 제 1 사분면 위의 각일 때, θ가 점점 커지면 sinθ도 커지고요.

θ = 90°가 되었을 때를 보죠. 라디안으로하면 에요. 동경이 y축의 양의 방향과 일치하게 되고 이때의 sinθ = 1이네요.

θ가 제 2 사분면 위의 각일 때, θ가 커지면 sinθ는 작아져요. 그러다가 θ = 180° = π가 될 때 sinθ = 0이죠.

θ가 제 3 사분면 위의 각일 때, θ가 커지면 sinθ는 음수가 되어 점점 작아지고, θ = 270° = 가 되면 sinθ = -1이 되네요.

θ가 제 4 사분면 위의 각일 때, θ가 더 커지면 sinθ가 커지고 θ = 360° = 2π일 때, sinθ = 0이 돼요.

θ가 360보다 더 커지면 어떻게 되나요. 그래도 동경의 위치가 같으니까 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 했던 것처럼 sinθ = sin(2nπ + θ)가 돼요. 앞서 설명한 sinθ의 변화가 반복되는 거죠.

θ의 크기가 커지는 것과 sinθ의 관계를 나타낸 게 오른쪽 그래프에요. 마치 물결모양을 길게 그려놓은 것처럼 생겼죠.

sinθ의 값을 보면 처음에 0으로 시작했다가 1까지 커지고, 다시 0으로 작아지고, -1까지 작아지고, 0이 되는 과정을 반복해요. -1부터 1 사이의 값만 가지요. 치역이 {y| -1 ≤ y ≤ 1}이에요. 반면 θ는 계속 커지기도 하고 계속 작아질 수 있으므로 정의역은 실수 전체의 집합이에요.

삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 sin(-θ) = -sinθ가 됐었어요. θ가 음수가 되면 sinθ도 음수가 되므로 이런 관계는 원점에 대하여 대칭이죠. 그래프를 보면 확인할 수 있어요.

주기함수

어떤 행사를 할 때, 1주기 기념식, 2주기 기념식 이렇게 이름 붙은 행사를 봤죠? 여기서 말하는 주기는 어떤 일이 일정한 간격으로 반복적으로 행해질 때 그 반복되는 기간을 말해요. 기념식은 매년 같은 날짜에 열리니까 이 경우에는 주기가 1년이 되는 거죠. 대통령 선거는 5년에 한 번씩 해요. 그럼 주기가 5년이 되는 거예요.

함수 y = f(x)에서 임의의 x에 대하여 f(x) = f(x + p)가 성립하는 0이 아닌 p가 있을 때 이 함수를 주기함수라고 하고, p를 주기라고 해요.

y = sinθ는 y = sin(2nπ + θ)이므로 2π가 더해질 때마다 같아져요. 따라서 sinθ는 주기가 2π인 주기함수예요.

삼각함수 sinθ의 그래프의 성질
정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
원점에 대하여 대칭
주기가 2π인 주기함수

함께 보면 좋은 글

삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리

정리해볼까요

삼각함수 sinθ의 그래프의 성질

  • 정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
  • 원점에 대하여 대칭
  • 주기가 2π인 주기함수
 
그리드형

삼각함수표의 사용

2013. 11. 12. 16:00

제곱근표, 삼각비표에 이은 세 번째 표 삼각함수표예요. 삼각함수표는 제곱근표와 삼각비표가 그랬던 것처럼 교과서나 문제집의 제일 끝 부분에 있어요.

삼각함수표는 정말 정말 쉬워요. 삼각비표와 99% 같으니까요. 사실 삼각함수표를 이용하는 경우는 별로 많지는 않지만 그래도 내용은 알고 있어야 해요.

그리고 삼각비표보다 더 중요한 건 특수각의 삼각함수 그러니까 특수한 각의 삼각비, 30°, 45°, 60°에요. 꼭 외우세요.

삼각함수표의 사용

삼각비 표는 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 거죠.

삼각함수의 sin, cos, tan를 구하는 방법은 삼각비 sin, cos, tan를 구하는 방법과 거의 같아요. 따라서 삼각함수표는 삼각비표와 거의 같지요. 딱 하나 다른 점이 있는데, 바로 호도법이 추가되었다는 거지요. 육십분법의 ° 단위 뿐 아니라 호도법의 라디안 단위도 표에 나와요.

즉, 삼각함수표는 1° ~ 90° 사이의 각을 1° 간격으로 나누어 삼각함수의 근삿값을 표로 나타낸 것으로 °단위 뿐 아니라 라디안 단위의 각도 포함하고 있는 거죠

삼각비표
각도 라디안 sin cos tan
45° 0.7854 0.7071 0.7071 1.0000
46° 0.8029 0.7193 0.6947 1.0355
47° 0.8203 0.7314 0.6820 1.0724
48° 0.8378 0.7431 0.6691 1.1106
49° 0.8552 0.7547 0.6561 1.1504
50° 0.8727 0.7660 0.6428 1.1918

이제까지 라디안을 공부할 때는 π를 이용한 라디안을 썼는데, 삼각함수표에는 π가 아니라 소수로 나오죠. 그래서 사실 삼각함수표에서 라디안을 이용할 일은 거의 없어요.

그냥 이런 게 있다 정도로만 알고 있으면 돼요. 표를 읽는 방법은 어렵지 않죠?

이 삼각함수표에는 90°까지밖에 나오지 않아요. 90°보다 더 큰 각의 삼각함수를 구할 때는 삼각함수 각의 변환 총정리에서 했던 방법처럼 문제에 나오는 각을 90° × n + θ (n은 정수, 0° < θ < 90°)로 바꿔서 구해야 합니다.

위 삼각함수표를 이용하여 다음을 구하여라.
sin135° + cos226° + tan407°

삼각함수 각의 변환 총정리에서 했던 방법을 이용해서 풀어보죠.

sin135° = sin(90° × 1 + 45°) = cos45° = 0.7071
(∵ n = 1로 홀수이므로 sin → cos, 135°는 제 2 사분면의 각이므로 sin135°는 +)

cos226° = cos(90° × 2 + 46°) = -cos46° = -0.6947
(∵ n = 2로 짝수이므로 cos → cos, 226°는 제 3 사분면의 각이므로 cos226°는 -)

tan407° = tan(90° × 4 + 47°) = tan47° = 1.0724
(∵ n = 4로 짝수이므로 tan → tan, 407°는 제 1 사분면의 각이므로 tan407°는 +)

sin135° + cos226° + tan407° = 0.7071 - 0.6947 + 1.0724 = 1.0848

함께 보면 좋은 글

삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리
호도법, 라디안(radian)
[중등수학/중3 수학] - 삼각비표, 삼각비표 보는 법

정리해볼까요

삼각함수표: 0° ~ 90° 사이의 각에 대한 삼각함수를 표로 나타낸 것

  • 호도법인 라디안 단위도 포함
 
그리드형

삼각함수는 기본적으로 sin, cos, tan의 세 가지예요. 거기에 각도 기본적인 θ에 -θ, 2nπ ± θ, π ± θ, ± θ로 7가지가 더 있어요. 그래서 기본 삼각함수 3개에 삼각함수 각의 변환 21개까지 총 24가지가 있어요.

물론 각의 변환 21가지를 다 외울 수 있으면 외우면 좋아요. 하지만 외우기에는 개수도 너무 많고 헷갈리죠. 그래서 이걸 한 번에 총정리하는 시간이 필요합니다. 특히 이 모든 걸 한 방에(?) 해결할 수 있는 공식이 있으니까 꼭 외웠다가 상황에 맞게 적용하세요.

삼각함수 각의 변환 총정리

삼각함수 각의 변환은 앞서 했던 삼각함수 각의 변환 1 - 2nπ ± θ, -θ삼각함수 각의 변환 2 - π ± θ, π/2 ± θ에서 그 이유와 결과를 공부했어요.

하지만 과정이 조금 복잡하고 개수도 많고 비슷비슷해서 헷갈리기가 쉽죠. 이 모든 경우에 한번에 적용할 수 있는 공식(?)이 있어요. 물론 공식을 안다고 해서 계산이 쉬워지는 건 아니지만 변환 과정은 조금 쉬워질 겁니다.

앞서 공부했던 내용들을 이용해서 이 과정이 나오게 된 이유를 생각해보는 것도 좋을 것 같아요.

  1. 나오는 각을 + θ 또는 90°n + θ로 바꾼다.
    이때, n은 정수, 0 < θ <  또는 0 < θ < 90°
    • n이 짝수이면 바꾸지 않는다.
      • sin → sin
      • cos → cos
      • tan → tan
    • n이 홀수이면 바뀐다.
      • sin → cos
      • cos → sin
      • tan →
  2. + θ 또는 90°n + θ가 몇 사분면의 각이냐에 따라 +, -를 붙인다.
    올 - 싸 - 탄 - 코 (all - sin - tan - cos)

다음을 구하여라.
(1) sin120° × cos150° × tan210°
(2) sinθ = , cosθ = , tanθ = 일 때,
       (단, 0 < θ < )

(1) 삼각함수별로 따로 나눠서 생각해보죠.

sin120° = sin(90° × 1 + 30°)
n = 1로 홀수니까 sin → cos, 120°는 제 2 사분면의 각으로 sin은 (+)부호를 가져요.
sin120° = sin(90° × 1 + 30°) = cos30° = 

cos150° = cos(90° × 1 + 60°)
n = 1로 홀수이므로 cos → sin, 150°는 제 2 사분면의 각으로 cos은 (-) 부호를 가져요.
cos150° = cos(90° × 1 + 60°) = -sin60° = -

tan210° = tan(90° × 2 + 30°)
n = 2로 짝수니까 tan → tan, 210°는 제 3 사분면의 각으로 tan는 (+) 부호를 가져요.
tan210° = tan(90° × 2 + 30°) = tan30° =

sin120° × cos150° × tan210° =

(2)도 따로 나눠서 보죠.


n = 1로 홀수니까 sin → cos,  + θ는 제 2 사분면의 각으로 sin은 (+) 부호를 가져요.


n = 2로 짝수니까 cos → cos, π + θ는 제 3 사분면의 각으로 cos은 (-) 부호를 가져요.


n = 3으로 홀수니까 tan → ,  + θ는 제 4 사분면의 각으로 tan는 (-) 부호를 가져요.

하나로 다 모으면

함께 보면 좋은 글

삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 사이의 관계
호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각

정리해볼까요

삼각함수 각의 변환

  1. 나오는 각을 + θ 또는 90°n + θ로 바꾼다.
    이때, n은 정수, 0 < θ <
    • n이 짝수이면
      • sin → sin
      • cos → cos
      • tan → tan
    • n이 홀수이면
      • sin → cos
      • cos → sin
      • tan →
  2. + θ 또는 90°n + θ가 몇 사분면의 각이냐에 따라 +, -를 붙인다.
    올 - 싸 - 탄 - 코 (all - sin - tan - cos)
<<  수학 1 목차  >>
 
그리드형

삼각함수의 각의 변환 두 번째예요. 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서는 θ가 2nπ + θ일 때와 -θ일 때를 공부해봤는데요. 이 글에서는 θπ ± θ일 때와 일 때를 공부할 거예요.

삼각함수는 기본적으로 sin, cos, tan의 세 가지인데, 거기에 π ± θ로 네 개의 각이 나오죠? 그러니까 총 12가지 변환하는 내용이 나와요. 게다가 θ, -θ에 관한 내용도 있어서 양도 많고 상당히 헷갈리는 내용이니까 그림과 설명을 하나씩 잘 짚어가면서 공부해야 해요.

삼각함수 각의 변환

π ± θ의 삼각함수

π ± θ의 삼각함수

θπ + θ의 삼각함수를 비교해보죠.

그림을 보면 알 수 있겠지만 θ를 나타내는 동경과 π+ θ를 나타내는 동경은 서로 원점에 대하여 대칭이에요. 점 P의 좌표를 (x, y)라고 하고 점 P'의 좌표를 (x', y')라고 한다면 점 P와 점 P'는 원점에 대하여 대칭이므로 부호가 서로 반대예요.

x' = -x
y' = -y

다른 방법으로 생각해보죠. 원점에 대하여 대칭이면 제 1 사분면의 각은 제 3 사분면의 각이 되고, 제 2 사분면의 각은 제 4 사분면의 각이 돼요. 제 1 사분면 ↔ 제 3 사분면, 제 2 사분면 ↔ 제 4 사분면

올 - 싸 - 탄 - 코 (all - sin - tan - cos) 에서 tan 함수는 제 1, 3 사분면의 부호가 (+)로 같고, 제 2, 4 사분면의 부호는 (-)로 같아요. tan은 원점에 대하여 대칭일 때는 부호가 같다는 얘기지요. 따라서 θπ + θ가 되어도 tan의 부호는 그대로 인 거예요. sin과 cos는 원점에 대하여 대칭이 아니기 때문에 θπ + θ가 되면 부호가 반대로 바뀌어요.

  • sin(π + θ) = -sinθ
  • cos(π + θ) = -cosθ
  • tan(π + θ) = tanθ

이번에는 π - θ의 삼각함수를 알아보죠. 위의 π + θ에서 θ를 -θ로 바뀌기만 하면 돼요.

sin(π - θ) = sin{π + (-θ)} = -sin(-θ) = sin(θ)
cos(π - θ) = cos{π + (-θ)} = -cos(-θ) = -cos(θ)
tan(π - θ) = tan{π + (-θ)} = tan(-θ) = -tan(θ)

의 삼각함수

이번에는 의 삼각함수를 알아보죠.

π/2 ± θ의 삼각함수

앞서 했던 여러 삼각함수에서는 대칭이동이었는데, 이번에는 대칭이동이 아니에요.

점 P의 좌표를 (x, y)라고 하고 점 P'의 좌표를 (x', y') 한다면 이 둘 사이에는 어떤 관계가 생길까요? x' = -y, y' = x의 관계가 성립해요. 이 관계가 어떻게 나오는지 잘 이해하셔야 해요.

x' = -y
y' = x

이번에는 의 삼각함수를 알아보죠. 위의 에서 θ를 -θ로 바뀌기만 하면 돼요.

지금까지 삼각함수의 각의 변환을 공부해봤는데, sin, cos, tan 세 가지에다 부호까지 엄청나게 헷갈리죠? 물론 이걸 다 외우면 좋겠지요. 하지만 너무 헷갈려서 외우기가 어렵다면 굳이 외울 필요는 없어요.

이걸 쉽게 변환하는 방법은 삼각함수 각의 변환 총정리에서 다뤄보기로 하죠.

함께 보면 좋은 글

삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 사이의 관계
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각

정리해볼까요

삼각함수 각의 변환, π ± θ

  • sin(π + θ) = -sinθ
  • cos(π + θ) = -cosθ
  • tan(π + θ) = tanθ

삼각함수 각의 변환, 

 
그리드형

삼각함수 각의 변환 첫 번째예요. 여기서는 삼각함수에 사용되는 각이 일반각일 때와 사용된 각의 부호가 반대로 되었을 때 삼각함수의 값이 어떻게 바뀌는지를 알아볼 거예요. 또 이 두가지를 합쳤을 때의 삼각함수 값도 알아볼 거고요.

일반각을 호도법으로 표시하는 방법에 대해서 알고 있어야해요. 그리고 삼각함수를 구할 때 사용했던 그림있죠? 좌표평면 위에 원을 그리고 한 점에서 수선을 내렸던 그림도 잘 알고 있어야해요. 이 두 가지만 알고 있으면 이번 내용은 별로 어렵지 않을 거예요.

계산 문제가 살짝 어려울 수 있는데, 이때는 그림을 그려서 풀면 조금 더 쉬울 거예요.

삼각함수 각의 변환

일반각의 삼각함수, 2nπ + θ

삼각함수 sinθ, cosθ, tanθ의 각에서 θ는 0 ≤ θ < 2nπ의 범위를 가져요. 그런데 같은 동경에 위치한 θ라 하더라도 각이 다를 수 있어요. 우리는 이걸 호도법, 라디안(radian)에서 일반각으로 표현하는 걸 공부했었지요. 2nπ + θ (n은 정수, 0 ≤ θ < 2nπ)

각의 크기는 다르더라도 동경의 위치가 같으니까 x, y, r의 값이 같고 이들의 삼각함수 값도 같아요.

삼각함수

  • sinθ = sin(2nπ + θ)
  • cosθ = cos(2nπ + θ)
  • tanθ = tan(2nπ + θ)

-θ의 삼각함수

이번에는 θ의 부호가 반대일 때를 보죠. 부호가 반대라는 건 시초선으로 부터 동경이 움직이는 방향이 반대라는 뜻으로 그림으로 나타내면 다음처럼 돼요.

삼각함수 각의 변환 (-<span style=

-θ일 때는 점 P'(x', y')을 이용해서 삼각함수를 구해야겠네요. 점 P와 점 P'는 x축 대칭이므로 y의 부호가 반대예요. x와 r은 그대로이고요.

x' = x
y' = -y

θ가 -θ로 바뀌면 sin과 tan는 부호가 반대로 바뀌지만 cos은 부호가 바뀌지 않는 걸 알 수 있어요.

다른 방법으로 생각해볼까요? θ와 -θ는 x축 대칭이에요. θ가 제 1 사분면의 각이라면 -θ는 제 4 사분면의 각이 되고, θ가 제 2 사분면의 각이라면 -θ는 제 3 사분면의 각이 돼요. 제 1 사분면 ↔ 제 4 사분면, 제 2 사분면 ↔ 제 3 사분면

삼각함수 값의 부호에서 올 - 싸 - 탄 - 코 (all - sin - tan - cos) 있었죠? 여기에서 cos 함수는 제 1, 4 사분면의 부호가 (+)로 같고, 제 2, 3 사분면의 부호는 (-)로 같아요. cos은 x축에 대칭일 때는 부호가 같다는 얘기지요. 따라서 θ가 -θ가 되어도 cos의 부호는 그대로 인 거예요. sin과 tan는 x축 대칭이 아니기 때문에 θ가 -θ가 되면 부호가 반대로 바뀌어요.

  • sin(-θ) = -sinθ
  • cos(-θ) = cosθ
  • tan(-θ) = -tanθ

2nπ - θ의 삼각함수

위에서 했던 2nπ + θ(n은 정수)와 -θ의 삼각함수 이 두 가지를 합쳐보면 2nπ - θ의 삼각함수를 구할 수 있어요. 2nπ - θ는 -θ와 동경의 위치가 같아요. 따라서 삼각함수 값도 같지요.

sin(2nπ - θ) = sin{2nπ + (-θ)} = sin(-θ) = -sinθ
cos(2nπ - θ) = cos{2nπ + (-θ)} = cos(-θ) = cosθ
tan(2nπ - θ) = tan{2nπ + (-θ)} = tan(-θ) = -tanθ

다음 삼각함수의 값을 구하여라.

예제에 있는 각이 2π보다 크니까 일단 일반각으로 나타내야겠네요.

함께 보면 좋은 글

일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
호도법, 라디안(radian)
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계

정리해볼까요

일반각의 삼각함수, n이 정수일 때

  • sinθ = sin(2nπ + θ)
  • cosθ = cos(2nπ + θ)
  • tanθ = tan(2nπ + θ)

-θ의 삼각함수

  • sin(-θ) = -sinθ
  • cos(-θ) = cosθ
  • tan(-θ) = -tanθ
 
그리드형

삼각함수 사이의 관계

2013. 11. 7. 16:00

삼각함수의 정의에 대해서 알아봤는데요, 이번에는 삼각함수 사이의 관계에 대해서 알아보죠.

삼각함수는 sin, cos, tan 세 가지가 있고, 이들 사이에는 재미있는(?) 관계가 있어요. 삼각함수 사이의 관계를 그림과 식을 통해서 유도해보고, 그 결과를 이용해서 문제를 풀어볼 거예요.

삼각함수 사이의 관계를 유도과정은 별로 어렵지 않으니까 금방 이해할 수 있어요. 관계가 2가지 나오는데 문제에 자주 나오니까 꼭 외워두세요.

삼각함수 사이의 관계

삼각함수의 정의를 공부할 때 사용했던 그림이에요.

삼각함수

이 그림에서 삼각함수 세 가지를 구할 수 있었죠?

  • sinθ =
  • cosθ =
  • tanθ =

sinθ를 cosθ로 나눠보죠.

번분수를 이용해서 sinθ를 cosθ로 나눴더니 tanθ가 되었어요.

위 그림에서 와 점 P에서 x축에 내린 점선, x축의 세 변으로 이루어진 삼각형은 직각삼각형이에요. 피타고라스의 정리의 정리에 의해 x2 + y2 = r2이 돼요. 이 성질을 이용해서 이번에는 sinθ와 cosθ를 제곱해서 더해보죠.

(sinθ)2, (cosθ)2, (tanθ)2를 sin2θ, cos2θ, tan2θ라고 써요. 따라서 위 내용을 간단히 정리하면 sin2θ + cos2θ = 1이라고 할 수 있죠.

삼각함수 사이의 관계

sin2θ + cos2θ = 1

θ가 제 2 사분면 위의 각이고 sinθ = 일 때, cosθ와 tanθ를 구하여라.

θ가 제 2 사분면 위의 각이니까 올 - 싸 - 탄 - 코에 의해서 sinθ만 양수이고, cosθ와 tanθ는 음수에요.

위 삼각함수 사이의 관계 두 번째를 이용해서 cosθ를 먼저 구해보죠.

sinθ와 cosθ를 알았으니 삼각함수 사이의 관계 첫 번째를 이용해서 tanθ를 구할 수 있어요.

함께 보면 좋은 글

삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수의 각의 변환

정리해볼까요

삼각함수 사이의 관계

  • sin2θ + cos2θ = 1
 
그리드형

삼각함수라는 새로운 함수를 공부할 거예요. 삼각함수는 쉽게 말해서 삼각비호도법 + 함수예요. 삼각비에서 직각삼각형 세 변의 길이의 비는 각에 대한 일정한 관계가 있었죠? 이 일정한 관계를 함수로 나타낸 것이 삼각함수예요. 삼각비에서는 직각삼각형에서 세 변의 길이의 비를 이용했다면 삼각함수에서는 좌표평면 위의 좌표를 이용하는 차이가 있어요. 또 삼각비에서는 육십분법으로 나타낸 각을 이용했다면 삼각함수에서는 호도법으로 나타낸 각을 이용하죠.

그러니까 삼각함수를 잘하려면 삼각비와 호도법에 대해서 정확히 이해하고 있어야 해요.

삼각함수의 뜻, 삼각함수의 정의

xy좌표평면에 반지름의 길이가 r인 원을 그리고 원 위의 임의의 점을 P라고 해보죠. x축 양의 방향을 시초선으로 하고 동경 가 이루는 각을 θ라고 할 때, ,  , ,θ의 크기에 따라 한 가지로 정해져요.

삼각함수

r ≠ 0일 때, θ, θ, θ는 각각 θ에 대한 함수가 돼요. 이 함수를 차례로 사인함수, 코사인함수, 탄젠트함수라고 하고 기호로 sinθ = , cosθ = , tanθ = 로 나타냅니다. 그리고 이 세 가지를 묶어서 삼각함수라고 해요.

마치 삼각비, sin, cos, tan에서 빗변과 밑변, 높이 사이의 비를 구했던 것처럼 말이죠. 반지름 r을 빗변의 길이, x를 밑변의 길이, y를 높이라고 생각하면 쉬워요. 대신 삼각비에서는 길이의 비여서 사용하는 숫자가 모두 양수였지만 삼각함수에서는 좌표를 이용하므로 음수도 사용한다는 차이가 있어요.

  • sinθ =
  • cosθ =
  • tanθ =

좌표평면 위에서 원점 O와 점 P(-3, -4)를 이은 선분 OP를 동경으로 하는 각을 θ라고 할 때 sinθ, cosθ, tanθ를 구하여라.

삼각함수 예제

= 5네요.

sinθ =
cosθ =
tanθ =

삼각함수 값의 부호

삼각함수 값의 부호는 θ가 나타내는 동경의 위치에 따라 달라져요. θ가 몇 사분면 위의 각인지에 따라 부호가 달라지죠. 이때, r은 반지름이니까 무조건 양수예요. 따라서 삼각함수의 부호에 영향을 주는 요소는 좌표평면에서 x, y의 부호입니다.

삼각함수 값의 부호
제 1 사분면 제 2 사분면 제 3 사분면 제 4 사분면
x, y 부호 x > 0, y > 0 x < 0, y > 0 x < 0, y < 0 x > 0, y < 0
sinθ = + + - -
cosθ = + - - +
tanθ = + - + -

제 1 사분면에서는 세 가지 모두 양수, 제 2 사분면에서는 sinθ만 양수, 제 3 사분면에서는 tanθ만 양수, 제 4 사분면에서는 cosθ만 양수네요. 1, 2, 3, 4 사분면 순서대로 양수인 것들만 뽑아서 올 - 싸 - 탄 - 코 (all - sin - tan - cos)라고 외워요.

각 함수별로 보면 양수가 되는 사분면이 2개, 음수인 사분면이 2개씩 있어요. 사인함수는 제 1, 2, 사분면이 양수이고, 코사인함수는 제 1, 4 사분면이 양수, 탄젠트함수는 제 1, 3 사분면이 양수예요.

함께 보면 좋은 글

호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
부채꼴 호의 길이와 넓이, 호도법이용
[중등수학/중3 수학] - 삼각비, sin, cos, tan

정리해볼까요

삼각함수: 사인함수, 코사인함수, 탄젠트함수

  • sinθ =
  • cosθ =
  • tanθ =

삼각함수 값의 부호: 사분면 순서대로 올 - 싸 - 탄 - 코 (all - sin - tan - cos)

 
그리드형

3학년 1학기 때는 모든 교과서, 참고서의 가장 뒷부분에 표가 하나 있었어요. 제곱근표였죠?

2학기에도 모든 책 뒤에 표가 하나 있어요. 그 표가 바로 삼각비표에요. 제곱근표보다 훨씬 간결하죠.

이 글에서는 삼각비표가 무엇인지와 삼각비표에서 삼각비와 각도를 구하는 방법을 알아볼 거에요.

삼각비표는 일반적으로 보는 표와 크게 다르지 않으니까 금방 이해할 수 있어요.

삼각비표

삼각비 표는 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 거에요. 근삿값이 아닌 것도 있지만, 대부분이 근삿값이에요. 가로줄에는 각도의 크기가 세로줄에는 sin, cos, tan가 쓰여 있어요.

그냥 설명 없이 표만 봐도 금방 알 수 있겠죠?

삼각비표
각도 sin cos tan
45° 0.7071 0.7071 1
46° 0.7193 0.6947 1.0355
47° 0.7314 0.6820 1.0724
48° 0.7431 0.6691 1.1106
49° 0.7547 0.6561 1.1504
50° 0.7660 0.6428 1.1918

삼각비 표를 이용해서 삼각비 구하기

삼각비표는 제곱근표 보는 방법보다 훨씬 쉬워요. 가로줄에서 원하는 각도를 찾고, 세로줄에서는 sin, cos, tan를 선택해서 둘이 서로 만나는 칸의 값이 해당 각도의 삼각비에요.

예를 들면 sin48°는 가로줄의 48°와 세로줄의 sin이 만나는 칸에 쓰여 있는 값을 찾으면 되죠. 0.7431이네요. cos46°는 0.6947이고, tan50°는 1.1918이고요.

제곱근표에서 값을 구해서 나타낼 때는 ≒ 기호를 썼어요. 예를 들면 처럼요. 하지만 삼각비에서는 ≒ 기호를 쓰지 않고 =를 써요. 실제로 삼각비표에 나와 있는 값들 대부분이 근삿값이지만 =를 씁니다. sin45° ≒ 0.7071이 아니라 sin45° = 0.7071이라고 말이죠. 좀 달라요.

삼각비표를 이용하여 다음을 구하여라.
(1) sin45° + cos46° + tan47° 

sin45° = 0.7071, cos46° = 0.6947, tan47° = 1.0724이므로
sin45° + cos46° + tan47° = 0.7071 + 0.6947 + 1.0724 = 2.4742

삼각비 표를 이용해서 각도 구하기

이번에는 반대로 특정한 삼각비 값을 주고 그 각이 몇 °인지 구하는 거에요. 위 과정을 거꾸로 하면 되겠죠?

0.7547이라는 sin값을 갖는 각은 몇 °일까요? 먼저 표의 sin줄에서 0.7547이라는 값을 찾아요. 그리고 왼쪽으로 바로 가면 49°가 보이네요.

다음을 만족하는 x, y를 구하여라.
(1) sinx° = 0.7314
(2) sinx° + cosy° = 1.3742

(1) 삼각비표의 sin줄에서 0.7314를 찾으면 x = 47가 되는군요.

(2)에서 sinx° = 0.7314라고 했으니까 이걸 식에 대입하면 0.7314 + cosy° = 1.3742가 돼요.
cosy° = 0.6428이 되죠. cos 줄에서 0.6428을 찾으면 y° = 50°가 되네요.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
제곱근의 근삿값, 제곱근표 보는 방법

정리해볼까요

삼각비표

  • 0°부터 90°까지의 각을 1° 간격으로 나누어 이들의 삼각비의 근삿값을 표로 나타낸 것
  • 가로줄: 각도, 세로줄: sin, cos, tan
  • 각도와 sin, cos, tan가 만나는 칸의 값을 찾는다.
 
그리드형

30°, 45°, 60°의 삼각비를 알아봤어요. 특수한 각의 삼각비, 30°,45°, 60°

이제는 위 세 각이 아닌 다른 각의 삼각비를 알아볼꺼에요. 0° ~ 90°까지의 각이요. 그 이상의 각은 여기서 다루지 않아요.

예각의 삼각비는 외울 필요도 없고 외울 수도 없지만 구하는 방법은 알고 있어야해요. 예각의 삼각비를 구하는 방법을 살짝 응용해서 0°와 90°의 삼각비를 구하거든요.

그리고, 0°와 90°의 삼각비값은 외워야 해요. 이해가 되지 않으면 외울 수도 없겠죠? 설명을 잘 보세요.

예각의 삼각비

예각의 삼각비를 구할 때 제일 중요한 건 바로 반지름의 길이가 1인 원을 그려서 생각하는 거에요.

예각의 삼각비

반지름이 1인 원의 중심과 원 위의 한 점, x축을 연결해서 삼각형을 만들었어요.

위 그림에서 ∠x를 기준각으로 하고 삼각비를 구해보죠. sin, cos은 △OAB에서 구하고 tan는 △OCD에서 구해요. 크기가 다른 직각삼각형이라도 기준각의 크기가 같으면 삼각비는 같잖아요.

그러니까 예각의 삼각비를 구할 때는 분모가 되는 변의 길이가 1인 삼각형을 찾고 그 삼각형에서 삼각비를 찾으면 돼요. sin과 cos인 빗변이 분모가 되니까 빗변의 길이가 1인 △OAB에서 구했어요. tan는 밑변이 분모가 되므로 밑변의 길이가 1인 △OCD에서 구했고요.

0°와 90°의 삼각비

0°와 90°의 삼각비도 예각의 삼각비와 마찬가지로 반지름이 1인 원을 그려서 확인할 수 있어요.

0°의 삼각비 - sin0°, cos0°, tan0°

0°의 삼각비 - sin0°, cos0°, tan0°

왼쪽 그림의 △OAB에서 ∠BOA에 대한 sin값은 에요. 그런데 점 B가 원을 따라서 x축으로 가까이 가면 어떻게 될까요? 는 점점 짧아질 거에요. 그러다가 점 B가 x축과 만나게 되면  = 0이 되겠죠. 이때 ∠BOA = 0°이고요.

즉 sin0° = 0이 되는 걸 알 수 있어요.

△OAB에서 ∠BOA에 대한 cos값은 에요. 위와 마찬가지로 점 B를 원을 따라 x축으로 가까이 옮겨볼까요? 그럼 는 점점 길어져요. 점 B가 x축과 만나면  = 1이 되고, ∠BOA = 0°이 돼요.

cos0° = 1이 되는 걸 알 수 있지요.

이번에는 오른쪽 그림의 △OCD를 보세요. ∠DOC의 tan값은 죠. 그런데 ∠DOC가 점점 작아지면 도 계속 작아져요. 그러다가 가 x축과 만나면 ∠DOC는 0°가 돼요.  = 0이 돼죠.

즉, tan0° = 0이 되는 걸 알 수 있어요. 

90°의 삼각비 - sin90°, cos90°, tan90°

90°의 삼각비 - sin90°, cos90°, tan90°

왼쪽 그림의 △OAB에서 ∠BOA에 대한 sin값은 에요. 그런데, 점 B가 원을 따라서 y축으로 가까이 가면 어떻게 될까요? 는 점점 길어질 거예요. 그러다가 점 B가 y축과 만나게 되면  = 1이 되겠죠. 이때 ∠BOA = 90°이고요.

즉 sin90° = 1이 되는 걸 알 수 있어요.

△OAB에서 ∠BOA에 대한 cos값은 에요. 위와 마찬가지로 점 B를 원을 따라 y축으로 가까이 옮겨볼까요? 그럼 는 점점 줄어들어요. 점 B가 y축과 만나면  = 0이 되고, ∠BOA = 90°이 돼요.

cos90° = 0이 되는 걸 알 수 있지요.

이번에는 오른쪽 그림의 △OCD를 보세요. ∠DOC의 tan값은 죠. 그런데 ∠DOC가 점점 커지면 도 계속 커져요. 그러다가 가 y축과 만나면 ∠DOC는 90°가 돼요. 이때의 tan는 너무 커져서 그 크기를 알 수 없어요. 이때를 정할 수 없다고 표현합니다.

다음을 계산하여라.
(1) sin0° + cos0° + tan0°
(2) (sin0° + cos90°) × (sin90° + cos0°)

sin0° = 0, cos0° = 1, tan0° = 0, sin90° = 1, cos90° = 1을 위 식에 대입해서 풀면 돼요.

(1) sin0° + cos0° + tan0° = 0 + 1 + 0 = 1

(2) (sin0° + cos90°) × (sin90° + cos0°) = (0 + 0) × (1 + 1) = 0 × 2 = 0

0° ~ 90°의 삼각비

0°에서 90°까지 각의 크기가 변화할 때, 삼각비는 어떻게 되는지 알아볼까요?

sin은 0°에서 90°로 갈수록 값이 커져요. sin0° = 0으로 가장 작고, sin90° = 1로 가장 큽니다.
cos은 0°에서 90°로 각이 커질수록 값이 작아지고요. cos0° = 1으로 가장 크고, cos90° = 0으로 가장 작아요.
tan은 0°에서 90°로 각이 커질수록 값이 커져요. tan0° = 0으로 가장 작고, 계속 커져서 그 끝은 정할 수 없어요.

각의 크기 변화에 따른 삼각비의 변화
~ 90°
sin 0 ↗ (증가)
1
cos 1 ↘ (감소) 0
tan 0 ↗ (증가) 정의할 수 없다.

함께 보면 좋은 글

삼각비, sin, cos, tan
특수한 각의 삼각비, 30°,45°, 60°
삼각비표, 삼각비표 보는 법

정리해볼까요

예각의 삼각비: 삼각비에서 분모가 되는 변의 길이가 1이 되는 삼각형을 찾는다.

 
그리드형

삼각비 중에서도 특수한 각의 삼각비를 구할 거예요.

피타고라스의 정리에서 특수한 직각삼각형 세 변의 길이의 비라는 걸 배웠지요? 특별한 삼각형에서 세 변의 길이에는 일정한 비가 성립한다는 내용이었어요.

삼각비는 삼각형 세 변의 길이의 비예요. 특수한 직각삼각형 세 변의 길이의 비도 길이의 비이므로 삼각비에서 하나도 바꾸지 않고 그대로 사용할 수 있어요.

특수한 삼각형의 세 변의 길이를 삼각비로 바꾸면 어떻게 되는지 알아보죠.

sin45°, cos45°, tan45°

직각이등변삼각형의 내각은 45°, 45° 90°에요. 직각이등변삼각형을 이용해서 45°의 sin, cos, tan 값을 구해볼까요?

먼저 직각이등변삼각형을 그려볼게요. 세 변의 길이의 비가 1 : 1 : 니까 이걸 길이로 써보면 아래 그림처럼 돼요. 

특수한 각의 삼각비 - 45°

sin45° = cos45° = 이고, tan45° = 1이에요. 분모에 무리수가 있으면 유리화해서 사용해야 하는 건 기본이죠?

sin30°, cos30°, tan30°

직각삼각형 한 내각의 크기가 30°이면 다른 각은 60°, 90°가 돼요. 이 삼각형의 세 변의 길이의 비는  1 : : 2이지요. 이 길이의 비를 이용해서 삼각형을 그려보죠. 

특수한 각의 삼각비 - 30°

삼각비를 쉽게 구할 수 있게 각의 위치를 잡았어요. 삼각비를 구해보죠.

sin60°, cos60°, tan60°

직각삼각형의 한 각이 60°면 다른 한 각은 30°가 되겠죠? 즉, 위 30°에 대한 삼각비를 구했던 삼각형과 같은 삼각형이에요. 같은 삼각형인데 삼각비를 쉽게 구할 수 있게 방향을 돌려서 그리는 게 좋겠죠? 

특수한 각의 삼각비 - 60°

30°에 대한 삼각비와 60°에 대한 삼각비는 같은 삼각형에서 구해요. 차이가 있다면 기준각에 따라 밑변과 높이를 나타내는 변이 달라지는 거지요.

빗변은 기준각이 30°일 때와 60°일 때 모두 똑같아요. 기준각이 30°일 때 밑변이었던 것이 기준각이 60°일 때는 높이로 바뀌죠. 또 30°일 때 높이였던 게 60°일 때는 밑변이 되는 거고요.

이런 이유로 30°의 삼각비와 60°의 삼각비는 관계가 깊어요.

sin30° = cos60°, cos30° = sin60°가 됩니다. 또 tan30° = 가 됩니다. 서로 역수인 거죠.

특수한 각의 삼각비

특수한 각의 삼각비
30° 45° 60°
sin
cos
tan

표로 정리했더니 특징이 더 잘 보이죠? 45°에서는 sin과 cos이 같아요.

sin30°와 cos60°가 같고, cos30°와 sin60°가 같고, tan30°와 tan60°는 서로 역수이죠.

위 표에 나온 삼각비는 아주 중요합니다. 삼각비 중에 가장 많이 나오는 거거든요. 그러면 외워야 하는 데 값이 비슷해서 외우기가 힘들어요.

처음부터 외우려고 하지 말고, 이 글에 있는 것처럼 삼각형을 그리고, 세 변의 길이의 비를 이용해서 변의 길이를 쓴 다음에, sin, cos, tan를 구하는 게 좋아요. 이렇게 자주 하다 보면 자기도 모르게 그 값들이 외워지게 되어 있어요.

다음 그림을 보고 x, y의 값을 구하여라.
특수한 각의 삼각비 예제

기준각을 60°로 잡으면 sin60° =  = 이므로 y =

cos60° =  = 이므로 x = 2가 되네요.

함께 보면 좋은 글

특수한 직각삼각형 세 변의 길이의 비
예각의 삼각비, 0°와 90°의 삼각비
직각삼각형 변의 길이 - 삼각비 이용

정리해볼까요

특수한 각의 삼각비

  • sin45° = cos45° = , tan45° = 1
  • sin30° = , cos30° = , tan30° =
  • sin60° = , cos60° = , tan60° =
 
그리드형

+ 최근글