일차방정식의 풀이

이번에는 일차방정식 중에서 절댓값 기호를 포함한 일차방정식이에요. 절댓값 기호 안에 일차식이 들어있는 경우죠.

절댓값 기호를 풀 때는 절댓값 기호 안이 0보다 크거나 같을 때와 0보다 작을 때의 두 가지 경우로 나눠서 풀어야 해요. 여기서는 절댓값 기호 안이 x에 관한 식이므로 식의 부호뿐 아니라 x의 범위도 구해야 합니다.

그런데 실제로 계산을 할 때는 x의 범위에 대해 고려하지 않아도 돼요. 왜 그런지 알아볼 거예요. 그리고 양변 모두에 절댓값을 포함한 일차식이 있을 때는 어떻게 해야 하는지도 알아보죠.

절댓값 기호를 포함한 일차방정식의 풀이

절댓값 기호 안에 일차방정식이 들어있을 때는 절댓값과 절댓값의 성질에서 했던 것과 같은 방법으로 절댓값 기호를 없애서 방정식을 풀어요.

  1. 절댓값 안의 식이 0보다 크거나 같을 때와 0보다 작을 때 두 가지 경우로 나눈다.
  2. ①을 이용하여 x의 범위를 구한다.
  3. 각 범위에 맞게 절댓값 기호를 푼다.
  4. 일차방정식의 해를 구한다.
  5. 일차방정식의 해가 ②에서 구한 x의 범위에 맞는지 확인
  6. 해가 조건을 만족하는 경우에만 일차방정식의 해

|2x + 4| = 6일 때, 방정식의 해를 구하여라.

절댓값 기호 안의 식 2x + 4가 0보다 크거나 같을 때와 0보다 작을 때로 나눠보죠.

2x + 4 ≥ 0일 때, 즉 x ≥ -2일 때,
|2x + 4| = 6
2x + 4 = 6
2x = 2
x = 1

x = 1은 x ≥ -2를 만족하므로 |2x + 4| = 6의 해가 될 수 있어요.

2x + 4 < 0일 때, 즉 x < -2일 때
|2x + 4| = 6
-2x - 4 = 6
2x = -10
x = -5

x = - 5는 x < -2를 만족하므로 해가 될 수 있어요.

|2x + 4| = 6의 해는 x = -5, 1 입니다.

사실 이렇게 범위를 나눠서 하는 게 정석이긴 해요. 하지만 어떤 식이 나오고 x의 범위가 어떻게 바뀌든 상관없이 일차방정식을 풀어서 구한 해는 무조건 범위를 만족해요. 그래서 범위를 나눠서 할 필요가 없어요.

더보기

|ax + b| = m (m > 0)이라고 하면

1. ax + b > 0일 때,

|ax + b| = m
ax + b = m
ax = m - b
x = m/a - b/a

ⅰ) a > 0이면 ax + b > 0 → x > - b/a

m > 0이고 a > 0이므로 m/a > 0

m/a - b/a는 -b/am/a(> 0)를 더했으므로 x > -b/a를 만족

즉 x = m/ab/a는 무조건 해

ⅱ) a < 0이면 ax + b > 0 → x ≤ -b/a

m > 0이고 a < 0이므로 m/a < 0

m/a - b/a는 -b/am/a(< 0)를 더했으므로 x ≤ -b/a를 만족

즉 x = m/ab/a는 무조건 해

2. ax + b < 0일 때,

|ax + b| = m
-(ax + b) = m
ax + b = -m
ax = -m - b
x = -m/ab/a

ⅰ) a > 0이면 ax + b < 0 → x < -b/a

m > 0이고 a > 0이므로 m/a > 0

m/a - b/a는 -b/am/a(> 0)를 뺐으므로 x < -b/a를 만족

즉 x = - m/ab/a는 무조건 해

ⅱ) a < 0이면 ax + b < 0 → x  > -b/a

m > 0이고 a < 0이므로 m/a < 0

m/a - b/a는 -b/am/a(< 0)을 뺐으므로 x > -b/a를 만족

즉 x = -m/a - b/a는 무조건 해

|ax + b| = m이라는 식은 ax + b = m 이나 -(ax + b) = m이 되겠죠? 두 번째 식의 양변에 (-1)을 곱하면 ax + b = -m이 돼요.

결론을 말하면 절댓값 기호를 포함한 일차방정식에서는 범위를 나눌 필요 없이 절댓값 기호는 그냥 풀고, 우변의 상수항에 ±을 붙여서 바로 계산하면 된다는 거예요.

|2x + 4| = 6
2x + 4 = ±6

2x + 4 = 6 → x = 1
2x + 4 = -6 → x = -5

조금 더 간단하게 해를 구할 수 있죠?

위에서는 우변에 상수항이었는데, 우변이 또 다른 절댓값 기호를 포함한 일차방정식이라면 어떻게 될까요? 상관없어요. 좌변은 절댓값 기호를 그냥 풀고, 우변에 ± 기호를 붙여서 절댓값 기호를 풀면 돼요. "x 범위를 나누지 않아도 되는 이유 보기"를 펼친 것과 크게 다르지 않아서, 증명은 생략합니다.

|ax + b| = m (m > 0) → ax + b = ±m
|ax + b| = |cx + d| → ax + b = ±(cx + d)

다음 방정식의 해를 구하여라.
(1) |x + 4| + 3 = 7
(2) |2x + 3| = |x - 6|

(1)번은 먼저 (절댓값 기호를 포함한 일차방정식) = (상수항) 꼴로 바꿔줘야 해요. 그다음 절댓값은 그냥 풀고 상수항에 ±를 붙여주는 거죠.

|x + 4| + 3 = 7
|x + 4| = 4
x + 4 = ±4

x + 4 = 4 → x = 0
x + 4 = -4 → x = -8

(2)번은 좌변은 그냥 절댓값을 푸고, 우변은 ±을 붙여서 절댓값을 풀어요.

|2x + 3| = |x - 6|
2x + 3 = ±(x - 6)

2x + 3 = x - 6 → x = -9
2x + 3 = -(x - 6) → x = 1

함께 보면 좋은 글

절댓값과 절댓값의 성질
절댓값 기호를 포함한 일차부등식의 풀이
절댓값 기호를 포함한 부등식의 풀이 2
절댓값 기호가 포함된 식의 그래프

정리해볼까요

절댓값 기호를 포함한 일차방정식의 풀이

  • |ax + b| = m → ax + b = ±m
  • |ax + b| = |cx + d| → ax + b = ±(cx + d)
<<  수학 1 목차  >>
 
그리드형

일차방정식의 풀이에서 일차방정식의 해를 구하는 기본적인 방법을 알아봤어요. 이 글에서는 조금 더 복잡한 일차방정식의 풀이를 해볼 거예요. 방법은 똑같은데, 식이 조금 더 어렵게 나와요.

식이 복잡하고 어렵다고 해도 이항과 등식의 성질을 이용한 풀이라는 기본 원리는 똑같아요. 복잡한 식을 가능한 한 쉬운 식으로 모양을 바꾸면 다음에 우리가 알고 있는 방법으로 풀 수 있어요.

따라서 이 글에서는 공부할 내용은 복잡한 일차방정식을 덜 복잡한 일차방정식으로 바꾸는 방법이에요.

복잡한 일차방정식의 풀이

괄호가 있을 때

유리수의 사칙연산 혼합계산에서 거듭제곱과 괄호를 먼저 계산해야 한다고 했었죠? 괄호가 있는 일차방정식에서도 마찬가지로 괄호를 먼저 계산해야 해요. 거듭제곱은 안 나오니까 제외하고요. 괄호는 대부분이 분배법칙으로 풀어야 하는 경우에요. 분배법칙으로 괄호 푸는 법 알고 있죠?

2(4x + 2) = 6x + 2
8x + 4 = 6x + 2            분배법칙으로 괄호 풀기
8x - 6x = +2 - 4            x는 좌변, 상수항은 우변으로 이항
2x = -2                         계산
x = -1                           x의 계수로 양변 나누기

계수가 분수일 때

계수가 분수면 계산하기가 복잡하죠. 대신 계수를 정수로 바꿔서 계산하면 계산이 편해져요. 계수를 정수로 바꾸려면 분수의 분모를 없애줘야 하는데, 분모의 최소공배수를 이용해요. 모든 분모의 최소공배수를 방정식의 양변에 곱해서 분모와 최소공배수를 약분시켜 정수로 바꿔주는 거죠.

복잡한 일차방정식의 풀이

계수가 소수일 때

계수가 소수일 때도 분수일 때처럼 계수를 정수로 바꿔서 해요. 대신 이때는 10, 100, 1000, … 등 10의 거듭제곱을 곱해요. 계수가 0.1이면 10을, 계수가 0.01이면 100을 곱하고, 여러 소수가 섞여 있을 때는 소수점 이하 자리가 가장 많은 계수를 기준으로 10의 거듭제곱을 곱해요.

0.2x - 0.14 = 0.5x + 0.16
100(0.2x - 0.14) = 100(0.5x + 0.16)    상수항이 소수점이하 두 자리이므로 양변에 100을 곱.
20x - 14 = 50x + 16                            분배법칙으로 괄호 풀기
20x - 50x = 16 + 14                             x는 좌변, 상수항은 우변으로 이항
-30x = 30                                             동류항 계산
x = -1                                                   x의 계수로 양변을 나눔

비례식일 때

방정식이 비례식으로 나왔을 때는 (내항의 곱) = (외항의 곱)이라는 비례식의 성질을 이용해요. 내항의 곱과 외항의 곱을 이용하면 일반적으로 볼 수 있는 방정식으로 모양이 바뀝니다.

(x - 1) : 2 = (2x + 1) : 3
3(x - 1) = 2(2x + 1)          (내항의 곱) = (외항의 곱)으로 변형
3x - 3 = 4x + 2                 분배법칙을 이용하여 괄호 전개
3x - 4x = 2 + 3                 x는 좌변, 상수항은 우변으로 이항
-x = 5                              동류항 계산
x = -5                               x의 계수로 양변을 나눠줌

함께 보면 좋은 글

등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
일차방정식의 활용 첫번째
일차방정식의 활용 2

정리해볼까요

복잡한 일차방정식의 풀이

  • 괄호가 있을 때: 분배법칙을 이용하여 괄호 전개
  • 계수가 분수일 때: 분모의 최소공배수를 모든 항에 곱하여 계수를 정수로
  • 계수가 소수일 때: 10, 100, 1000을 곱하여 계수를 정수로
  • 비례식: (내항의 곱) = (외항의 곱)의 형태로 변형
 
그리드형

사실 이제까지 해온 모든 과정은 이 글의 내용을 위해서 공부한 것이라고 해도 과언이 아니에요. 이 단원의 핵심이 바로 오늘 공부할 내용입니다.

일차방정식의 뜻과 풀이는 한 단원에서 제일 중요한 것뿐 아니라, 중1 수학에서 핵심 중의 핵심인 내용입니다. 매우 중요하죠.

설명과 원리는 비교적 간단하니까 문제 푸는 연습을 많이 하세요. 암산까지는 아니더라도 막힘없이 문제를 푸는 수준까지는 되어야 합니다.

이항

등식의 성질에서 등식의 양변에 같은 수를 더하거나 같은 수를 빼도 등식은 성립한다고 했어요. 그리고 이 등식의 성질을 이용해서 미지수 x의 값을 구했죠.

2x + 3 = 9에서 좌변의 3을 없애주려고 양변에서 3을 빼줬어요.
2x + 3 - 3 = 9 - 3

여기서 우변은 그대로 두고, 좌변만 계산을 해보면 3 - 3은 0이 되니까 2x만 남죠.
2x = 9 - 3

처음 식 2x + 3 = 9와 두 번째 식 2x = 9 - 3을 비교해볼까요?

다른 건 다 그대로인데, 좌변에 + 3이 없어지고, 우변에 - 3이 생겼죠? 좌변에 있던 상수항은 없어지고, 우변에는 상수항과 부호가 반대인 새로운 상수항이 생겼어요.

이걸 원래 좌변에 있던 항의 부호를 반대로 바꿔서 우변으로 옮기는 것으로 생각하게 된 거죠. 이렇게 함으로써 좌변에서 상수항을 계산했던 과정을 생략할 수 있거든요.

이처럼 등식의 성질을 이용해서 등식의 한 변에 있는 항을 부호를 바꾸어 등호의 반대쪽으로 옮기는 것을 이항이라고 해요. 이건 좌변에 있는 걸 부호를 바꾸어 우변으로 옮길 수도 있고, 우변에 있는 걸 부호를 반대로 바꿔서 좌변에 써 줄 수 있어요. 상수항만 되는 게 아니라 모든 항이 가능해요.

이항

3 = x - 4에서 우변의 - 4를 좌변으로 옮기면서 부호를 반대로 바꿔주면
3 + 4 = x가 되지요.

3x - 2 = 6 - x라는 식이 있을 때, x가 있는 항을 좌변으로, 상수항을 우변으로 이항하면
3x + x = 6 + 2가 돼요.

일차방정식의 뜻

일차방정식은 일단 이름에서 방정식이라는 걸 알 수 있어요. 그리고 차수가 1이라는 것도 알 수 있죠. 일차방정식은 차수가 1인 방정식을 말해요.

식 자체만 봐서는 일차방정식인지 아닌지 알 수 없어요. 일차방정식인지 판단하기 전에 모든 항을 좌변으로 이항해서 동류항끼리 계산을 해야 해요. 계산한 뒤에 좌변이 일차식이 되는지를 봐야 알 수 있어요. 일차방정식은 (일차식) = 0의 형태거든요.

2x + 3 = 5의 모든 항을 좌변으로 이항해서 정리해보죠.
2x + 3 - 5 = 0
2x - 2 = 0

이 식은 미지수 x의 차수가 1인 일차방정식이 맞네요.

2(x + 3) = 6 + 2x의 모든 항을 좌변으로 이항시켜 보죠.
2(x + 3) - 6 - 2x = 0
2x + 6 - 6 - 2x = 0
0 = 0

모든 항을 좌변으로 이항해서 정리했는데, 미지수 x가 없어요. 그래서 차수가 0이 되었죠. 2(x + 3) = 6 + 2x를 봤을 때, x의 차수가 1이었는데, 정리를 해보니까 x가 없어졌어요. 그냥 봤을 때는 일차방정식처럼 보이지만 실제는 아니라는 거죠. 따라서 일차방정식인지 아닌지를 알아볼 때는 이항과 동류항 정리를 꼭 해봐야 합니다.

다음 중 일차방정식을 모두 고르시오.
(1) 2(x + 3) = -2x + 3
(2) 2(x + 3) = 2x + 3
(3) x2 + x - 1 = x2 - x - 1
(4) x2 + x - 1 = -x2 - x - 1

일차방정식인지 아닌지 알아볼 때는 모든 항을 좌변으로 이항해서 정리한 식이 일차식인지 보는 거예요.

(1) 2(x + 3) = -2x + 3의 모든 항을 이항시켜보죠.
2(x + 3) + 2x - 3 = 0
2x + 6 + 2x - 3 = 0
4x + 3 = 0

좌변이 x에 관한 일차식이므로 일차방정식이 맞네요.

(2) 2(x + 3) = 2x + 3
2(x + 3) - 2x - 3 = 0
2x + 6 - 2x - 3 = 0
3 = 0

일단 3과 0은 같지 않으니까 틀린 등식인데다가 좌변에 문자가 없이 상수항만 있으니 차수가 0이 되어 일차식도 아니고, 방정식도 아닌 식이네요.

(3) x2 + x - 1 = x2 - x - 1
x2 + x - 1 - x2 + x + 1
2x = 0

좌변이 x에 관한 일차식이므로 일차방정식이군요.

(4) x2 + x - 1 = -x2 - x - 1
x2 + x - 1 + x2 + x + 1 = 0
2x2 + 2x = 0

최고차항의 차수가 2이므로 이차방정식입니다.

보기에서 (1)과 (3)이 일차방정식입니다.

일차방정식의 풀이

일차방정식의 풀이는 기본적으로 이항과 등식의 성질을 이용해요. 등식의 성질을 이용한 방정식의 풀이에서 x = (숫자)꼴로 만들어서 해를 구했어요.

여기서도 마찬가지예요. x = (숫자) 꼴로 만들어요.

  1. x가 포함된 모든 항은 좌변으로, x가 없는 항(상수항)은 모두 우변으로 이항
  2. 각 변을 정리하여 ax = (숫자)꼴로
  3. x의 계수 a로 양변을 나눈다.

일차방정식의 풀이

다음 방정식을 풀어라.
(1) 2x + 4 = 3x - 5
(2) 5 + 3x = x + 7

방정식을 푼다는 말은 방정식을 참이 되게 하는 미지수의 값, 해를 구하라는 얘기예요. 방정식을 풀 때는 좌변에는 x가 있는 항, 우변에는 상수항이 오도록 이항하고, 동류항을 계산한 다음 x의 계수로 나눠주는 거죠.

(1) 2x + 4 = 3x - 5
2x - 3x = -5 - 4
-x = -9
x = 9

(2) 5 + 3x = x + 7
3x - x = 7 - 5
2x = 2
x = 1

함께 보면 좋은 글

방정식과 항등식, 등식의 뜻
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
복잡한 일차방정식의 풀이
일차방정식의 활용 첫번째
일차방정식의 활용 2

정리해볼까요

이항: 등식에서 항의 부호를 바꾸어 반대변으로 옮기는 것

일차방정식: 미지수의 차수가 1인 방정식. (일차식) = 0

일차방정식의 풀이

  1. x가 포함되어 있는 모든 항은 좌변으로, x가 없는 항(상수항)은 모두 우변으로 이항
  2. 각 변을 정리하여 ax = (숫자)꼴로
  3. x의 계수로 양변을 나눈다.
 
그리드형

+ 최근글