나눗셈

나머지정리, 인수정리

2013. 3. 18. 12:30

다항식을 나누는 건 숫자를 나누는 것과 같다고 했어요. 다만 최고차항의 차수와 계수를 이용해서 나누는 것만 다르죠.

다항식을 나누는 이유는 몫과 나머지를 구하기 위해서예요. 그런데, 몫은 필요 없고 나머지만 구하는 경우도 있겠죠? 이럴 때 나머지정리라는 걸 이용하면 편리하게 나머지를 구할 수 있어요.

인수정리라는 것도 있는데, 인수정리의 인수는 인수분해에서 사용했던 인수와 같은 말이에요. 그러니까 인수분해와 인수정리의 연관성을 생각해보는 것도 좋아요.

나머지정리와 인수정리는 한 끗 차이니까 잘 비교해서 이해하세요.

나머지정리

다항식의 나눗셈에서 다항식 A를 0 아닌 다항식 B로 나눌 때, 몫을 Q, 나머지를 R이라고 하면 A = BQ + R이라는 식으로 나타낼 수 있다고 했어요.

다항식의 나눗셈을 할 때, 세로로 바꿔서 숫자의 나눗셈을 할 때처럼 한다고 했죠? 그래서 몫과 나머지를 구했어요. 그런데 몫은 구하지 않고 나머지만 바로 구할 수 있을까요? 나머지정리를 이용해서 나머지만 구할 수 있는데, 어떻게 하는지 알아보죠.

x3 + 2x2 - 3x + 7을 x - 4로 나누었을 때 나머지를 구해보죠.

A = BQ + R이므로
x3 + 2x2 - 3x + 7 = (x - 4)Q + R로 쓸 수 있겠죠?

R만 구하는 방법은 두 가지에요.

  1. 우변의 (x - 4)Q를 이항해서 R = x3 + 2x2 - 3x + 7 - (x - 4)Q로 만들거나
  2. 우변의 (x - 4)Q = 0으로 만들어서 R = x3 + 2x2 - 3x + 7을 구하는 거죠.

두 번째 방법에서 (x - 4)Q를 0이 되게 만들 수 있어요. 어떻게요? x = 4를 대입하면 되잖아요.

항등식의 미정계수법 - 수치대입법을 생각해보세요. x에 특정한 값을 대입해서 식을 간단하게 만들었잖아요. x = 4를 대입해보죠.

43 + 2 × 42 - 3 × 4 + 7 = (4 - 4)Q + R
R = 64 + 32 - 12 + 7 = 91

직접 나눗셈을 해보지 않아도 나머지만 빠르게 구했어요.

위에서는 A라는 식을 사용했는데요, 보통은 x에 관한 식을 사용하니까 나눠지는 식을 f(x)라고 하고, 몫은 Q(x)라고 해요. f(x)를 x - 4로 나눌 때의 나머지는 x = 4를 대입했을 때의 값이죠? 이건 f(4)라고 표현할 수 있잖아요.

f(x)를 (x - 4)로 나눌 때의 나머지 = f(4)

이번에는 같은 식을 2x - 1로 나누었을 때의 나머지를 구해보죠. 식을 써보면 아래처럼 될 거예요.

f(x) = x3 + 2x2 - 3x + 7 = (2x - 1)Q(x) + R

마찬가지로 수치대입법을 이용해서 x = 을 대입하면 (2x - 1)Q(x) = 0이 되어서 우변은 R만 남죠.

두 보기에서 확인할 수 있듯이 f(x)를 일차식으로 나눌 때의 나머지 R은 (나누는 일차식) = 0이 되는 x를 f(x)에 대입한 값과 같아요.

나머지정리
x에 대한 다항식 f(x)를 일차식 (x - α)로 나누었을 때 나머지 R = f(α)
x에 대한 다항식 f(x)를 일차식 (ax + b)로 나누었을 때의 나머지 R =

다항식 f(x)를 (x - 1)로 나눈 나머지는 1, (x - 2)로 나눈 나머지는 3일 때, f(x)를 (x - 1)(x - 2)로 나눈 나머지를 구하여라.

문제를 식으로 나타내 보죠.
f(x)를 (x - 1)로 나눈 나머지가 1 → f(1) = 1
f(x)를 (x - 2)로 나눈 나머지가 3 → f(2) = 3
f(x)를 (x - 1)(x - 2)로 나누기 → f(x) = (x - 1)(x - 2)Q(x) + R(x)

여기서 중요한 건 나머지는 나누는 식보다 차수가 작다는 거예요. 나누는 식이 (x - 1)(x - 2)로 이차식이니까 R은 상수항일 수도 있지만, x에 관한 일차식일 수도 있어요. x에 관한 일차식이니까 R(x) = ax + b라고 나타내야 합니다.

f(x) = (x - 1)(x - 2)Q(x) + ax + b

f(1) = (1 - 1)(1 - 2)Q(1) + a + b = 1
a + b = 1

f(2) = (2 - 1)(2 - 2)Q(2) + 2a + b = 3
2a + b = 3

a + b = 1, 2a + b = 3을 연립방정식으로 풀면 a = 2, b = -1이 되므로 R(x) = ax + b = 2x - 1이에요.

나머지정리는 나누는 식이 일차식일 때뿐 아니라 그보다 더 높은 차수의 식일 때도 사용할 수 있다는 걸 알 수 있죠? 또, 나누는 식 = 0이 되는 x의 개수가 더 많아지는 것도 확인할 수 있어요.

나누는 식이 일차식이면 R은 상수
나누는 식이 이차식이면 R(x) = ax + b
나누는 식이 삼차식이면 R(x) = ax2 + bx + c

인수정리

다항식의 나눗셈에서 다항식 A를 0이 아닌 다항식 B로 나누었을 때 나머지 R = 0이면 나누어떨어진다고 했어요. R = 0이니까 f(x)로 바꿔서 표현하면 f(x) = (x - α)Q(x)가 되겠죠?

나머지정리에 의해서 f(x)에 x = α를 대입하면 f(α) = 0이 돼요.

f(x) = (x - α)Q(x)에서 f(x)는 (x - α)와 Q(x)라는 두 다항식의 곱으로 되어있어요. 이렇게 어떤 다항식이 두 개 이상의 다항식의 곱으로 표시하는 걸 인수분해라고 했어요. 곱해져 있는 다항식을 인수라고 하죠? 따라서 (x - α)와 Q(x)는 f(x)의 인수에요.

그래서 이걸 인수정리라고 하는 거예요.

인수정리
x에 대한 다항식 f(x)가 (x - α)로 나누어떨어진다.
⇔ f(x) = (x - α)Q(x)
⇔ f(α) = 0
⇔ f(x)가 (x - α)를 인수로 가진다.

f(x)가 (ax + b)로 나누어떨어진다.
⇔ f(x) = (ax + b)Q(x)
 = 0
⇔ f(x)가 (ax + b)를 인수로 가진다.

인수정리는 나머지정리 중에서 나머지 R = 0일 때를 말하는 거예요.

다항식 f(x) = 3x3 - ax2 + x - 6가 x - 2로 나누어떨어질 때 a의 값을 구하여라.

다항식 f(x)가 x - 2로 나누어떨어지면 f(2) = 0이에요.
f(2) = 3 × 23 - a × 22 + 2 - 6 = 0
4a = 24 + 2 - 6
4a = 20
a = 5

f(x) = 3x3 - 2x2 + ax - b가 (x - 1)과 (x - 2)로 나누어떨어질 때, a, b를 구하여라.

f(x)가 (x - 1)로 나누어떨어진다. ⇔ f(x) = (x - 1)Q1(x) ⇔ f(x)는 (x - 1)을 인수로 가진다. ⇔ f(1) = 0
f(x)가 (x - 2)로 나누어떨어진다. ⇔ f(x) = (x - 2)Q2(x) ⇔ f(x)는 (x - 2)을 인수로 가진다. ⇔ f(2) = 0

f(x)가 (x - 1)과 (x - 2) 두 개 모두를 인수로 가지므로 이걸 식으로 나타내면 f(x) = (x - 1)(x - 2)Q(x)로 쓸 수 있어요.

f(1) = 3 × 13 - 2 × 12 + a - b = 0
a - b = -1
f(2) = 3 × 23 - 2 × 22 + 2a - b = 0
2a - b = -16

a - b = -1, 2a - b = -16를 연립방정식으로 풀어보면 a = -15, b = -14

함께 보면 좋은 글

다항식의 나눗셈
항등식과 항등식의 성질
미정계수법 - 계수비교법, 수치대입법
[중등수학/중3 수학] - 인수분해, 공통인수로 인수분해

정리해볼까요

나머지정리

  • x에 관한 식 f(x)를 (x - α)로 나눌 때의 나머지 = f(α)
    f(x) = (x - &alpha)Q(x) + R
  • x에 관한 식 f(x)를 (ax + b)로 나눌 때의 나머지 =
    f(x) = (ax + b)Q(x) + R

인수정리

  • x에 대한 다항식 f(x)가 x - α로 나누어떨어진다.
    ⇔ f(x) = (x - α)Q(x)
    ⇔ f(α) = 0
    ⇔ f(x)가 (x - α)를 인수로 가진다.
  • f(x)가 ax + b로 나누어떨어진다.
    ⇔ f(x) = (ax + b)Q(x)
     = 0
    ⇔ f(x)가 (ax + b)를 인수로 가진다.
<<  수학 1 목차  >>
 
그리드형

다항식의 나눗셈

2013. 3. 15. 12:30

중학교에서 했던 다항식의 나눗셈은 나누는 항이 하나였어요. 다항식 중에서도 단항식으로 나누었던 거죠. 숫자끼리 약분하고, 지수는 뺄셈을 통해서 계산할 수 있었죠.

고등학교 과정에서 공부하는 다항식의 나눗셈은 나누는 항이 두 개이상인 다항식이에요. 항이 여러 개 있다보니까 약분을 하거나 지수법칙을 적용할 수 없는 경우가 생기죠.

이럴 때 어떻게 나눗셈을 하는지 알아보죠. 차수와 계수에 주목해서 보세요.

글로 설명하기가 참 어려운 내용이라서 그림을 잘 보고 이해해보세요.

다항식의 나눗셈

숫자의 나눗셈을 먼저 해볼까요? 55 ÷ 3을 해보죠. 세로로 나누기를 할 때, 아래 그림처럼 해요.

십의 자리 숫자 5에서 3을 나누고, 나머지 2를 내려서 일의 자리 숫자 5를 붙이고, 25에서 3을 나누고, 24를 뺀 나머지 1을 쓰죠?

다항식의 나눗셈: 숫자와 비교

다항식의 나눗셈도 이렇게 해요. 차이가 있다면 숫자의 자리가 아니라 차수를 이용한다는 거예요. 나누는 식의 최고차항과 계수와 차수가 같아지도록 하는 것이 핵심이에요.

숫자는 나눗셈을 할 때, 나눠지는 수의 뒷자리에 맞게 뒤에서부터 몫을 쓰는데, 다항식의 나눗셈에서는 앞에서부터 써요.

(x2 + 3x - 4) ÷ (x - 1)을 해보죠.

다항식의 나눗셈
다항식의 나눗셈 1 단계
다항식의 나눗셈 3 단계

  1. 나눠지는 식의 최고차항은 2차고 나누는 식이 최고차항이 1차니까 나누는 식에 x를 곱하면 차수가 같아지죠?
    (x - 1) × x = x2 - x
  2. (나눠지는 식) - (나누는 식 × x) = x2 + 3x  - (x - 1)x = 4x, -4는 그대로 아래로
  3. x - 1은 최고차항이 1차, 4x - 4도 최고차 항이 1차로 같지만 계수가 다르니까 계수를 똑같이 만들어 주려면 (x - 1) × 4 = 4x - 4
  4. 두 식을 빼줍니다. (4x - 4) - (x - 1) × 4 = 0

55 ÷ 3의 결과를 55 = 3 × 18 + 1로 쓰잖아요. 이 때 55를 나눠지는 수, 3을 나누는 수, 18을 몫, 1을 나머지라고 하죠? (나눠지는 수) = (나누는 수) × (몫) + (나머지)

다항식 A를 0아닌 다항식 B로 나누었을 때 몫을 Q, 나머지를 R이라고 해서 A = BQ + R (B ≠ 0)라고 써요.

위 나눗셈의 결과는 x2 + 3x - 4 = (x - 1)(x + 4) + 0으로 쓰는 거죠. + 0은 생략해도 돼요.

30 ÷ 3을 해보면 30 = 3 × 10이라고 써요. 나머지가 0이니까 30은 3으로 나눠어 떨어진다고 하죠? 다항식에서도 나머지 R = 0이면 나누어 떨어진다고 해요. 위 보기에서 x2 + 3x - 4는 (x - 1)로 나누어 떨어진다고 해요.

숫자의 나눗셈에서 나머지는 항상 나누는 수보다 작아요. 같거나 크면 안되죠? 다항식의 나눗셈에서는 나머지는 나누는 수보다 차수가 작아요. 위 예제에서는 나누는 식은 1차식, 나머지는 상수항이니까 0차죠? 이거 주의하세요.

다음 다항식의 나눗셈을 하고, 몫과 나머지를 구하여라.
(1) (2x3 + 3x2 - x - 2) ÷ (x + 1)
(2) (2x3 - 5x2 + 5x - 4) ÷ (2x - 3)

나눠지는 식의 최고차항을 찾아서 나눠지는 식의 최고차항과 비교해야 해요. 이 때, 계수와 차수가 같아지도록 숫자나 문자를 곱하는 거죠.

(1)을 계산해 볼까요?

다항식의 나눗셈 예제 1 풀이

몫은 2x2 + x - 2, 나머지는 0이네요. 2x3 + 3x2 - x - 2는 x + 1로 나누어 떨어지는 군요.

(2)번을 해보죠.

몫은 x2 - x + 1, 나머지는 -1이네요.

함께 보면 좋은 글

다항식의 덧셈과 뺄셈, 다항식의 곱셈
곱셈공식, 곱셈공식 유도

정리해볼까요

다항식의 나눗셈

  • 숫자의 나눗셈과 같은 방법
  • 최고차항의 차수와 계수를 일치시키면서 계속 뺌
  • 다항식 A를 0이 아닌 다항식 B로 나눈 몫을 Q, 나머지를 R, A = BQ + R
    R = 0이면 다항식 A는 B로 나누어 떨어진다
<<  수학 1 목차  >>
 
그리드형

제곱근의 사칙연산 첫번째에요. 사칙연산에서는 보통 덧셈과 뺄셈을 먼저하는데, 여기서는 곱셈과 나눗셈을 먼저할께요. 왜냐고요? 더 쉬우니까요.

제곱근의 곱셈과 나눗셈은 제곱과 제곱근의 관계를 잘 알고 있다면 이해하기 쉬워요. 계산은 더 쉽고요. 규칙이라고 하기에도 좀 민망하죠.

또, 나눗셈은 곱셈으로 바꿔서 할 수 있어요. 따라서 곱셈만 할 줄 알면 나눗셈은 그냥 덤으로 할 수 있게돼요.

블로그에 쓰려다보니 기호가 너무 많아져서 복잡하네요. 예제는 생략하도록 할께요. 교과서의 예제 문제쯤은 그냥 간단히 풀 수 있을 거예요.

제곱근의 곱셈

제곱근끼리의 곱셈

은 얼마일까요? 숫자만 곱해서 이면 좋겠지요? 실제로 얼마인지 해볼까요?

을 제곱해보죠.

이죠. 제곱근의 뜻에 따르면 제곱과 제곱근은 서로 반대의 의미이므로 은 2 × 3의 양의 제곱근이에요.

그런데 2 × 3 = 6으로 6의 양의 제곱근은 이에요. 결국  = 이 되는 거죠.

제곱근의 곱셈은 숫자끼리 곱하고 제곱근 기호를 씌워주면 돼요.

정수와 제곱근의 곱셈

제곱근과 정수의 곱은 더 쉬워요.곱셈기호는 생략할 수 있어요. 그래서 그냥 생략해서 쓰면 돼요.  2 × =

이번에는 풀어서 계산해보죠.

이 되는 걸 알 수 있죠? 즉, 근호 앞의 정수는 제곱해서 근호안에 넣고, 원래 근호 안에 있던 숫자와 곱해주면 되는 거지요. 반대로 근호 안에 제곱인 수가 곱해져 있다면 근호 앞으로 빼낼 수 있어요.

제곱근의 곱셈

이번에는 조금 더 복잡한 거에요.를 해보죠.

근호 앞의 정수는 정수끼리, 제곱근은 제곱근끼리 곱하는 걸 알 수 있죠?

위 세 가지를 정리해보죠.

제곱근의 나눗셈

기본적으로 나눗셈은 곱셈으로 바꿔서 할 수 있으니까 곱셈에서 했던 세 가지 성질이 똑같이 적용됩니다.

를 해보죠. 마찬가지로 제곱을 합니다. 

제곱과 제곱근의 관계에 따라서 의 양의 제곱근으로 가 돼요. 제곱근의 나눗셈은 근호 안의 숫자끼리 나누고 근호를 씌워주면 되는 거죠.

근호 앞의 분수는 제곱을 해서 근호 안에 넣고, 반대로 근호 안의 분수의 제곱을 근호 밖으로 뺄 수도 있죠.

근호 앞에 정수가 있다면 정수끼리 나누고, 제곱근끼리 나눌 수 있어요. 

정리해볼까요

제곱근의 곱셈과 나눗셈

  • 근호 안의 숫자끼리 계산 후 근호
  • 근호 앞의 수는 제곱해서 근호 안으로
    근호 안의 제곱인 수는 양의 제곱근을 구하여 근호 앞으로
  • 근호 앞의 정수끼리, 근호 안의 숫자끼리 계산
 
그리드형

단항식끼리의 사칙연산, 다항식끼리의 사칙연산을 공부했어요. 이제는 다항식과 단항식의 계산을 공부할 차례에요. 이 글에서는 단항식과 다항식의 곱셈과 나눗셈에 대해서 공부합니다. 어차피 다항식의 계산은 분배법칙동류항 계산이라는 큰 틀 안에 있어요. 이 두 가지만 잘 잘 기억하고 있으면 돼요.

항도 많은데다가 지수 같은 건 글자도 작아서 헷갈리기도 쉬워서 제일 짜증 나는 단원이기도 해요. 하지만 복잡하다고 해서 어려운 건 아니에요. 하나씩 짚어가면서 계산하면 할 수 있어요. 몰라서 틀리는 경우보다 실수로 틀리는 게 많은 단원입니다. 연습을 많이 하셔야 해요.

단항식과 단항식의 곱셈과 나눗셈

(다항식) × (단항식)

다항식에는 항이 두 개 이상이 들어있어요. 각각의 항에 단항식을 곱해줘야 합니다. 이걸 바로 분배법칙이라고 하죠?

분배법칙

분배법칙을 이용하여 괄호를 풀고 정리해서 하나의 다항식으로 바꾸는 걸 전개라고 하고, 이 과정을 거쳐 생긴 새로운 다항식을 전개식이라고 해요.

전개할 때는 다항식의 항과 단항식을 곱하게 되는데, 이때 단항식의 곱셈에서 했던 것처럼 숫자는 숫자끼리, 문자는 문자끼리 곱해야 해요.

4a(2a - 3b)를 계산해보죠. 전개하려면 4a를 2a - 3b의 두 항에 모두 곱해요.

단항식과 다항식의 곱셈

전개하는 과정에서 동류항이 있다면 동류항끼리 계산을 하면 됩니다. 위에서는 동류항이 없네요.

다항식과 단항식의 곱셈
분배법칙으로 괄호 풀기 → 단항식의 곱셈(숫자끼리, 문자끼리 곱) → 동류항 계산 → 결과(전개식)

다음을 간단히 하여라.
(1) (2a2 + 3ab) × a
(2) 2ab(3a3b + 2ab2)
(3) 4a(2a + 3b) - 2b(a + 3b)

단항식과 다항식의 곱셈에서는 분배법칙을 이용해서 괄호를 풀고, 동류항 계산해서 정리합니다.

(1) (2a2 + 3ab) × a
= 2a2 × a + 3ab × a
= 2a3 + 3a2b

(2) 2ab(3a3b + 2ab2)
= 2ab × 3a3b + 2ab × 2ab2
= 6a4b2 + 4a2b3

(3) 4a(2a + 3b) - 2b(a + 3b)
= 4a × 2a + 4a × 3b - (2b × a + 2b × 3b)
= 8a2 + 12ab - (2ab + 6b2)
= 8a2 + 12ab - 2ab - 6b2
= 8a2 + 10ab - 6b2
밑에서 두 번째 줄에 보면 동류항이 있어서 동류항 정리까지 했어요.

(다항식) ÷ (단항식)

유리수의 나눗셈은 곱셈으로 바꿔서 계산하는 게 편하죠? 다항식과 단항식도 나눗셈은 곱셈으로 고쳐서 계산합니다.

단항식과 다항식의 나눗셈, 역수

나누기를 곱하기로 바꾸고 역수를 취하면 모양이 바뀌는데, 위 곱셈에서 했던 것처럼 분배법칙을 이용해서 전개하는 거예요. 나눗셈을 계산하는 방법은 여러 가지가 있는데, 곱셈으로 바꿔서 하는 방법이 실수가 가장 적은 방법이에요.

단항식과 다항식의 나눗셈 - 보기

다음을 간단히 하여라.
(1) (15ab + 5ab2) ÷ 5b
(2) (4a2b - 6ab2 + 3ab) ÷ 2ab
(3) 단항식과 다항식의 나눗셈 - 예제

다항식과 단항식의 나눗셈은 곱셈으로 바꿔서 분배법칙을 이용하여 전개합니다.

단항식과 다항식의 나눗셈 - 예제풀이 1

단항식과 다항식의 나눗셈 - 예제풀이 2

단항식과 다항식의 나눗셈 - 예제풀이 3

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교

정리해볼까요

단항식과 다항식의 곱셈과 나눗셈

  • 전개: 분배법칙을 이용하여 괄호를 풀고 정리하여 하나의 다항식으로 나타내는 것
  • 전개식: 전개하여 얻은 다항식
  • 곱셈: 분배법칙을 이용하여 전개
  • 나눗셈: 나눗셈을 곱셈으로 바꾸고, 역수를 취하여 계산
>>   곱셈공식
 
그리드형

지수법칙 두 가지를 공부했었죠? 밑이 같은 거듭제곱의 곱일 때는 밑을 그대로 써주고 지수는 더해주는 거였고요. 거듭제곱의 거듭제곱에서는 밑은 그대로 쓰고, 지수를 곱해주는 거였어요.

지수법칙 두 번째는 나눗셈과 괄호가 있을 때의 거듭제곱이에요.

나눗셈에서는 지수의 크기가 중요해요. 지수의 크기에 따라 계산 방법이 달라지거든요. 괄호가 있을 때는 분수든 아니든 상관없이 공통된 특징이 있으니 이건 쉽게 이해할 거예요.

지수법칙

25 ÷ 23을 해볼까요? 지수를 풀어서 계산(약분)한 다음, 다시 거듭제곱으로 나타내보죠.

지수만 보면 5 - 3 = 2가 되죠. 밑이 같은 거듭제곱의 나눗셈은 밑은 그대로 쓰고, 지수만 빼면 돼요. 여기까지는 지수법칙 첫 번째에서 했던 밑이 같은 거듭제곱의 곱과 비슷해요. 밑이 다르거나 나눗셈이 아니면 쓸 수 없다는 것까지 같지요.

이번에는 25 ÷ 25을 해보죠.

위처럼 밑은 그대로 쓰고, 지수의 차를 구해보면 25 ÷ 25 = 25 - 5 = 20이 되겠지요? 여기에서 20 = 1이라는 걸 알 수 있어요. 지수가 같으면 나누기의 결과로 지수는 0이 되고, 밑이 2든 3이든 상관없이 모든 수의 0 제곱은 1이에요.

이번에는 23 ÷ 25를 해볼까요?

밑이 같고 지수의 나눗셈이니까 밑은 그대로 쓰고, 지수끼리 빼면 23 ÷ 25 = 23 - 5 = 2-2이 돼요. 지수가 -2인데, (-)는 분수라는 걸 말해요. 지수가 2인 분수꼴이라는 뜻이죠. 나누는 수의 지수가 클 때는 분수로 쓰되, 지수는 큰 것에서 작은 걸 빼주는 거지요.

위 세 경우에서 보듯이 거듭제곱의 나눗셈은 나누어지는 수와 나누는 수의 지수 크기에 따라 계산 방법이 살짝 달라져요.

a ≠ 0이고, m, n이 자연수일 때
지수법칙 - 나눗셈

다음을 간단히 하여라.
(1) a6 ÷ a2
(2) b5 ÷ b3 ÷ b2
(3) c3 ÷ c7

밑이 같은 거듭제곱의 나눗셈에서는 나누어지는 수와 나누는 수의 지수 중 어디가 큰지에 따라 달라져요. 나누어지는 수의 지수가 크면 밑은 그대로 쓰고 지수의 차, 같으면 1, 나누어지는 수의 지수가 더 작으면 분수 형태예요.

(1) 나누어지는 수의 지수가 나누는 수의 지수보다 크네요.

a6 ÷ a2
= a6 - 2
= a4

(2)에서는 항이 3개지만 밑이 같으면 한꺼번에 계산할 수 있어요.
b5 ÷ b3 ÷ b2
= b5 - 3 - 2
= b0
= 1

(3)은 나눠지는 수의 지수가 더 작으니까 분수로 나오겠지요.

괄호가 있을 때 지수법칙

이번에는 여러 개의 문자나 수를 한꺼번에 거듭제곱할 때 어떻게 되는지 알아보죠.

(ab)3을 볼까요? ab를 3번 곱한 건데, 원래 a × b에서 곱셈기호가 생략된 거죠.

(ab)3
= (a × b)3                                 곱셈기호 살리기
= (a × b) × (a × b) × (a × b)
= (a × a × a) × (b × b ×b )     곱셈에 대한 교환법칙
= a3 × b3
= a3b3                                      곱셈기호 생략

첫 줄과 끝줄만 보면, (ab)3 = a3b3로 괄호 안에 있는 것들을 각각 세제곱한 것과 같아요.

분수의 거듭제곱도 분자, 분모를 각각 거듭제곱한 것과 같죠.

위 두 가지를 정리해 보면, 괄호로 묶여있는 걸 거듭제곱하면 괄호 안에 있는 것들을 각각 거듭제곱한 것과 같다는 걸 알 수 있어요.

b ≠ 0이고, m이 자연수일 때
지수법칙 - 괄호

다음을 간단히 하여라.

괄호 안에 있는 건 분수든 아니든 상관없이 각각을 거듭제곱해줘야 해요.

(1) (a3b2)2
= (a3)2(b2)2
= a3 × 2b2 × 2
= a6b4

(2)에서 (-a) = (-1) × a에요.
(-a)4 × (-b)3
= (-1)4a4 × (-1)3b3
= a4 × (-b3)
= -a4b3

함께 보면 좋은 글

지수법칙 - 곱셈, 거듭제곱
단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외

정리해볼까요

a ≠ 0이고, m, n이 자연수일 때, am ÷ an

  • am - n (m > n)
  • 1 (m = n)

b ≠ 0이고, m은 자연수일 때

  • (ab)m = ambm
<<    중2 수학 목차    >>
 
그리드형

곱셈기호(×)를 생략해서 식을 간단히 하는 방법이에요.

수학에서는 숫자와 식을 간단히 하는 게 매우 중요해요. 말로 풀어쓰면 길어지는 걸 수학기호로 간단하게 나타내기도 하죠.

기호를 쓰는 것마저도 길어진다면 그 기호마저도 생략할 수 있어요. 단, 기호를 생략하더라도 그 의미는 파악할 수 있어야 하겠죠?

이 글에서는 곱셈기호를 생략할 수 있는 경우와 생략하는 방법을 알아볼 거예요. 이 원칙에 맞게 곱셈기호를 생략해야만 다른 사람들도 곱셈기호가 생략되었음을 알고, 원래 의미를 알 수 있어요.

곱셈기호의 생략

여러 가지 기호 중에서 곱셈기호를 생략하는 방법입니다. 덧셈기호와 뺄셈기호는 생략하지 않아요. 곱셈기호만 생략해야 헷갈리지 않겠죠?

생략한다는 말은 그냥 지워버리는 거예요. 곱셈식에서 곱하기 기호를 지우고 나머지만 붙여서 쓰는 겁니다.

곱셈기호를 생략할 수 있는 조건이 있어요.

  • 문자와 숫자 사이에 있는 곱셈 기호
  • 문자와 문자 사이에 있는 곱셈 기호

두 가지 경우에만 곱셈기호를 생략합니다. 숫자와 숫자 사이의 곱셈에서는 곱셈기호의 모양을 바꿀 수는 있지만, 곱셈기호는 생략하지 않아요.

곱셈기호를 생략하는 방법을 잘 알아두세요. 앞으로 나오는 모든 문제에서 곱셈기호를 쓰지 않아요. 그런 문제를 볼 때 이 생략 방법을 알아야 어디에 곱셈기호가 생략되었는지를 알고 문제를 풀 수 있겠죠?

  • 숫자는 앞에, 문자는 뒤에
    a × 2라는 식에서 곱셈기호를 생략하면 a2가 되죠? 그런데 문자와 숫자의 곱에서는 숫자를 앞에 쓰고, 문자를 뒤에 써요. a2가 아니라 2a라고 써요.
  • 문자끼리의 곱은 알파벳 순서대로
    b × a = ba인데, 알파벳 순서대로 ab라고 써요. a × c × b = acb가 아니라 abc로 쓰고요.
  • 1은 생략
    1 × a = 1a죠. 여기서 1은 곱하나 마나죠. 1은 없어도 상관없으니까 1도 생략합니다. 거듭제곱에서 지수가 1일 때는 쓰지 않았잖아요. 따라서 1a가 아니라 그냥 a라고 써요.
     
    단, (-1) × a처럼 1에 (-) 부호가 붙어있으면 (-)는 그냥 두고 1만 생략해요. (-1) × a = -a
     
    0.1, 0.01처럼 소수나 11처럼 자릿수가 다른 1이 있으면 1은 생략하지 않아요. 1이 포함되어 있긴 하지만 곱하면 값이 달라지잖아요.
    0.1 × a = 0.1a, 11 × a = 11a예요.
  • 같은 문자끼리 곱할 때는 거듭제곱
    a × a에서 곱셈기호를 생략하면 aa가 될 것 같죠? 하지만 거듭제곱에서 공부했던 것처럼 같은 문자를 곱할 때는 지수를 이용해서 표현하기로 했어요.
  • 괄호와 숫자의 곱은 숫자를 앞으로
    (a + b) × 3에서 괄호를 하나의 문자로 보고, 숫자를 괄호 앞에 써요. 3(a + b)

곱셈기호를 생략할 때, 그냥 기호만 지우는 게 아니라 그 위치를 위처럼 바꿔줘요. 이렇게 위치를 바꿀 수 있는 건 곱셈에 대해서 교환법칙이 성립하기 때문이에요.

나눗셈 기호의 생략

나눗셈은 기본적으로 곱셈으로 바꿀 수 있죠? 어떻게요? 역수를 이용해서요.

나눗셈 기호의 생략

b의 역수를 취한 다음 a를 분자인 1에 곱했어요. 분자에서 1은 생략할 수 있으니까 결국 남는 건 a죠. 분모는 b고요.

앞으로는 이 과정을 거칠 필요없이 나눠지는 수는 분자, 나누는 수는 분모로 바로 쓸 수 있겠죠?

다음 식을 곱셈기호를 생략하여 나타내어라.
(1) a × 2
(2) a × b × c
(3) a × 2 × a
(4) (a + b) × (-1)

(1) 문자와 숫자의 곱에서는 숫자는 앞에 문자는 뒤에 써요. a × 2 = a2 = 2a

(2) 문자끼리의 곱에서는 알파벳 순서대로 쓰죠. a × b × c = abc

(3) 문자와 숫자의 곱이니까 숫자를 앞에 쓰는데, 똑같은 문자가 2번 곱해져 있네요. 거듭제곱을 이용해야겠죠? a × 2 × a = 2aa = 2a2

(4) 괄호와 숫자의 곱에서 숫자는 앞에, 괄호는 뒤에요. 그런데 숫자 1을 곱했을 때는 생략이 가능하죠. 부호는 그대로 둬야하고요. (a + b) × (-1) = (a + b)(-1) = (-1)(a + b) = -(a + b)

함께 보면 좋은 글

문자와 식, 문자를 포함한 식
대입, 식의 값
단항식과 다항식, 항, 상수항, 계수, 차수
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

곱셈기호의 생략

  • 숫자와 문자의 곱
  • 문자와 문자의 곱

곱셈기호 생략 방법

  • 숫자는 앞에 문자는 뒤에
  • 문자끼리의 곱은 알파벳 순서로
  • 1은 생략
  • 같은 문자끼리의 곱은 거듭제곱으로
  • 괄호와 숫자의 곱은 숫자를 앞으로
 
그리드형

+ 최근글