동류항

단항식은 항이 하나만 있는 식이죠. 다항식은 항이 여러 개 있는 식을 말해요. 헷갈리면 안되는 게 단항식도 다항식의 한 종류에요. 다항식은 항이 한 개이상있는 식이니까요.

다항식의 덧셈과 뺄셈은 중학교 때 다항식의 계산에서 해봤어요. 동류항끼리 모아서 계산하는 거였죠? 그리고 다항식의 곱셈도 해봤는데, 분배법칙곱셈공식 - 완전제곱식, 곱셈공식 두 번째 - 합차공식을 이용해서 전개한 후에 동류항끼리 정리를 했어요.

이 글에서 공부하는 다항식의 계산은 중학교에서 공부했던 내용을 한 번 더 정리하고 복습하는 과정이에요.

다항식의 연산법칙

a + b = b + a, ab = ba가 성립하는 걸 교환법칙이라고 해요. (a + b) + c = a + (b + c), (ab)c = a(bc)가 되는 걸 결합법칙이라고 하고요. (a + b)c = ac + bc를 분배법칙이라고 하죠. 이 때, a, b, c는 숫자였어요.

다항식의 연산법칙에서는 A, B, C를 사용하는데, 이 A, B, C는 숫자가 아니라 다항식이에요. a, b, c가 숫자라고는 하지만 넓게 보면 상수항이고 단항식에 해당하니까 A, B, C 자리에 들어가도 상관없어요.

세 다항식 A, B, C에 대하여
교환법칙: A + B = B + A, AB = BA
결합법칙: (A + B) + C = A + (B + C)
분배법칙: (A + B)C = AC + BC

A = 2x2 + 3x + 1, B = x2 - 2x - 8, C = 3x - 2라고 하죠.
(2x2 + 3x + 1) + (x2 - 2x - 8) = (x2 - 2x - 8) + (2x2 + 3x + 1)이 된다는 거예요.

새로운 얘기는 아니니까 굳이 전부 증명할 필요는 없겠죠?

다항식의 계산

다항식의 덧셈과 뺄셈

다항식의 덧셈과 뺄셈은 동류항을 찾는 게 제일 중요해요. 문자와 차수가 같은 항을 찾아서 앞의 계수끼리 계산하는 거죠.

단, 계산에서 괄호가 있다면 괄호를 먼저 풀고 계산을 해야하고요. 그리고 마지막에는 한 문자를 정해서 내림차순으로 정리하면 끝이에요. 내림차순은 어떤 문자에 대해서 차수가 높은 항부터 낮은 항의 순서대로 쓰는 걸 말해요.

  1. 괄호를 푼다. ( ) → { } → [ ]
  2. 동류항을 찾아 계산
  3. 내림차순으로 정리

다항식의 곱셈

다항식의 곱셈이 바로 곱셈공식이에요. 곱셈공식을 이용해서 전개를 하고, 동류항을 찾아서 계산을 하는 거죠. 물론 이 때도 내림차순으로 정리를 하세요.

A = 2x2 + 3x + 1, B = x2 - 2x - 8, C = 3x - 2일 때, 다음을 간단히 하여라.
(1) 2A - (B + C)
(2) AC - 3B

식의 값을 구하는 문제에요. 대입하죠.

(1) 2A - (B + C)
= 2(2x2 + 3x + 1) - {(x2 - 2x - 8) + (3x - 2)}
= 4x2 + 6x + 2 - (x2 + x - 10)
= 4x2 + 6x + 2 - x2 - x + 10
= 3x2 + 5x + 12

(2) AC - 3B
= (2x2 + 3x + 1)(3x - 2) - 3(x2 - 2x - 8)
= 6x3 + 9x2 + 3x - 4x2 - 6x - 2 - 3x2 + 6x + 24
= 6x3 + 2x2 + 3x + 22

함께 보면 좋은 글

[중등수학/중1 수학] - 단항식과 다항식, 항, 상수항, 계수, 차수
[중등수학/중1 수학] - 동류항, 동류항의 덧셈과 뺄셈
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교
[중등수학/중2 수학] - 다항식의 계산, 다항식의 덧셈과 뺄셈
[중등수학/중2 수학] - 곱셈공식 - 완전제곱식
[중등수학/중2 수학] - 곱셈공식 두 번째 - 합차공식 외

정리해볼까요

다항식의 계산

  1. 괄호 풀기 ( ) → { } → [ ]
    괄호를 풀 때는 분배법칙과 곱셈공식을 이용
  2. 동류항끼리 계산
  3. 내림차순으로 정리
<<  수학 1 목차  >>
 
그리드형

단항식끼리의 사칙연산, 다항식끼리의 사칙연산을 공부했어요. 이제는 다항식과 단항식의 계산을 공부할 차례에요. 이 글에서는 단항식과 다항식의 곱셈과 나눗셈에 대해서 공부합니다. 어차피 다항식의 계산은 분배법칙동류항 계산이라는 큰 틀 안에 있어요. 이 두 가지만 잘 잘 기억하고 있으면 돼요.

항도 많은데다가 지수 같은 건 글자도 작아서 헷갈리기도 쉬워서 제일 짜증 나는 단원이기도 해요. 하지만 복잡하다고 해서 어려운 건 아니에요. 하나씩 짚어가면서 계산하면 할 수 있어요. 몰라서 틀리는 경우보다 실수로 틀리는 게 많은 단원입니다. 연습을 많이 하셔야 해요.

단항식과 단항식의 곱셈과 나눗셈

(다항식) × (단항식)

다항식에는 항이 두 개 이상이 들어있어요. 각각의 항에 단항식을 곱해줘야 합니다. 이걸 바로 분배법칙이라고 하죠?

분배법칙

분배법칙을 이용하여 괄호를 풀고 정리해서 하나의 다항식으로 바꾸는 걸 전개라고 하고, 이 과정을 거쳐 생긴 새로운 다항식을 전개식이라고 해요.

전개할 때는 다항식의 항과 단항식을 곱하게 되는데, 이때 단항식의 곱셈에서 했던 것처럼 숫자는 숫자끼리, 문자는 문자끼리 곱해야 해요.

4a(2a - 3b)를 계산해보죠. 전개하려면 4a를 2a - 3b의 두 항에 모두 곱해요.

단항식과 다항식의 곱셈

전개하는 과정에서 동류항이 있다면 동류항끼리 계산을 하면 됩니다. 위에서는 동류항이 없네요.

다항식과 단항식의 곱셈
분배법칙으로 괄호 풀기 → 단항식의 곱셈(숫자끼리, 문자끼리 곱) → 동류항 계산 → 결과(전개식)

다음을 간단히 하여라.
(1) (2a2 + 3ab) × a
(2) 2ab(3a3b + 2ab2)
(3) 4a(2a + 3b) - 2b(a + 3b)

단항식과 다항식의 곱셈에서는 분배법칙을 이용해서 괄호를 풀고, 동류항 계산해서 정리합니다.

(1) (2a2 + 3ab) × a
= 2a2 × a + 3ab × a
= 2a3 + 3a2b

(2) 2ab(3a3b + 2ab2)
= 2ab × 3a3b + 2ab × 2ab2
= 6a4b2 + 4a2b3

(3) 4a(2a + 3b) - 2b(a + 3b)
= 4a × 2a + 4a × 3b - (2b × a + 2b × 3b)
= 8a2 + 12ab - (2ab + 6b2)
= 8a2 + 12ab - 2ab - 6b2
= 8a2 + 10ab - 6b2
밑에서 두 번째 줄에 보면 동류항이 있어서 동류항 정리까지 했어요.

(다항식) ÷ (단항식)

유리수의 나눗셈은 곱셈으로 바꿔서 계산하는 게 편하죠? 다항식과 단항식도 나눗셈은 곱셈으로 고쳐서 계산합니다.

단항식과 다항식의 나눗셈, 역수

나누기를 곱하기로 바꾸고 역수를 취하면 모양이 바뀌는데, 위 곱셈에서 했던 것처럼 분배법칙을 이용해서 전개하는 거예요. 나눗셈을 계산하는 방법은 여러 가지가 있는데, 곱셈으로 바꿔서 하는 방법이 실수가 가장 적은 방법이에요.

단항식과 다항식의 나눗셈 - 보기

다음을 간단히 하여라.
(1) (15ab + 5ab2) ÷ 5b
(2) (4a2b - 6ab2 + 3ab) ÷ 2ab
(3) 단항식과 다항식의 나눗셈 - 예제

다항식과 단항식의 나눗셈은 곱셈으로 바꿔서 분배법칙을 이용하여 전개합니다.

단항식과 다항식의 나눗셈 - 예제풀이 1

단항식과 다항식의 나눗셈 - 예제풀이 2

단항식과 다항식의 나눗셈 - 예제풀이 3

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교

정리해볼까요

단항식과 다항식의 곱셈과 나눗셈

  • 전개: 분배법칙을 이용하여 괄호를 풀고 정리하여 하나의 다항식으로 나타내는 것
  • 전개식: 전개하여 얻은 다항식
  • 곱셈: 분배법칙을 이용하여 전개
  • 나눗셈: 나눗셈을 곱셈으로 바꾸고, 역수를 취하여 계산
>>   곱셈공식
 
그리드형

1학년 때 다항식의 계산을 공부했어요. 특히 일차식의 덧셈과 뺄셈을 많이 연습했었죠? 이번 글에서는 다항식 중에서도 이차식의 덧셈과 뺄셈을 공부할 거예요. 그리고 문자가 한 개가 아니라 여러 개 있는 식도 계산할 거예요.

큰 틀에서 보면 1학년 때 했던 동류항의 계산과 똑같으니까 어렵게 생각할 필요는 없어요. 다만 항의 개수가 늘어나다 보니 뭔가 더 복잡해 보이고 어려워 보이는 것뿐이에요.

계산과정에서 실수가 많이 나올 수 있으니까 집중해서 보세요. 계산을 한 항에는 줄을 긋는 등의 표시를 하는 것도 괜찮은 방법이니까 사용해 보시고요. 

다항식의 덧셈과 뺄셈

1학년 때의 다항식의 계산과 달라진 것이 있다면 문자의 개수와 차수가 늘어났다는 거예요. 1학년 때는 문자가 한 개였고, 차수는 1이었죠. 이제는 문자의 개수가 2개 이상이고, 차수도 2로 높아져요.

하지만 문자와 차수가 같은 동류항끼리 묶어서 계산한다는 원칙만 기억하고 있다면 크게 어렵지는 않죠.

2a + b + 3a - 2b라는 식을 볼까요? a라는 문자와 b라는 문자가 있어요. 2a와 3a가 동류항이고, b와 -2b가 동류항이죠. 따로 계산하면 돼요.

2a + b + 3a - 2b
= 2a + 3a + b - 2b
= 5a - b

괄호가 있으면 분배법칙을 이용해서 괄호를 풀고 동류항끼리 묶어서 계산해요. 또, 괄호가 여러 개 있으면 소괄호(), 중괄호{}, 대괄호[] 순으로 풀어요.

3(5a - 2b) - (3a + b)
= 15a - 6b - 3a - b
= 15a - 3a - 6b - b
= 12a - 7b

다항식의 계산: 문자와 차수가 같은 동류항끼리 계산
괄호가 있으면 분배법칙을 이용
소괄호, 중괄호, 대괄호 순으로 괄호를 푼다.

다음을 간단히 하여라.
(1) 3(a + b) - 2(a - b)
(2) 3a + 2[b + 3{a + 3b - (2b - b)} + 3a]

괄호가 있으면 소괄호, 중괄호, 대괄호 순서로 분배법칙을 이용해서 풀고 동류항끼리 계산을 해요.

(1)은 분배법칙을 이용해서 풀어야겠네요.
3(a + b) - 2(a - b)
= 3a + 3b - 2a + 2b
= 3a - 2a + 3b + 2b
= a + 5b

(2)번은 괄호가 여러 개 있어요. 소괄호부터 차례로 하나씩 풀어보죠.
3a + 2[b + 3{a + 3b - (2b - b)} + 3a]
= 3a + 2[b + 3{a + 3b - b} + 3a]
= 3a + 2[b + 3{a + 2b} + 3a]
= 3a + 2[b + 3a + 6b + 3a]
= 3a + 2[7b + 6a]
= 3a + 14b + 12a
= 15a + 14b

이차식의 덧셈과 뺄셈

일차식은 최고차항의 차수가 1인 식이에요. 그럼 이차식은 최고차항의 차수가 2인 식을 말하겠죠? 이차식은 차수가 2인 항이 하나 더 생기는 것뿐이에요.

3a2 + 5a - 1 이런 식이 이차식이죠. 이때 일차항이나 상수항이 없어도 이차식이에요. 3a2 + 5a도 이차식이고, 3a2 - 1도 이차식, 3a2만 있어도 이차식이에요. 하지만 이차항은 꼭 있어야 해요.

이차식을 계산한 후에 답을 쓸 때는 차수가 높은 수부터 내림차순으로 정리해요. 이차항, 일차항, 상수항의 순서로 쓰는 거죠. 순서가 다르다고 해서 틀린 건 아니지만, 내림차순으로 쓰기로 약속했어요.

이차식: 최고차항의 차수가 2인 다항식
동류항 계산: 이차항끼리, 일차항끼리, 상수항끼리 계산
내림차순: 이차항, 일차항, 상수항의 순서로

(2a2 + 3a + 1) + (a2 + 3)을 계산해보죠. a2라는 이차항, a의 일차항, 상수항으로 되어 있어요. 두 번째 괄호 안에는 일차항이 없지만 상관없어요.

(2a2 + 3a + 1) + (a2 + 3)
= 2a2 + a2 + 3a + 1 + 3
= 3a2 + 3a + 4

여기서도 괄호가 있다면 분배법칙을 이용해서 풀어서 동류항끼리 묶어서 계산합니다.

2(a2 + 3a + 1) - 3(a2 + a - 1)
= 2a2 + 6a + 2 - 3a2 - 3a + 3
= 2a2 - 3a2 + 6a - 3a + 2 + 3
= -a2 + 3a + 5

다음을 간단히 하여라.
(1) (2 - a - 3a2) + (4a2 + 2a - 2)
(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2

이차식에서는 동류항이 이차항, 일차항, 상수항의 세 항이 있으니까 따로 계산하면 돼요. 그리고 답을 쓸 때는 내림차순으로 쓰고요.

(1) (2 - a - 3a2) + (4a2 + 2a - 2)
= -3a2 + 4a2 - a + 2a + 2 - 2
= a2 + a

(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2
= 3a2 + 9a + 9 + 4a2 - 12a - 2
= 3a2 + 4a2 + 9a - 12a + 9 - 2
= 7a2 - 3a + 7

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
단항식과 다항식의 곱셈과 나눗셈
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

다항식의 덧셈과 뺄셈

  • 동류항 계산: 문자와 차수가 같은 항끼리 따로 계산
  • 괄호가 있으면 분배법칙
  • 소괄호, 중괄호, 대괄호 순으로 괄호 풀기
  • 이차식의 덧셈과 뺄셈: 동류항 계산, 내림차순으로 씀.
 
그리드형

공부하는 게 하나씩 늘어나고 있네요.

왜냐하면, 이 단원이 앞으로 배울 수학에서 아주 기본이 되는 중요한 단원이에요. 앞으로 여러 가지 식을 공부할 텐데, 가장 기본이 되는 식을 배우는 과정이라서 용어도 많고, 지루한 내용이 계속되는 거예요.

하지만 기본이 되느니만큼 제대로만 해놓는다면 앞으로의 과정도 계속 헤쳐나갈 수 있는 거지요.

일차식의 곱셈과 나눗셈을 먼저 했는데, 이 글에서는 일차식의 덧셈과 뺄셈을 합니다. 그리고 동류항이라는 새로운 용어도 배울 거고요.

곱셈과 나눗셈보다는 조금 어려운 내용이니 주의해서 잘 보세요.

동류항, 동류항의 계산

동류항

동류항은 종류가 같은 항이라는 뜻이에요. 어떤 종류가 같다는 말일까요?

하나의 에는 계수도 있고, 문자도 있고, 차수도 있어요. 동류항은 문자와 차수가 서로 같은 항을 말해요. 계수는 달라도 상관없어요.

2a2이라는 항이 있어요. 이 항에는 문자 a가 있고, 차수는 2에요. 3a2이라는 항도 문자 a가 있고, 차수가 2죠. 2a2과 3a2은 문자가 a로 같고, 차수도 2로 같아요. 그래서 이 두 항은 동류항이 되는 거죠.

4a라는 항은 문자가 a가 있어요. 하지만 차수가 1이라서 2a2과 동류항이 아니에요.

5b2을 보죠. 문자는 b고, 차수는 2에요. 2a2과 차수는 2로 같지만, 문자가 다르니까 동류항이라고 할 수 없어요.

6a2b를 보죠. 문자는 a와 b가 있어요. a의 차수는 2이고, b의 차수는 1이죠. 2a2는 차수가 2인 문자 a가 있어요. 6a2b에도 차수가 2인 문자 a가 있어서 둘은 동류항처럼 보이지만 b라는 문자가 있어서 동류항이 될 수 없어요.

2a2의 동류항
2a2 3a2 4a 5b2 6a2b
문자 a a a b a와 b
차수 2 2 1 2 2와 1
2a2
동류항
- O X
(차수 다름)

X
(문자 다름)

X
(문자와 차수 다름)

동류항의 덧셈과 뺄셈

덧셈과 뺄셈은 동류항끼리만 할 수 있어요. 동류항이 아닌 것끼리는 덧셈과 뺄셈을 하지 못합니다. 그러니까 계산을 할 때, 서로 동류항인지 잘 찾아내야 해요.

2a + 3a을 구해볼까요?

동류항의 덧셈과 뺄셈

되게 복잡하죠. 간단하게 하는 방법을 알아볼까요?

단항식과 수의 곱셈과 나눗셈에서 단항식에 수를 곱할 때, 숫자끼리 곱하고 문자는 뒤에 붙여줬어요. 동류항의 계산에서도 같아요. 동류항의 계산에서도 숫자끼리 계산하고, 문자는 뒤에 그대로 붙여주면 돼요.

2a + 3a = (2 + 3)a = 5a 으로 간단하게 끝나죠?

뺄셈도 마찬가지예요. 5b - 2b = (5 - 2)b = 3b에요.

2a2 + 2a는 어떨까요? 두 항은 문자가 a로 같지만, 차수가 다르죠? 그래서 동류항이 아니에요. 동류항이 아니면 덧셈을 할 수 없어요. 그냥 그대로 둬야 해요.

동류항: 문자와 차수가 서로 같은 항
동류항의 계산: 숫자끼리 계산하고 문자는 그대로

다음을 간단히 하여라.
(1) 4a + 2a + 3a
(2) 5a + 3 + 3a - 4

덧셈과 뺄셈에서는 동류항을 찾는 게 제일 먼저 해야 할 일이에요. 동류항을 찾아서 그 계수끼리 연산을 하는 거지요.

(1)은 모든 항이 문자가 a이고, 차수가 1이에요. 세 항이 모두 동류항이죠.
4a + 2a + 3a = (4 + 2 + 3)a = 9a

(2) 항이 네 개인데, 5a와 3a가 동류항이고, 3와 -4가 상수항으로 동류항이에요. 따로따로 계산해야 해요.
5a + 3 + 3a - 4 = (5 + 3)a + (3 - 4) = 8a - 1

일차식의 덧셈과 뺄셈

일차식의 덧셈과 뺄셈에도 동류항 계산을 그대로 사용하면 돼요. 대신 항의 수가 늘어나고 조금 어려워졌어요.

괄호가 있는 경우

괄호가 있는 경우에는 분배법칙을 이용하는 전개해야 해요. 분배법칙으로 괄호를 전개한 다음 동류항끼리 모아서 따로 계산하는 거죠.

3(2a + 4) + 2(a - 1)
= 6a + 12 + 2a - 2     분배법칙을 이용하여 괄호를 전개
= 6a + 2a + 12 - 2     동류항끼리 모으기
= 8a + 10                  계산

분배법칙을 할 때 괄호 앞의 숫자를 괄호 안의 모든 항과 곱해줘야 해요. 첫 번째 항에만 곱해주는 실수를 하지 마세요.

3(2a + 4) = 6a + 4   (X)
3(2a + 4) = 6a + 12  (O)

그리고 괄호 앞에 숫자가 없이 부호(+, -)만 있다면 1이 생략된 거로 생각하면 됩니다.

-(2a + 1) = (-1) × (2a + 1) = -2a - 1

분수꼴의 일차식의 덧셈과 뺄셈

분수꼴로 되어 있을 때는 통분을 해야 해요.

일차식의 덧셈과 뺄셈

통분을 할 때 원래 있던 분자에 괄호를 치세요. 괄호를 이용하지 않으면 분자의 첫 번째 항에만 곱을 해주는 실수를 하게 되거든요. 위 예제의 두 번째 줄의 분자에 3(a + 1) 가 아니라 3a + 1로 쓰게 되면 결과가 달라지겠죠?

일차식의 덧셈과 뺄셈
괄호가 있는 계산: 분배법칙으로 전개한 후, 동류항끼리 묶어서 계산
분수꼴: 통분을 해야 하며, 이때 괄호를 이용

다음을 간단히 하여라.
(1) 3(a + 1) + 2(a - 2)
(2) 일차식의 덧셈과 뺄셈 예제

(1) 일차식의 덧셈과 뺄셈에서는 분배법칙을 이용해서 괄호를 전개한 후 동류항끼리 모아서 따로 계산합니다.
3(a + 1) + 2(a - 2)
= 3a + 3 + 2a - 4
= 3a + 2a + 3 - 4
= 5a - 1

(2) 분수꼴에서는 통분을 해야 하는데, 이때 원래 있던 분자에는 괄호를 꼭 치세요.

일차식의 덧셈과 뺄셈 예제 풀이

이 문제에서는 두 가지가 중요해요. 통분할 때 분자에 괄호를 쳐주는 것도 중요하지만 분수 앞의  (-)를 처리하는 것도 중요하죠. 분수 앞에 (-)도 역시 분배법칙을 이용해서 분자 전체에 곱해줘야 하는 (-)입니다.

두 번째 줄의 오른쪽 분수의 분자에서 -b - 3이라고 실수하지 말고, 괄호를 쳐서 -(b - 3)으로 쓰도록 하세요.

함께 보면 좋은 글

단항식과 다항식, 항, 상수항, 계수, 차수
단항식의 곱셈과 나눗셈, 일차식의 곱셈과 나눗셈
방정식과 항등식, 등식의 뜻
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이

정리해볼까요

동류항과 동류항의 덧셈, 뺄셈

  • 동류항: 문자와 차수가 같은 항
  • 동류항의 덧셈과 뺄셈: 숫자끼리 계산하고 문자는 그대로.
  • 동류항이 아니면 덧셈과 뺄셈을 할 수 없음.

일차식의 덧셈과 뺄셈

  • 괄호가 있는 식: 분배법칙으로 전개한 후 동류항끼리 계산
  • 분수꼴: 분모를 통분. 통분할 때 분자에 괄호 이용
 
그리드형

연립방정식을 푸는 기본 방법인 가감법과 대입법에 대해서 연습을 많이 해야 해요.

오늘은 복잡한 연립방정식을 푸는 방법에 대해서 설명할 거예요. 복잡한 연립방정식을 푸는 방법의 핵심은 복잡한 걸 복잡하지 않게 바꾸는 거예요.

실제 연립방정식을 푸는 건 가감법과 대입법을 이용해서 풀어요. 새로운 방법으로 푸는 게 아니니 쫄지(?) 마세요. 우리가 할 건 가감법과 대입법으로 풀 수 있게 모양을 바꾸는 것뿐이랍니다. 게다가 복잡한 일차방정식의 풀이에서 이미 해봤던 내용이고요.

오늘 공부할 내용은 나중에 다룰 부등식에서도 똑같이 적용되는 거니까 잘 익혀두세요. 부등식뿐 아니라 거의 대부분의 식에서 써먹을 수 있어요.

괄호가 있는 연립방정식의 풀이

괄호가 있는 식은 괄호를 풀어서 정리해야 합니다. 괄호는 분배법칙을 이용해서 풀고, 동류항끼리 계산해서 간단히 하는 거예요.

위 문제에는 ①식과 ②식에 각각 괄호가 있잖아요. ①식의 괄호를 풀어서 동류항끼리 계산해보죠.
3x - 2x + 2y = 2
x + 2y = 2

②식도 마찬가지로 괄호를 풀어서 정리해 볼게요.
6x - 6y - 3x = -5
3x - 6y = -5

결국 문제를 아래의 연립방정식 문제로 바꿀 수 있어요.

위처럼 생긴 연립방정식은 가감법이나 대입법으로 풀 수 있겠죠?

계수가 분수인 연립방정식의 풀이

미지수의 계수가 분수일 때는 분모의 최소공배수를 모든 항에 곱해서 계수를 정수로 바꿔야 해요. 계수가 분수인 것보다 정수인 것이 계산하기가 훨씬 쉽겠죠.

위의 식을 ①식이라고 하면 ①식에서 x 계수의 분모인 2와 y계수의 분모인 3의 최소공배수 6을 ①식에 곱해줍니다. ①식의 모든 항에 6을 곱하면 식은 3x - 2y = 18로 바뀌게 돼요.

②식에서 x의 계수의 분모는 4, y 계수의 분모는 3이니까 둘의 최소공배수 12를 ②식에 곱해주면 3x - 4y = 12가 되겠군요.

주의할 점은 x, y 뿐 아니라 우변에 있는 상수항에도 같은 수를 곱해줘야 하는 거예요.

문제를 오른쪽에 있는 모양으로 바꾸면 이제 풀 수 있겠죠?

계수가 소수인 연립방정식의 풀이

이번에는 계수가 소수인 경우랍니다. 계수가 소수일 때는 식에 10의 거듭제곱인 수(10, 100, 1000)를 곱해서 계수를 정수로 바꿔줍니다.

①식에 10을 곱해서 x + 2y = 6으로 바꿀 수 있겠네요.

②식에도 10을 곱하면 3x + 2y = 10이 되고요.

문제가 아래처럼 바뀌었습니다.

A = B = C 꼴인 연립방정식의 풀이

A = B = C 꼴인 연립방정식에서는 A = B, B = C, C = A라는 세 식을 만들 수 있어요. 이 중 2개만 골라서 연립방정식을 만들어 풀면 돼요.

A = B, B = C, C = A로 만들 수 있는 연립방정식은 위 세 가지 형태입니다. 이 중에서 아무거나 하나 골라서 풀어도 해는 모두 같아요.

2x + y = 4x + 5y + 2 = x - 3y - 7

문제에 나온 식을 A = B, B = C, C = A의 세 식으로 만들어 보죠.

위처럼 세 개짜리 연립방정식이 나오는데요. 이 중에서 아무거나 두 개를 고르면 돼요. ①, ②식을 골라서 동류항 정리를 해보면

위에 있는 연립방정식으로 모양을 바꿨으니 이제는 풀 수 있겠죠.

다시 얘기하지만, 연립방정식을 푸는 새로운 방법이 아니에요. 우리가 배웠던 가감법, 대입법을 쓸 수 있도록 그 모양을 바꾸는 과정이에요.

함께 보면 좋은 글

연립방정식이란
연립방정식의 풀이법 - 가감법 1
연립방정식의 풀이법 - 가감법 두 번째
연립방정식의 풀이법 - 대입법
해가 특수한 연립방정식
연립방정식의 활용

정리해볼까요

복잡한 연립방정식의 풀이

  1. 괄호가 있는 연립방정식: 분배법칙을 이용해서 괄호 전개 -> 동류항 계산
  2. 계수가 분수일 때: 계수의 분모의 최소공배수를 식에 곱하여 계수를 정수로 바꾼다.
  3. 계수가 소수일 때: 10의 제곱수를 곱하여 계수를 정수로 바꾼다.
  4. A = B = C꼴: A = B, B = C, C = A의 세 식 중 두 개를 선택해서 연립방정식을 만들어 푼다.
 
그리드형

+ 최근글