치환

이차함수의 그래프와 이차부등식의 풀이에서 그래프를 그려보면 이차부등식의 해를 구하는 과정을 조금 더 쉽게 이해할 수 있었어요. 지수함수의 그래프를 그리고, 지수함수 그래프의 특징을 잘 이해한다면 지수부등식의 성질을 이해하는 데 많은 도움이 됩니다.

원래 방정식과 부등식은 사촌이죠? 그러니까 지수부등식과 지수방정식은 뜻은 물론 풀이방법도 서로 비슷해요. 지수부등식이 가지는 몇 가지 특징이 있는데 이걸 지수방정식의 풀이방법과 잘 조합한 게 지수부등식의 풀이 방법이에요.

지수부등식

지수방정식은 지수에 미지수가 있는 방정식이죠. 그럼 지수부등식은요? 지수에 미지수가 있는 부등식이에요. 방정식의 등호(=)가 부등식에서는 부등호(>, ≥, <, ≤)로 바뀐 것뿐이고요.

이차함수의 그래프와 이차부등식의 해에서 이차함수의 그래프를 이용해서 이차부등식을 푸는 방법을 알아봤지요? 지수부등식에서도 지수함수의 그래프를 이용해서 풀면 훨씬 더 쉬워요.

먼저 지수함수 y = ax (a > 0, a ≠ 1)의 그래프의 특징을 간단하게 되짚어보죠.

지수함수 y = ax(a > 0, a ≠ 1)의 그래프
정의역은 실수 전체의 집합, 치역은 양수의 집합
(0, 1), (1, a)를 지난다.
x축이 점근선
a > 1일 때, x가 증가하면 y도 증가
0 < a < 1일 때, x가 증가하면 y는 감소
y = ax의 그래프와 의 그래프는 y축에 대하여 대칭

치역이 양수의 집합이니까 임의의 실수 x에 대하여 ax > 0이에요.

a > 1일 때의 그래프를 볼까요? 지수 x가 증가하면 결과 y도 증가해요.

지수함수의 그래프 - a > 1일 때

지수함수 y = ax (a > 1)의 그래프는 증가함수니까 두 지수가 있을 때 밑이 같으면 더 큰 수가 지수도 커요. ax1 < ax2이면 x1 < x2. 지수부등식의 부등호의 방향과 지수의 크기를 나타내는 부등호의 방향이 같아요.

0 < a < 1일 때의 그래프는 지수 x가 증가하면 결과 y는 감소해요.

지수함수의 그래프 - 0 < a < 1일 때

지수함수 y = ax (0 < a < 1)의 그래프는 감소함수니까 두 지수가 있을 때 밑이 같으면 더 큰 수의 지수가 작아요. ax1 < ax2이면 x1 > x2. 지수부등식의 부등호의 방향과 지수의 크기를 나타내는 부등호의 방향이 반대예요.

정리해보죠.

  • 임의의 실수 x에 대하여 ax > 0
  • a > 1일 때
    • ax1 < ax2 ⇔ x1 < x2
    • (지수부등식의 부등호의 방향) = (지수의 크기를 나타내는 부등호의 방향)
  • 0 < a < 1일 때
    • ax1 < ax2 ⇔ x1 > x2
    • (지수부등식의 부등호의 방향)과 (지수의 크기를 나타내는 부등호의 방향)이 반대

지수부등식을 풀 때는 밑을 같게 한 다음 위 성질을 이용해서 풀어요.

다음 지수부등식을 풀어라.
(1)
(2)

지수부등식에서 밑이 1보다 클 때는 지수부등식의 부등호의 방향과 지수의 크기를 나타내는 부등호의 방향이 같아요. 밑이 0보다 크고 1보다 작으면 지수부등식의 부등호의 방향과 지수의 크기를 나타내는 부등호의 방향이 반대고요.

(1) 우변의 무리수를 지수를 이용해서 나타내보죠.

밑이 2로 1보다 크니까 부등호의 방향이 같아요.

(2)

밑이 서로 다르니까 같게 해줘야겠네요.

밑이 0보다 크고 1보다 작으니까 부등호의 방향이 반대예요.

-x + 2 < 2x - 4
3x > 6
x > 2

이제는 항이 3개인 지수부등식을 풀어보죠. 항이 3개인 지수방정식은 어떻게 풀었나요? 지수방정식의 모양을 바꾼 후에 ax = t로 치환해서 풀었죠? 지수부등식에서도 똑같이 치환해서 풀어요.

4 × 3x + 1 - 9x - 27 > 0의 해를 구하여라.

4 × 3x + 1 - 9x - 27 > 0
4 × 3x × 3 - (32)x - 27> 0
-(3x)2 + 12 × 3x - 27 > 0
(3x)2 - 12 × 3x + 27< 0
t2 - 12t + 27< 0                    (∵ 3x = t로 치환)
(t - 9)(t - 3) < 0
3 < t < 9
3 < 3x < 9                          (∵ t = 3x)
31 < 3x < 32
1 < x < 2

밑 3이 1보다 크니까 방향은 그대로 두고 풀었더니 1 < x < 2가 나오네요.

함께 보면 좋은 글

지수방정식, 지수방정식의 풀이
지수함수, 지수함수의 그래프
지수함수 그래프의 평행이동과 대칭이동
지수법칙 - 실수 지수, 정수 지수, 유리수 지수 비교

정리해볼까요

지수부등식: 지수에 미지수가 있는 부등식

  • 임의의 실수 x에 대하여 ax > 0
  • a > 1일 때
    • ax1 < ax2 ⇔ x1 < x2
    • (지수부등식의 부등호의 방향) = (지수의 크기를 나타내는 부등호의 방향)
  • 0 < a < 1일 때
    • ax1 < ax2 ⇔ x1 > x2
    • (지수부등식의 부등호의 방향)과 (지수의 크기를 나타내는 부등호의 방향)이 반대
<<    수학 1 목차    >>
 
그리드형

지수와 지수법칙, 지수함수에 이어 지수방정식이에요. 방정식은 이제까지 정말 많이 다뤘던 거니까 생소하지는 않죠?

지수방정식은 다른 방정식에 비해서 조금 더 쉽다고 할 수 있어요. 식 자체가 고차방정식보다 단순하거든요. 그리고 이차방정식, 고차방정식은 여러 가지를 공부했는데 지수방정식은 이 글 하나만 하면 끝나니까 양도 적지요.

지수의 조건과 방정식의 풀이라는 두 가지를 잘 조합하면 의외로 쉽게 풀 수 있는 단원이니까 천천히 한 번 읽어보세요.

지수방정식

방정식은 미지수가 있어서 미지수에 따라 참이 되기도 하고 거짓이 되기도 하는 식이에요. 그러니까 지수방정식은 이름 그대로 지수에 미지수가 있어서 미지수에 따라 참이 되기도 하고 거짓이 되기도 하는 식을 말하죠.

지수에 미지수가 있으면 지수방정식, 지수가 아닌 밑에 미지수가 있으면 지수방정식이 아니에요. 2x = 4는 지수에 미지수가 있으니까 지수방정식이고 x2 = 4는 밑에 미지수가 있는 이차방정식이에요. 둘을 잘 구별하세요.

지수함수, 지수함수의 그래프 y = ax에서 밑 a가 모든 실수는 아니었죠? a > 0이고 a ≠ 1이었어요. 지수방정식에서도 밑은 양수이고 1이 아니에요.

지수방정식의 풀이

3x = 9를 어떻게 풀까요?

간단히 하면 3x = 9 = 32니까 x = 2라는 답을 구할 수 있어요.

두 수가 같을 때, 밑이 같으면 지수도 같아야 하죠. 반대로 생각하면 두 수가 같을 때, 지수가 같다면 밑이 같아야 같아야 하고요.

이 두 가지가 기본적인 풀이법이에요.

af(x) = ag(x) → f(x) = g(x)
af(x) = bf(x) → a = b

첫 번째에서 만약에 a = 1이라면 어떻게 되나요? f(x) ≠ g(x)여도 1f(x) = 1g(x) = 1이에요. 사실 이런 경우는 거의 없어서 별로 신경 쓰지 않아도 되지만 혹시 밑에도 미지수가 있다면 a = 1인지 아닌지 확인해봐야 해요.

두 번째에서 f(x) = 0이라면 어떻게 될까요? (양수)0 = 1이에요. a ≠ b여도 af(x) = bf(x) = 1이 되지요. 따라서 f(x) = 0인지 아닌지도 확인해야 해요.

정리해보죠.

지수방정식: 지수에 미지수를 포함하고 있는 방정식
밑이 같을 때: af(x) = ag(x) ⇔ f(x) = g(x) (단, a > 0, a ≠ 1)
지수가 같을 때: af(x) = bf(x) ⇔ a = b or f(x) = 0 (단, a > 0, a ≠ 1, b > 0, b ≠ 1)

다음 지수방정식을 풀어라.
(1) 2x + 1 = 43
(2)
(3)
(4) (x - 1)x + 2 = 5x + 2

양변이 같을 때, 밑이 같으면 지수가 같고, 지수가 같으면 밑이 같아요. 그리고 지수가 0으로 같은지도 확인해야 하고요.

(1) 밑이 같게 식을 바꿔보죠.

2x + 1 = 43
2x + 1 = (22)3
2x + 1 = 26

밑이 2로 같아요. 그러니까 지수가 같아야 하죠.

x + 1 = 6
x = 5

밑이 로 같으니까 지수를 비교해보죠.

2x + 4 = -2
x = -3

밑이 5로 같으니까 지수를 비교해보죠.

(4) 밑이 다르고 지수가 같아요. 이때는 지수가 0으로 같을 때와 밑이 같을 때로 나눠서 봐야 하죠.

ⅰ) 지수가 0일 때

x + 2 = 0
x = -2

ⅱ) 지수가 0이 아니고 밑이 같을 때

x - 1 = 5
x = 6

x = -2 or 6

이제까지는 항이 2개일 때를 봤어요. 항이 3개일 때도 있는데 풀이법이 달라요. 항이 3개면 치환을 이용해서 풀어요.

식에서 ax = t로 치환하고 t에 대한 방정식을 푸는 거죠. 단 a > 0이고 a ≠ 1이니까 ax > 0이라서 t > 0이에요.

지수방정식의 풀이법 2
ax = t로 치환 (t > 0). (a > 0, a ≠ 1)

4x + 2x + 2 - 16 = 16의 해를 구하여라.

항이 3개 이상인데 상수항을 계산하면 항이 3개예요. 치환할 수 있게 정리해보죠.

4x + 2x + 2 - 16 = 16
(22)x + 22 × 2x - 32 = 0
(2x)2 + 4 × 2x - 32 = 0

여기서 2x = t로 치환해보죠.

t2 + 4t - 32 = 0
(t - 4)(t + 8) = 0
t = 4 or -8

2x = 4 or -8

2x = 4
2x = 22
x = 2

2x = -8
2x > 0이므로 2x = -8이 될 수 없다.

따라서 해는 x = 2

함께 보면 좋은 글

지수부등식
지수법칙 - 실수 지수, 정수 지수, 유리수 지수 비교
지수함수, 지수함수의 그래프
지수함수 그래프의 평행이동과 대칭이동

정리해볼까요

지수방정식: 지수에 미지수를 포함하고 있는 방정식

지수방정식의 풀이

  • 밑이 같을 때: af(x) = ag(x) ⇔ f(x) = g(x) (단, a > 0, a ≠ 1)
  • 지수가 같을 때: af(x) = bf(x) ⇔ a = b or f(x) = 0 (단, a > 0, a ≠ 1, b > 0, b ≠ 1)
  • 항이 3개 일 때: ax = t로 치환 (t > 0). (a > 0, a ≠ 1)
<<  수학 2 목차  >>
 
그리드형

이차방정식을 풀 때는 인수분해를 해서 근을 구하거나 근의 공식을 이용해서 근을 구해요. 둘 중 하나를 선택할 수 있어요. 하지만 삼차이상의 고차방정식에서는 일단 무조건 인수분해를 해야 해요. 따라서 고차방정식의 풀이에서는 인수분해를 잘하는 것이 중요해요.

고차방정식을 인수분해하는 방법은 다항식을 인수분해하는 방법과 같아요. 앞에서 공부했던 인수분해 방법들에 대해서 복습하는 차원이라고 생각하세요.

고차방정식 중에서 치환을 이용해서 푸는 문제와 복이차식의 풀이법을 공부해보죠.

고차방정식의 풀이

이 글에서 공부할 건 복잡한 식의 인수분해 - 치환, 복이차식에서 했던 내용이에요. 고차방정식을 인수분해하고, 이후에 근을 구하는 과정만 추가된 것뿐입니다.

고차방정식의 풀이 - 치환

치환은 식의 특정한 부분을 다른 문자나 식으로 바뀌어 계산하고, 계산이 끝난 이후에는 원래의 식으로 되돌려주는 걸 말하죠.

치환할 때는 대부분 공통으로 들어있는 부분이나 괄호로 쳐진 부분이 있어서 눈에 금방 띄어요. 눈에 금방 띄지 않는다면 인수분해나 전개를 해서 치환할 부분을 찾아야 해요.

공통부분이 없을 때는 서로 다른 부분을 치환하기도 합니다.

  • 공통부분이 있으면 바로 치환
  • 공통부분이 없으면 전개 or 변형해서 치환
  • 서로 다른 부분을 서로 다른 문자로 치환

다음 방정식의 해를 구하여라.
(1) (x2 - 4x)2 + 7x2 - 28x + 12 = 0
(2) (x - 1)(x - 2)(x - 3)(x - 4) = 3

(1)번은 공통인 부분이 눈에 띄지 않죠? 하지만 괄호로 쳐진 부분이 있어요. 그곳을 잘 이용하면 인수분해할 수 있어요.
(x2 - 4x)2 + 7x2 - 28x + 12 = 0
(x2 - 4x)2 + 7(x2 - 4x) + 12 = 0
t2 + 7t + 12 = 0                        (∵ x2 - 4x = t로 치환)
(t + 3)(t + 4) = 0
(x2 - 4x + 3)(x2 - 4x + 4) = 0    (∵ t = x2 - 4x)
(x - 1)(x - 3)(x - 2)2 = 0
x = 1 or 3 or 2(중근)

(2)번 같은 문제는 곱셈공식, 곱셈공식 유도에서 봤는데, 상수항이 가장 작은 것과 가장 큰 것을 묶고, 나머지 두 개를 묶어서 따로 전개해서 푸는 거라고 했어요.

(x - 1)(x - 2)(x - 3)(x - 4) = 3
(x - 1)(x - 4)(x - 2)(x - 3) = 3     (∵두 개씩 짝짓기)
(x2 - 5x + 4)(x2 - 5x + 6) = 3      (∵ 각각을 전개)
(t + 4)(t + 6) = 3                         (∵ x2 - 5x = t로 치환)
t2 +10t + 24 = 3
t2 + 10t + 21 = 0
(t + 3)(t + 7) = 0
(x2 - 5x + 3)(x2 - 5x + 7) = 0      (∵ t = x2 - 5x)

마지막에서 둘 다 인수분해가 안 되니까 근의 공식을 이용해야겠네요.

고차방정식의 풀이 예제 1, 치환 - 풀이 1

고차방정식의 풀이 예제 1, 치환 - 풀이 2

고차방정식의 풀이 예제 1, 치환 - 풀이 3

고차방정식의 풀이 - 복이차식

복이차식은 짝수차로만 이루어진 식을 말해요. 이때는 x2를 t로 치환해서 풀어요. t로 치환해서 인수분해가 되면 위에서 했던 대로 치환을 이용해서 풀면 돼요.

치환했는데 인수분해가 안 되면 다른 방법을 이용합니다. 이때는 식에 적당한 t 일차항을 빼주거나 더해줘서 t에 대한 완전제곱식이 될 수 있도록 해야 해요. 완전제곱식에서 일차항과 상수항은 아래와 같은 관계가 있죠?

이차방정식이 중근을 가질 조건

이렇게 완전제곱식을 만들면 A2 - B2꼴로 모양이 바뀌는데, 인수분해 공식 - 합차공식을 이용해서 인수분해합니다.

  • 복이차식: x2 → t로 치환
    • 인수분해되면 인수분해
    • 인수분해 안 되면 t항을 적당히 더해주고 빼서 A2 - B2로 변형 → 합차공식으로 인수분해

다음 방정식의 해를 구하여라.
(1) x4 - 5x2 + 4 = 0
(2) x4 - 3x2 + 1 = 0

(1) 복이차식이니까 x2 = t로 치환해보죠.
x4 - 5x2 + 4 = 0
t2 - 5t + 4 = 0
(t - 1)(t - 4) = 0
(x2 - 1)(x2 - 4) = 0
(x + 1)(x - 1)(x + 2)(x - 2) = 0
x = ±1 or ±2

(2) x2 = t로 치환해보죠.
x4 - 3x2 + 1 = 0
t2 - 3t + 1 = 0        (∵ x2 = t로 치환)
t2 - 2t + 1 - t = 0    (∵ -3t = -2t - t)
(t - 1)2 - t = 0
(x2 - 1)2 - x2 = 0   (∵t = x2)
(x2 + x - 1)(x2 - x - 1) = 0

근의 공식으로 근을 구하면 고차방정식의 풀이 예제 2, 복이차식 - 풀이 1가 돼요.

여기서는 완전제곱식을 만들기 위해서 t 일차항을 더해주고 뺀 것이 아니라 원래 있던 t 일차항을 둘로 나눴어요.

함께 보면 좋은 글

인수분해, 인수분해 공식
복잡한 식의 인수분해 - 치환, 복이차식
고차방정식의 인수분해, 고차방정식의 풀이
곱셈공식, 곱셈공식 유도

정리해볼까요

치환

  • 공통부분 치환
  • 공통부분 없으면
    • 서로 다른 부분을 서로 다른 문자로 치환
    • 괄호로 쳐진 영역을 하나 선택하고 식의 다른 부분을 전개해서 공통영역을 만들어서 치환

복이차식: 짝수차 항으로만 되어 있는 식

  • x2 = t로 치환
    • 인수분해
    • 인수분해가 안되면 t항을 적당히 더하고 빼서 완전제곱식으로 인수분해 → A2 - B2꼴로 변형 후 인수분해
<<  수학 1 목차  >>
 
그리드형

인수분해는 중학교에서 했던 것과 지금 하는 것에 차이가 거의 없어요. 문제가 어려워진 것뿐이에요. 복잡한 식의 인수분해도 똑같아요. 진짜 어려웠던 문제들이 이제는 기본문제(?)로 바뀐 거지요.

복잡한 식의 인수분해는 원리도 똑같고, 인수분해를 하는 방법도 똑같아요. 중학교 때 공부했던 내용을 하나씩 잘 떠올려 보세요.

모든 인수분해의 첫 번째는 공통인수로 묶는 거예요. 그다음에 아래의 방법들을 사용하는 거지요.

복잡한 식의 인수분해

치환

치환은 특정한 부분을 다른 문자로 바꿔 계산하는 걸 말하죠. 그리고 계산이 끝나면 바꿨던 문자에 원래 식을 대입해야 하고요.

대부분 여러 항에 공통으로 들어있는 부분을 치환하는데 공통부분은 괄호가 처져 있어서 눈에 잘 띄어요. 괄호가 처져 있는 공통부분이 보이지 않는다면 공통부분이 생기도록 만들어야 하는데 이게 연습이 좀 필요해요. 대체로 한 부분 정도는 괄호로 처져 있는 게 있으니까 다른 부분에서도 괄호로 처진 부분이 나오도록 식의 모양을 바꿔야 해요.

꼭 공통부분이 아니더라도 치환을 할 수 있어요. 식이 너무 길어질 것 같으면 서로 다른 부분이라도 치환할 수 있는데, 이때는 서로 다른 문자로 치환해야 해요.

  • 공통부분이 있으면 바로 치환
  • 공통부분이 없으면 전개 or 변형해서 치환
  • 서로 다른 부분을 서로 다른 문자로 치환

△ABC의 변의 길이를 각각 a, b, c라고 할 때 a2(b - c) + b2(c - a) + c2(a - b) = 0이 성립한다. △ABC는 어떤 삼각형인가?

일단 공통인 부분이 없어요. 괄호로 쳐진 부분이 세 개나 있지만 다 다르고요. 그렇다고 a2X + b2Y + c2Z처럼 각각을 다른 문자로 치환한다고 해도 인수분해를 할 수 있는 것도 아니에요. 이럴 때는 아무거나 괄호를 하나 선택하고, 나머지 부분에서 괄호부분이 나오게 변형을 해서 치환을 해야 해요. 가장 앞에 있는 (b - c)를 선택하고 남은 부분을 전개해서 (b - c)가 나오도록 변형을 해보죠.

a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) + b2c - bc2 - ab2 + ac2
= a2(b - c) + bc(b - c) - a(b2 - c2)
= a2(b - c) + bc(b - c) - a(b + c)(b - c)
= a2t + bct - a(b + c)t                         (∵ b - c = t로 치환)
= t{a2 + bc - a(b + c)}
= t{a2 - (b + c)a + bc}
= t(a - b)(a - c)
= (b - c)(a - b)(a - c)                        (∵  t = b - c)
= -(a - b)(b - c)(c - a)

-(a - b)(b - c)(c - a) = 0이 성립하므로 a - b = 0이거나 b - c = 0이거나 c - a = 0이어야 하죠. 즉, a = b or b = c or c = a이라는 얘기네요. a = b = c일 수도 있고요.

따라서 △ABC는 이등변삼각형이거나 정삼각형이네요.

복이차식

복이차식은  2차, 4차처럼 짝수차 항으로만 되어 있는 식을 말해요. 상수항은 0차니까 짝수차 항으로 볼 수 있어요. 이때는 x2 = t로 치환해서 풀면 쉬워요.

x2 = t로 치환을 해도 안되는 경우가 있어요. 이때는 완전제곱식을 만들어서 인수분해해요. 완전제곱식을 만들 때는 완전제곱식을 이용한 이차방정식의 풀이에서 했던 것처럼 일차항과 상수항의 관계를 이용해요. 완전제곱식을 이용한 이차방정식의 풀이에서는 일차항을 기준으로 놓고, 상수항을 더해주고 빼서 완전제곱식을 만들었는데, 복이차식에서는 상수항을 기준으로 놓고, t항을 더해주고 빼서 완전제곱식을 만드는 점이 달라요.

이차방정식이 중근을 가질 조건

이렇게 완전제곱식을 만들면 A2 - B2꼴로 모양이 바뀌는데, 인수분해 공식 - 합차공식을 이용해서 인수분해를 합니다.

  • 복이차식: x2 → t로 치환
    • 인수분해되면 인수분해
    • 인수분해 안 되면 t항을 적당히 더해주고 빼서 A2 - B2로 변형 → 합차공식으로 인수분해

다음을 인수분해 하여라.
(1) x4 + x2 - 20
(2) x4 + 6x2 + 25

x4 + x2 - 20
= t2 + t - 20                  (∵ x2 = t로 치환)
= (t - 4)(t + 5)
= (x2 - 4)(x2 + 5)          (∵ t = x2)
= (x - 2)(x + 2)(x2 + 5)

(2)에서 x2 = t로 치환하면 식은 t2 + 6t + 25가 돼요. 이건 인수분해가 안되죠? 그래서 t의 일차항과 상수항 사이의 관계를 이용해서 적당한 t항을 더해주고 빼줘야 해요.

x4 + 6x2 + 25
= t2 + 6t + 25                 (∵ x2 = t로 치환)
= t2 + 6t + 25 + 4t - 4t
= t2 + 10t + 25 - 4t
= (t + 5)2 - 4t
= (x2 + 5)2 - 4x2          (∵ t = x2)
= (x2 + 5)2 - (2x)2
= (x2 + 5 + 2x)(x2 + 5 - 2x)
= (x2 + 2x + 5)(x2 - 2x + 5)

한 문자에 관하여 내림차순으로 정리

치환할 부분도 얼른 보이지 않고, 항이 많이 있으면 차수가 낮은 한 문자에 관하여 내림차순으로 정리하세요. 여러 문자 중 차수가 가장 한 문자를 선택하는데, 차수가 같으면 아무거나 골라도 상관없어요.

내림차순으로 정리하면 상수항 부분 (선택한 문자가 아닌 다른 문자 포함)이 인수분해가 되는데, 이를 이용해서 또 한 번 인수분해를 해야 해요. 상수항 부분을 인수분해한 것이 다항식이라서 두 번째 인수분해할 때 조금 어려울 수 있어요.

차수가 낮은 한 문자에 대해서 내림차순으로 정리
상수항 부분을 인수분해 후 전체를 인수분해

x2 + xy - 2y2 - x + 7y - 6을 인수분해하여라.

식이 기니까 한 문자에 관해서 내림차순으로 정리를 해야 하는데, x도 2차, y도 2차니까 아무거나 선택하면 돼요. x를 골라보죠.

x2 + xy - 2y2 - x + 7y - 6
= x2 + xy - x - 2y2 + 7y - 6
= x2 + (y - 1)x - (2y2 - 7y + 6)
= x2 + (y - 1)x - (2y - 3)(y - 2)
= {x + (2y - 3)}{x - (y - 2)}
= (x + 2y - 3)(x - y + 2)

함께 보면 좋은 글

인수분해, 인수분해 공식(고1)
인수정리를 이용한 인수분해
[중등수학/중3 수학] - 복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
[중등수학/중3 수학] - 복잡한 식의 인수분해 2 - 항이 4개 이상일 때

정리해볼까요

치환

  • 공통부분 치환
  • 공통부분 없으면
    • 서로 다른 부분을 서로 다른 문자로 치환
    • 괄호로 쳐진 영역을 하나 선택하고 식의 다른 부분을 전개해서 공통영역을 만들어서 치환

복이차식: 짝수차 항으로만 되어 있는 식

  • x2 = t로 치환
    • 인수분해
    • 인수분해가 안되면 t항을 적당히 더하고 빼서 완전제곱식으로 인수분해 → A2 - B2꼴로 변형 후 인수분해

한 문자에 관해서 내림차순으로 정리

  1. 차수가 가장 낮은 한 문자에 관해서 내림차순으로 정리
  2. 상수항 부분을 인수분해
  3. 전체를 인수분해
<<  수학 1 목차  >>
 
그리드형

인수분해는 곱셈공식의 반대과정이니까 곱셈공식 - 완전제곱식곱셈공식 두 번째 - 합차공식만 잘 외우고 있으면 반은 먹고 들어가는 단원이에요. 그렇다고 해서 인수분해 공식만 외우고 문제는 풀지 못하는 상황에 빠지면 안돼요. 공식을 외우는 건 계산을 쉽고 빠르게 하기 위해서니까요. 공식을 외우는 게 목적이 되어서는 안돼요.

이 글은 복잡한 식의 인수분해 방법 첫번째에요. 문제 자체에 공식을 바로 적용할 수 없으니 공식을 적용할 수 있도록 식의 모양을 바꾸는 방법을 공부할 겁니다. 처음 보면 복잡해보이지만 몇 가지 방법만 알면 기존에 외우고 있는 공식을 바로 써먹을 수 있으니까 너무 걱정하지 마세요.

복잡한 식의 인수분해

공통인수로 묶기

복잡한 식을 인수분해를 할 때 가장 먼저 해야할 일은 모든 항에 들어있는 공통인수로 묶는 것이에요. 일단 공통인수로 묶으면 남은 것들끼리 인수분해 공식을 이용해서 인수분해 할 수 있어요. 공통인수는 숫자일 수도 있고, 문자일 수도 있고, 숫자와 문자가 함께 있을 수도 있어요.

2x3y + 4x2y2 + 2xy3을 해보죠. 모든 항에 2xy가 들어있어요. 2xy로 묶어보죠.

2x3y + 4x2y2 + 2xy3
= 2xy(x2 + 2xy + y2)
= 2xy(x + y)2                 ∵괄호안이 완전제곱식

2xy로 묶지않고 인수분해를 하려 했다면 할 수가 없었겠죠?

복잡한 식의 인수분해 1
공통인수로 묶기 → 인수분해 공식 사용

치환

치환은 바꾸는 걸 말해요. 식 안에 길이가 긴 내용을 짧은 다른 문자로 바꾸는 거죠. 치환은 2학년 곱셈공식 - 다항식 × 다항식을 공부할 때 이미 한 번 본 적이 있어요. 치환이라는 용어를 사용하지 않았을 뿐이에요.

a(a + b) - b(a + b)라는 식이 있다고 해보죠. 괄호를 전개해서 해볼까요?
a(a + b) - b(a + b)
= a2 + ab - ab - b2
= a2 - b2
= (a + b)(a - b)

복잡하죠? 문제에서 (a + b)라는 괄호로 묶어진 항을 t라는 문자로 바꿔보죠. (a + b) = t
a(a + b) - b(a + b)
= at - bt
= (a - b)t            ∵t는 공통인수
= (a - b)(a + b)    ∵a + b = t 이므로

두 번째 줄에서 (a + b) = t라고 놓으니까 두 항에 모두 t라는 공통인수가 들어있네요. 인수분해가 훨씬 쉬워졌죠? 그리고 t라는 문자에 원래 값인 (a + b)를 넣어줬더니 괄호를 전개해서 정리하고 인수분해한 것과 같죠?

치환을 하면 식의 길이도 짧아지고 차수도 낮아지는 장점이 있어서 계산할 때 많이 사용하는 방법이에요. 주의해야할 건 치환을 한 후에 답을 쓸 때는 대신 썼던 문자를 원래 값으로 바꿔줘야 한다는 거에요. 위에서도 마지막 줄에 t = (a + b)를 넣는 것까지 해야 계산이 끝나는 거에요. (a - b)t 라고 쓰면 틀립니다.

그리고 치환을 할 때 사용하는 문자는 t뿐 아니라 A, B 등 아무거나 상관없어요. 문제에 나와있지 않은 문자면 돼요.

(2a - b)2 - 2(2a - b) - 8을 인수분해 해볼까요? 이 식도 마찬가지로 전개하지 않고 (2a - b) = t라고 치환해보죠.
(2a - b)2 - 2(2a - b) - 8
= t2 - 2t - 8
= (t - 4)(t + 2)
= (2a - b - 4)(2a - b + 2)

2a - b를 t라는 문자로 치환한 다음에 계산을 하고, 마지막에 t에 원래 값인 2a - b를 대입했더니 인수분해가 됐네요.

이번에는 (x + 1)2 - (y - 1)2을 해보죠. 괄호로 묶어진 (x + 1) = A, (y - 1) = B라고 치환해보죠. 괄호 안의 내용이 서로 다르니까 다른 문자로 치환했어요.

(x + 1)2 - (y - 1)2
= A2 - B2
= (A + B)(A - B)
= {(x + 1) + (y - 1)}{(x + 1) - (y - 1)}
= (x + y)(x - y + 2)

복잡한 식의 인수분해 2 - 치환
식의 일부를 다른 문자로 바꾸어 계산 → 계산 후 바꾼 문자에 원래 값 대입
여러 항에 공통으로 들어있는 부분이나 괄호로 묶어진 곳을 치환

다음 식을 인수분해 하여라.
(1) a3b - 3a2b - 18ab
(2) (3a + 2)2 + 4(3a + 2) + 3
(3) xy(x + 2)2 - xy(y + 2)2

인수분해의 시작은 공통인수로 묶는 거에요. 공통인수로 묶은 후에 인수분해 공식을 사용해요. 공통인수로 묶어지지 않는다면 바로 인수분해 공식을 사용하거나 치환 등을 이용해서 인수분해 합니다.

(1) a3b - 3a2b - 18ab
ab(a2 - 3a - 18)        ∵ ab가 공통인수
= ab(a - 6)(a + 3)

(2) (3a + 2)2 + 4(3a + 2) + 3
= t2 + 4t + 3                     ∵ 3a + 2 = t로 치환
= (t + 1)(t + 3)
= (3a + 2 + 1)(3a + 2 + 3)  ∵ 원래 값 대입. t = 3a + 2
= (3a + 3)(3a + 5)
= 3(a + 1)(3a + 5)            ∵ 3이 공통인수

(3) xy(x + 2)2 - xy(y + 2)2
= xy{(x + 2)2 - (y + 2)2}    ∵ xy가 공통인수
= xy(A2 - B2)                  ∵ A, B로 치환
= xy(A + B)(A - B)
= xy{(x + 2) + (y + 2)}{(x + 2) - (y + 2)}
= xy(x + y + 4)(x - y)

정리해볼까요

복잡한 식의 인수분해

  • 공통인수로 묶은 후 인수분해 공식을 사용하여 인수분해
  • 공통인 항이나 괄호로 묶어진 부분을 다른 문자로 치환하여 인수분해
 
그리드형

+ 최근글