짝수 공식
1초 고민하는 수학 문제
네이버 검색어에 "1초 고민하는 수학 문제"라는 게 있어서 클릭해 봤더니, 재미난 기사들이 올라와 있네요.
어느 여학생이 학교에서는 어려운 수학문제도 척척 풀어내지만 마트에서 간단한 더하기는 잘하지 못하는 상황을 나타내는 그림을 기사로 만든 거였어요.
일부 신문에서는 미적분 문제를 풀었다고 나오지만 그림을 자세히 보면 이차방정식 문제였고, 근의 공식을 이용해서 푸는 과정을 담고 있어요.
제가 이 그림에서 주목한 건 문제를 푸는 방식이에요.
1초 고민하는 수학 문제
그림 속의 여학생이 문제를 푸는 과정이 조금 생소하더군요. 미국에서는 이런 식으로 문제를 푸는 가 봅니다. 한국에서와 방법이 다르네요.
그림에서 나오는 문제는 3x2 + 4x - 9 = 0이에요. 이차방정식을 보고 근의 공식에 잘 대입했어요.
일단 분모가 2 × 3이라서 6인데, 그림에서는 8로 되어 있어요. 계산 실수로 보여지고요.
이 풀이에서 가장 눈에 띄는 부분은 ±를 제곱근의 근삿값을 이용해서 근호를 풀었다는 거예요.
≒ 10 × 1.114 = 11.14
근삿값을 이용하여 근호를 풀고 그 값을 다른 수들과 계산을 했어요.
우리는 근호안의 수가 제곱수가 아니면 근호를 풀지 않는데 말이죠. 이번에는 우리가 공부하는 방식대로 풀어보죠. 일차항의 계수가 짝수니까 짝수공식으로 풀어볼까요?
3x2 + 4x - 9 = 0
미국에서의 수학 문제 풀이와 우리나라에서의 수학 문제 풀이에 차이가 있나보네요. 미국식이라면 제곱근표를 항상 가지고 있어야해서 오히려 불편할 것 같아요. 반대로 문제에서 제곱근의 근삿값을 알려줬다면 문제푸는 데 힌트가 될 수도 있으니까 더 좋을 것 같고요.
혹시 미국에서 학교 다니신 분 계시면 알려주세요.
함께 보면 좋은 글
[중등수학/중3 수학] - 근의 공식, 근의 공식 유도, 짝수 공식
[중등수학/중3 수학] - 제곱근의 근삿값
복잡한 이차방정식의 풀이
이차방정식을 풀기 위해서는 이차방정식의 기본형인 ax2 + bx + c = 0꼴로 바꿔주는 것이 좋아요. 기본형으로 바꾼다음 인수분해가 되면 인수분해를 이용해서 해를 구하고 인수분해가 되지 않는다면 근의 공식으로 푸세요.
이번 글에서는 복잡한 이차방정식의 풀이에 대해서 알아볼 거예요. 복잡한 식이라는 거 많이 해봤잖아요. 복잡한 일차방정식의 풀이, 복잡한 연립방정식의 풀이, 복잡한 부등식, 복잡한 인수분해.. 모두 원리는 하나에요.
복잡한 건 복잡하지 않게 계산하기 쉽게 바꾸면 된다. 복잡한 이차방정식은 복잡하지 않게 바꾼 다음에 인수분해 or 근의 공식 입니다.
복잡한 이차방정식 푸는 법
괄호가 있을 때
괄호가 있으면 괄호를 전개한 다음 동류항끼리 계산을 해야해요. 괄호를 전개하지 않거나 동류항 계산을 다 끝내야 일반형으로 바꿀 수 있어요.
x(1 - x) = (x + 2)(x - 3)
괄호가 있으니까 전개해서 동류항 계산을 하세요. 물론 기본형으로 바꾸는 작업까지요.
x - x2 = x2 - x - 6
2x2 - 2x - 6 = 0
x2 - x - 3 = 0
일반형으로 바꿨더니 위처럼 됐어요. 근데 인수분해가 안되니까 근의 공식을 써야겠죠.
계수가 소수일 때
계수가 소수이면 계산이 복잡합니다. 그래서 계수를 정수로 바꿔줘야해요. 정수로 바꿀려면 10의 제곱인 수 즉, 10, 100, 1000을 식에 곱해줍니다. 계수를 정수로 바꾼 다음에 인수분해나 근의 공식을 이용하세요.
0.3x2 - x + 0.1 = 0
계수가 소수 첫째자리까지 있으니까 10을 곱해줘야 겠네요.
3x2 - 10x + 1 = 0
인수분해가 안되네요. 근의 공식을 써야하는데 x의 계수가 짝수니까 짝수 공식을 써볼까요?
계수가 분수일 때
계수가 분수일 때에도 역시 계수를 정수로 바꿔줘야 해요. 정수로 바꾸려면 각 계수의 분모의 최소공배수를 식에 곱해주면 돼요.
계수가 분수이고, 각 계수의 분모인 5, 2, 10의 최소공배수가 10이니까 식에 10을 곱해줄께요.
2x2 + 5x - 3 = 0
(x + 3)(2x - 1) = 0
x = -3 or x =
공통인 식이 있을 때
공통인 식이 있을 때는 다른 문자로 치환을 해요. 치환하는 거 인수분해할 때 연습 많이 해봤죠? 식에 공통으로 들어있는 부분이나 괄호로 묶여져 있는 부분을 치환합니다.
일단 식을 치환하는 경우에는 대부분 인수분해가 돼요. 인수분해가 되면 치환했던 걸 다시 원래 식으로 바꿔주고 그 다음에 해를 구할 수 있어요.
(x - 1)2 + 6(x - 1) - 27 = 0
x - 1이라는 부분이 있으니까 이 걸 A라는 문자로 치환해볼께요.
A2 + 6A - 27 = 0라는 식이 돼요. 이 식은 A에 관한 이차방정식입니다. 따라서 인수분해나 근의 공식으로 A 값을 구할 수 있겠죠. 인수분해가 되는 군요. A를 구해볼까요?
(A + 9)(A - 3) = 0
A = -9 or A = 3
A를 구했어요. 하지만 문제에서 구하는 건 A가 아니라 x 라는 걸 명심하세요. 원래 A = x - 1였으니까 x를 구해보죠.
A = -9 x - 1 = -9 x = -8 |
A = 3 x - 1 = 3 x = 4 |
x - 1이라는 식을 A라는 문자로 치환한 후에 다시 원래 식으로 되돌아와서 x를 구할 수 있었어요.
괄호가 있으니까 괄호를 전개해서 계산해도 되지만 전개하지 않고 치환하는 게 훨씬 쉬워요.
함께 보면 좋은 글
근의 공식, 근의 공식 유도, 짝수 공식
인수분해, 공통인수로 인수분해
인수분해 공식 - 완전제곱식, 합차공식
인수분해 공식 두 번째
복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
복잡한 식의 인수분해 - 항이 4개 이상일 때
근의 공식, 근의 공식 유도, 짝수 공식
완전제곱식을 이용한 이차방정식의 풀이를 이용하면 이제 웬만한 이차방정식의 해는 구할 수 있어요. 그런데 그 과정이 너무 복잡하죠. 이차항의 계수로 나누고, 숫자를 더해주고, 인수분해하고 등등……
그래서 이 과정을 생략하고 바로 근만 구할 방법, 즉 공식이 있어요. 그래서 그 공식은 어떤 식인지 어떤 과정을 거쳐서 만들어지는지 배워볼까요?
이차방정식 근의 공식을 유도하는 과정은 완전제곱식을 이용한 이차방정식의 풀이 과정을 그대로 하면 됩니다. 숫자 대신에 문자를 사용한다는 차이뿐이에요.
완전제곱식을 이용한 이차방정식의 풀이
완전제곱식을 이용해서 이차방정식을 푸는 과정은 아래와 같아요.
- 이차항의 계수로 양변을 나눈다
- 상수항을 우변으로 이항
을 양변에 더해준다.
- 좌변을 완전제곱식으로 인수분해: (x+p)2=k
- 제곱근을 이용하여 해를 구한다.
아래 예제를 통해서 한 번 더 확인하세요.
근의 공식 유도
위 복잡한 과정을 생략하고 바로 근만 구하는 공식이 있어요. 다음 표에서 왼쪽은 일반적인 식을 이용한 과정이고 오른쪽은 이차방정식의 일반형을 이용한 과정이에요. 숫자가 문자로 바뀐 것만 다르고 방법과 과정은 모두 같아요. 연습장에 여러 번 써보면서 연습을 해야 합니다.
이제 공식이 어떻게 만들어지는 지 이해하셨죠? 이제 공식을 외워야합니다.
ax2 + bx + c = 0 (a, b, c는 상수 a ≠ 0)의 근
근의 공식은 모든 이차방정식의에 사용할 수 있어요. 인수분해가 되던 안 되던 상관없습니다. 앞으로도 계속 사용하는 가장 중요한 공식 중 하나이니까 꼭 외우세요.
근의 공식 - 짝수 공식
근의 공식 중에 짝수 공식이라는 게 있어요. 짝수 공식은 x 일차항의 계수가 짝수(2b')일 때 사용하는 공식이에요. 위에서 봤던 공식으로 풀지 못하는 건 아니지만, 이 짝수 공식을 이용하면 계산이 조금 더 간단해지죠. 외우면 좋지만, 공식이 두 개라서 헷갈린다면 굳이 외우지 않아도 되는 공식이에요.
ax2 + 2b'x + c = 0 (a, b', c는 상수 a ≠ 0)의 근
혹시 시간나면 이차방정식을 푸는 새로운 방법에 대해서도 읽어보세요. 이 글의 유도보다 조금 더 쉬워요.
함께보면 좋은 글
이차방정식의 풀이 - 제곱근을 이용
완전제곱식을 이용한 이차방정식의 풀이
이차방정식 근의 개수, 판별식 이용