단항식

단항식끼리의 사칙연산, 다항식끼리의 사칙연산을 공부했어요. 이제는 다항식과 단항식의 계산을 공부할 차례에요. 이 글에서는 단항식과 다항식의 곱셈과 나눗셈에 대해서 공부합니다. 어차피 다항식의 계산은 분배법칙동류항 계산이라는 큰 틀 안에 있어요. 이 두 가지만 잘 잘 기억하고 있으면 돼요.

항도 많은데다가 지수 같은 건 글자도 작아서 헷갈리기도 쉬워서 제일 짜증 나는 단원이기도 해요. 하지만 복잡하다고 해서 어려운 건 아니에요. 하나씩 짚어가면서 계산하면 할 수 있어요. 몰라서 틀리는 경우보다 실수로 틀리는 게 많은 단원입니다. 연습을 많이 하셔야 해요.

단항식과 단항식의 곱셈과 나눗셈

(다항식) × (단항식)

다항식에는 항이 두 개 이상이 들어있어요. 각각의 항에 단항식을 곱해줘야 합니다. 이걸 바로 분배법칙이라고 하죠?

분배법칙

분배법칙을 이용하여 괄호를 풀고 정리해서 하나의 다항식으로 바꾸는 걸 전개라고 하고, 이 과정을 거쳐 생긴 새로운 다항식을 전개식이라고 해요.

전개할 때는 다항식의 항과 단항식을 곱하게 되는데, 이때 단항식의 곱셈에서 했던 것처럼 숫자는 숫자끼리, 문자는 문자끼리 곱해야 해요.

4a(2a - 3b)를 계산해보죠. 전개하려면 4a를 2a - 3b의 두 항에 모두 곱해요.

단항식과 다항식의 곱셈

전개하는 과정에서 동류항이 있다면 동류항끼리 계산을 하면 됩니다. 위에서는 동류항이 없네요.

다항식과 단항식의 곱셈
분배법칙으로 괄호 풀기 → 단항식의 곱셈(숫자끼리, 문자끼리 곱) → 동류항 계산 → 결과(전개식)

다음을 간단히 하여라.
(1) (2a2 + 3ab) × a
(2) 2ab(3a3b + 2ab2)
(3) 4a(2a + 3b) - 2b(a + 3b)

단항식과 다항식의 곱셈에서는 분배법칙을 이용해서 괄호를 풀고, 동류항 계산해서 정리합니다.

(1) (2a2 + 3ab) × a
= 2a2 × a + 3ab × a
= 2a3 + 3a2b

(2) 2ab(3a3b + 2ab2)
= 2ab × 3a3b + 2ab × 2ab2
= 6a4b2 + 4a2b3

(3) 4a(2a + 3b) - 2b(a + 3b)
= 4a × 2a + 4a × 3b - (2b × a + 2b × 3b)
= 8a2 + 12ab - (2ab + 6b2)
= 8a2 + 12ab - 2ab - 6b2
= 8a2 + 10ab - 6b2
밑에서 두 번째 줄에 보면 동류항이 있어서 동류항 정리까지 했어요.

(다항식) ÷ (단항식)

유리수의 나눗셈은 곱셈으로 바꿔서 계산하는 게 편하죠? 다항식과 단항식도 나눗셈은 곱셈으로 고쳐서 계산합니다.

단항식과 다항식의 나눗셈, 역수

나누기를 곱하기로 바꾸고 역수를 취하면 모양이 바뀌는데, 위 곱셈에서 했던 것처럼 분배법칙을 이용해서 전개하는 거예요. 나눗셈을 계산하는 방법은 여러 가지가 있는데, 곱셈으로 바꿔서 하는 방법이 실수가 가장 적은 방법이에요.

단항식과 다항식의 나눗셈 - 보기

다음을 간단히 하여라.
(1) (15ab + 5ab2) ÷ 5b
(2) (4a2b - 6ab2 + 3ab) ÷ 2ab
(3) 단항식과 다항식의 나눗셈 - 예제

다항식과 단항식의 나눗셈은 곱셈으로 바꿔서 분배법칙을 이용하여 전개합니다.

단항식과 다항식의 나눗셈 - 예제풀이 1

단항식과 다항식의 나눗셈 - 예제풀이 2

단항식과 다항식의 나눗셈 - 예제풀이 3

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교

정리해볼까요

단항식과 다항식의 곱셈과 나눗셈

  • 전개: 분배법칙을 이용하여 괄호를 풀고 정리하여 하나의 다항식으로 나타내는 것
  • 전개식: 전개하여 얻은 다항식
  • 곱셈: 분배법칙을 이용하여 전개
  • 나눗셈: 나눗셈을 곱셈으로 바꾸고, 역수를 취하여 계산
>>   곱셈공식
 
그리드형

단항식과 계수라는 용어는 1학년 때 들어봤어요. 그리고 단항식의 곱셈과 나눗셈도 해봤죠? 그때는 단항식과 수의 곱셈과 나눗셈이었고, 이 글에서 할 건 단항식과 단항식의 곱셈과 나눗셈이에요.

솔직히 말해 좀 짜증 나는 과정이라고 할 수 있어요. 같은 문자에 비슷비슷한 차수의 계산이 많이 나오거든요. 원리가 어렵다기보다는 계산이 복잡하죠. 문자와 차수를 잘 구별하고, 빼먹는 항이 없도록 집중해야하는 단원입니다.

실수를 줄이려면 계산 연습을 많이 해보는 방법밖에 없어요. 교과서의 예제를 많이 풀어보세요.

단항식의 곱셈과 나눗셈

단항식의 덧셈과 뺄셈은 동류항의 덧셈과 뺄셈에 나온 것처럼 차수와 문자가 같은 동류항끼리 계산해요. 1학년 때 해봤으니까 넘어가죠.

단항식의 곱셈

2a3b × 3ab2을 계산해보죠. 생략된 곱셈기호를 다시 살려서 계산하면 돼요.

2a3b × 3ab2
= (2 × a3 × b) × (3 × a × b2)
= 2 × 3 × a3 × a × b × b2        (∵ 교환법칙)
= 6 × a4 × b3
= 6a4b3

매번 이렇게 풀어서 계산할 수는 없잖아요. 규칙을 알아보죠.

단항식의 덧셈, 뺄셈에서 숫자끼리 더하거나 빼고 문자는 뒤에 그대로 붙여준다고 했어요. 단항식의 곱셈에서도 숫자끼리 곱해요. 다만 문자는 바뀌죠? 문자는 어떻게 하냐면 지수법칙을 이용해서 밑이 같은 문자끼리 곱하는 거예요.

단항식의 곱셈과 나눗셈
단항식의 곱셈: 숫자는 숫자끼리, 문자는 밑이 같은 문자끼리 곱

다음을 간단히 하여라.
(1) 3a2b3 × 4a3b3
(2) (2a)3 × 4a × 5a2
(3) (5a2b)2 × (2a2b3)3

단항식의 곱셈은 숫자끼리, 문자끼리 곱하는 거예요.

(1) 3a2b3 × 4a3b3
= (3 × 4) (a2 × a3) (b3 × b3)
= 12a5b6

두 번째 줄에서 숫자끼리, 밑이 같은 문자끼리 묶어서 계산했어요.

(2)에는 거듭제곱의 거듭제곱 꼴이므로 지수법칙 - 괄호를 이용해서 먼저 계산해야 해요. 괄호 안의 모든 항목을 거듭제곱해주는 거예요.
(2a)3 × 4a × 5a2
= 23a3 × × 4a × 5a2
= (8 × 4 × 5) (a3 × a × a2)
= 160a6

(3)도 지수법칙을 이용해서 괄호를 먼저 전개한 다음에 곱셈을 해야 합니다.
(5a2b)2 × (2a2b3)3
= 52(a2)2b2 × 23(a2)3(b3)3
= 25a4b2 × 8a6b9
= (25 × 8) (a4 × a6) (b2 × b9)
= 200a10b11

단항식의 나눗셈

나눗셈에서도 곱셈처럼 숫자끼리, 밑이 같은 문자끼리 계산해요. 나눗셈은 분수를 이용하기 때문에 약분을 하는데, 이때는 밑이 같은 문자에서 지수를 빼는 거예요. 계산은 분수를 이용하는 방법과 역수를 이용하는 방법으로 합니다.

나눗셈을 분수로 바꿔서 계산하는 방법이에요. 나누는 수를 분수의 분모로 하는 방법이죠.

이번에는 역수를 이용하는 방법을 해보죠. 나누는 수에 분수가 있을 때 유용한 방법이에요.

위 경우처럼 나누는 항의 계수만 분수이고 문자는 분수가 아닐 때, 계수만 역수로 바꾸고 문자는 그대로 두는 경우가 있어요. 이 아니라 3a2b로 말이죠. 실수를 정말 자주 하는 거니까 꼭 주의하세요. 역수로 바꿀 때는 숫자와 문자 모두 다 뒤집어야 해요.

단항식의 나눗셈: 숫자는 숫자끼리, 문자는 문자끼리 계산(약분)
분수꼴로 고쳐서
나누기를 곱하기로 바꾸고 역수

다음을 간단히 하여라.

단항식의 나눗셈도 숫자는 숫자끼리, 문자는 문자끼리 계산해요. 대신 나누는 수가 분수면 역수를 이용하고, 분수가 아니면 분모로 만들어서 계산하지요.

(1)에서는 나누는 수가 분수가 아니므로 식 전체를 분수꼴로 바꿔서 계산하면 편해요

(2)번에는 괄호가 있으므로 괄호의 거듭제곱을 지수법칙을 이용해서 푼 다음에 나눗셈해야겠네요. 그리고 나누는 수에 분수가 있으니까 역수를 이용해서 계산하고요.

(3)번은 곱셈과 나눗셈이 섞여 있는 계산이네요. 앞에서부터 순서대로 계산하면 돼요.

함께 보면 좋은 글

지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
[중등수학/중1 수학] - 단항식의 곱셈과 나눗셈, 일차식의 곱셈과 나눗셈
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

단항식의 곱셈과 나눗셈: 숫자는 숫자끼리, 문자는 밑이 같은 문자끼리

  • 나눗셈에서는 분수꼴로 바꾸거나 역수를 이용
 
그리드형

이제까지 용어에 대해 공부했다면 앞으로는 본격적으로 계산을 공부할 거예요.

그 첫 번째로 단항식과 다항식의 곱셈과 나눗셈에 대해서 공부할 겁니다. 다항식 중에서는 일차식만 다룹니다.

정수유리수에서는 덧셈과 뺄셈을 먼저 했는데, 여기는 순서가 좀 다르죠. 아주 쉬운 곱하기만 배울 거거든요. 어려운 곱하기는 중2 수학에서 배울 거예요.

단항식과 단항식을 곱하는 게 아니라 단항식과 숫자를 곱하는 것만 할 거니까 겁먹지 말고, 앞에서 공부했던 용어들에 대해서 잘 기억하세요.

단항식과 수의 곱셈과 나눗셈

2a × 3을 해볼까요? 2a × 3에서 2a에는 곱셈기호가 생략되어 있으니까 이걸 원래대로 살려보죠.
2a × 3
= 2 × a × 3      생략된 곱셈기호를 다시.
= 2 × 3 × a      곱셈에 대한 교환법칙
= 6 × a
= 6a                곱셈기호 생략

위 과정을 간단하게 정리해보면, 단항식과 숫자의 곱에서는 단항식의 계수와 숫자를 곱해주고 단항식 문자는 그대로 써주면 되는 걸 알 수 있어요.

단항식의 곱셈과 나눗셈

단항식에서 숫자를 나누는 것도 단항식에 숫자를 곱하는 것과 같아요. 숫자끼리 계산하고 문자는 그대로 써주는 거죠.

6b ÷ 3 = (6 ÷ 3)b = 2b

수의 계산이 복잡한 경우에는 유리수의 나눗셈처럼 ÷를 ×로 바꾸고, 역수를 이용해서 계산해도 결과는 같아요.

단항식의 나눗셈

다음을 계산하여라.
(1) 3a2 × 5
(2) 10b ÷

단항식과 숫자를 곱하거나 나눌 때는 숫자끼리 계산한 거에 문자를 그대로 붙여주면 돼요.

(1) 3a2 × 5 = (3 × 5)a2 = 15a2

(2) 10b ÷ 은 분수꼴이니까 곱하기로 바꿔서 해보죠.

10b ÷  = 10b × 2 = (10 × 2)b = 20b

일차식과 수의 곱셈과 나눗셈

일차식과 숫자의 곱셈에서는 분배법칙을 이용해요. 사실은 항이 두 개 이상인 모든 다항식에서 분배법칙을 이용하지만, 중1 수학에서는 일차식만 공부하니까 일차식과 숫자의 곱이라고 이름을 붙였습니다.

분배법칙은 아래처럼 하죠.

분배법칙

분배법칙을 이용해서 일차식의 곱셈을 해보죠.

(2a + 4) × 3
= (2a × 3) + (4 × 3)          분배법칙
= (2 × 3)a + 12                 단항식과 숫자의 곱
= 6a + 12

3(2a + 4)처럼 곱셈기호가 생략된 경우도 있어요. 이때는 위치만 바뀌었을 뿐 모든 게 위와 같아요.

3(2a + 4)
= (3 × 2a) + (3 × 4)
= (3 × 2)a + 12
= 6a + 12

곱셈에 대한 교환법칙이 성립하니까 숫자를 일차식의 앞에 곱하든 뒤에 곱하든 계산 결과가 같은 거죠.

나눗셈도 마찬가지로 분배법칙을 이용해서 계산합니다.

(6a - 3) ÷ (-3)
= {6a ÷ (-3)} - {3 ÷ (-3)}    분배법칙
= {6 ÷ (-3)}a - (-1)             단항식과 숫자의 나누기
= -2a + 1

다음을 계산하여라.
(1) -(5a - 3)
(2) (-4a + 6b - 8) ÷ 2

항이 두 개 이상인 일차식과 숫자의 곱셈, 나눗셈에서는 일단 분배법칙을 이용해서 전개한 다음에 단항식의 계산을 이용해요.

(1)에서 괄호 앞에 -만 있는데, 이건 곱셈기호를 생략하면서 1도 함께 생략한 거예요. 원래는 (-1) × (5a - 3)인 거죠.
-(5a - 3)
= (-1) × 5a - {(-1) × 3}
= {(-1) × 5}a - (-3)
= -5a + 3

(2)에는 괄호 안에 항이 세 개 있는데요. 항이 두 개든 세 개든 천 개든 상관없어요. 일단 분배법칙을 해야 합니다.
(-4a + 6b - 8) ÷ 2
= (-4a ÷ 2) + (6b ÷ 2) - (8 ÷ 2)
= -2a + 3b - 4

함께 보면 좋은 글

단항식과 다항식, 항, 상수항, 계수, 차수
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
방정식과 항등식, 등식의 뜻
일차방정식의 풀이, 일차방정식의 뜻, 이항

정리해볼까요
  • 단항식의 곱셈과 나눗셈: 숫자끼리 계산하고 문자는 그대로 붙여줌
  • 일차식의 곱셈과 나눗셈: 분배법칙 이용해서 전개.
 
그리드형

이 글도 이 단원에서 사용할 용어들에 대한 뜻을 설명하는 글이에요. 용어의 뜻을 모르면 문제를 파악하지도 못하고, 식을 제대로 이해할 수 없어요.

공식처럼 달달 외울 필요는 없지만 그래도 각 용어가 무엇을 뜻하는지는 정확히 알아야 해요. 용어를 공부하는 건 다른 내용을 공부하는 것보다 지루하고 어려울 수 있지만 가장 기본이 되는 만큼 한 번에 제대로 해야 합니다.

문자와 식, 대입에서 공부했던 내용과 이 글에서 공부할 내용을 모두 알고 있어야 이후의 과정을 공부할 수 있어요.

항, 상수항, 계수

은 숫자 또는 문자의 곱으로 이루어진 식을 말해요. 숫자와 문자를 곱한 것, 문자와 문자를 곱한 것이죠. 숫자와 숫자를 곱한 건 숫자니까 당연히 항이고요. 문자만 있는 건 문자와 1을 곱한 거로 볼 수 있으니까 이것도 항이에요.

숫자, 문자, 숫자와 문자를 곱한 것, 문자끼리 곱한 것이 되겠네요.
3, a, 3a, a2

상수항은 항 중에서 숫자만 있는 항을 말해요. 3, -7처럼 그냥 일반적인 숫자를 상수항이라고 생각하면 쉬워요.

계수는 숫자와 문자의 곱에서 숫자를 말해요. 숫자와 문자의 곱에서는 곱셈기호를 생략하는데, 이때 문자 앞에 쓰여 있는 숫자라고 생각하면 쉬워요. 3a는 숫자 3과 문자 a가 곱해진 거잖아요. 여기서 숫자 3을 계수라고 합니다. 참고로 a는 1 × a이므로 계수는 1이에요.

항, 상수항, 계수

위 그림에서 항과 계수, 상수항을 찾아보죠.

4x2 + 2y - 3이에요.

항은 곱하기로 이루어진 걸 말하니까 4와 x 두 개가 곱해진 4x2이하나의 항이에요. 2와 y가 곱해진 2y도 하나의 항이고요. -3도 하나의 항인데, 숫자만 있으니까 상수항이에요. 그냥 3이 아니라 -3이에요. 주의하세요.

사실은 +4x2, +2y도 +부호가 붙어있는데, + 부호는 생략할 수 있으니까 생략한 거예요. -는 생략할 수 없어서 -3처럼 써줘야 하죠.

계수는 문자의 앞에 곱해진 수를 말해요. 4x2 앞에는 4가 있으니까 4가 계수, 2y 앞에는 2가 있으니까 2가 계수네요. 문자가 곱해져있진 않지만 상수항도 계수에 포함되므로 -3도 계수예요.

단항식과 다항식

다항식에서 "다"는 多예요. 항이 많이 있는 식이라는 뜻이죠. 많다고 해서 진짜로 많은 게 아니고요, 1개 이상만 있으면 돼요. 항이 1개 있어도, 2개 있어도, 100개 있어도 다항식이에요

4x2, 4x2 + 2y, 4x2 + 2y - 3, -3, …

단항식은 다항식 중에서 항이 1개만 있는 걸 말해요.

4x2, 2y, -3

다항식은 항이 1개 이상이고, 단항식은 항이 1개여야만 하니까 단항식은 다항식에 포함돼요.

차수와 일차식

차수는 문자가 곱해진 횟수를 말해요.

4x2 + 2y - 3

4x2에서 x는 두 번 곱해졌죠? 그래서 차수는 2예요. 2y에서는 y가 한 번 곱해졌어요. 그래서 차수는 1이죠. -3은 문자가 곱해진 게 없어요. 그래서 차수가 0이에요. 상수항은 차수가 항상 0이에요.

항의 차수가 1이면 일차항, 2면 이차항, 3이면 삼차항이라고 해요.

차수는 문자의 거듭제곱에서 지수와 같아요.

차수

항에서의 차수는 위 방법으로 구하는데, 다항식에서 차수는 어떻게 구할까요?

다항식에서 문자가 곱해진 개수가 다를 수 있어요. 예를 들어서 2x2 + 3x + 1이라는 다항식이 있다고 해보죠. 2x2의 차수는 2, 3x의 차수는 1, 1의 차수는 0이에요. 일단 각 항의 차수는 구했어요. 다항식 전체의 차수를 구할 때는 차수가 가장 높은 항(최고차항)의 차수를 말하면 돼요. 여기서는 2x2의 차수가 2로 가장 높으니까 다항식 2x2 + 3x + 1의 차수는 2인 거죠.

최고차항의 차수가 1인 다항식을 일차식, 최고차항의 차수가 2인 다항식을 이차식이라고 해요. 2x2 + 3x + 1은 차수가 2니까 이차식이죠.

다시 4x2 + 2y - 3으로 돌아와서요.

이 다항식은 x를 기준으로 하면 차수가 2인데, y를 기준으로 하면 차수가 1이죠? 이처럼 곱해진 문자가 다를 때는 어떤 문자를 기준으로 할 것인지 정확하게 얘기를 한 다음에 차수를 말해줘야 해요.

어떻게 하느냐면 "x에 대한 이차식" 또는 "y에 대한 일차식"이라고 말이죠.

다항식 4x2 + 2x - 3y + 2에서 항, 상수항, 계수, 차수를 구하여라.

일단 항으로 나눠보죠. 4x2, 2x, -3y, 2의 네 개 항으로 되어 있는 다항식이네요.

상수는 숫자만 있는 항이니까 2가 상수항이고요.

각 항의 차수를 보죠. 4x2는 2, 2x는 1, -3y는 1, 상수항 2는 0이죠.

계수는 문자 앞에 곱해진 숫자를 말하죠? 4x2의 계수는 4, 2x의 계수는 2, -3y의 계수는 -3이네요. 상수항 2도 있군요.

다항식의 차수는 차수가 가장 높은 항을 말하는데, 이보다 먼저 기준이 되는 문자를 정해야 해요. x에 대해서는 4x2의 2가 가장 높으니까 x에 대한 이차식이고요. y에 대해서는 -3y의 1이 가장 높으니까 y에 대한 일차식이에요.

함께 보면 좋은 글

단항식의 곱셈과 나눗셈, 일차식의 곱셈과 나눗셈
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
방정식과 항등식, 등식의 뜻
일차방정식의 풀이, 일차방정식의 뜻, 이항

정리해볼까요
  • 항: 숫자와 문자의 곱으로 된 식
  • 상수항: 숫자로 되어 있는 항
  • 계수: 문자에 곱해서 있는 숫자
  • 다항식: 1개 이상의 항으로 이루어진 식
  • 단항식: 다항식 중에서 항이 1개만 있는 식
  • 차수: 문자가 곱해진 횟수
  • 다항식의 차수: 차수가 가장 높은 항의 차수
  • 일차식: 차수가 1인 다항식
 
그리드형

+ 최근글