합차공식
복잡한 식의 인수분해 - 항이 4개 이상일 때
앞에서는 항의 개수가 3개 이하일 때를 해봤는데, 이제는 항의 개수가 4개 이상인 복잡한 식의 인수분해입니다.
항의 개수가 늘어나면 늘어난 만큼 식도 복잡해지고 계산 방법도 복잡해져요. 복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환에서는 식의 모양을 바꾸서 인수분해를 했었는데, 이 글에서는 두 번의 인수분해 과정을 거쳐야 답이 나오는 경우에요.
그리고, 앞에서 공부했던 인수분해의 공식과 원리가 총 동원된 문제들이 나옵니다. 제법 어려운 문제들이니 틀리지 않게 주의해서 잘 보세요.
항이 4개 일 때
항이 네 개일 때, 모든 항에 공통인수가 있으면 공통인수로 묶으세요. 4개의 항에 공통인수가 없을 때는 다른 방법을 사용해야 해요.
2-2로 짝짓기
4개 모두에 해당하는 공통인수가 없다면 2개씩 짝을 짓고, 각 쌍을 공통인수로 묶어요. 각각을 공통인수로 묶어서 두 개의 항으로 만들면 다시 공통인수가 생기는데, 그때 다시 공통인수로 묶어주면 돼요.
xy - x - y + 1을 보죠. 항은 4개인데, 4개 항에 모두 공통으로 들어있는 인수가 없어요. 2개씩 묶어보죠.
xy - x - y + 1
= (xy - x) + (-y + 1)
= x(y - 1) - (y - 1)
앞 두 개의 항에는 x라는 공통인수가 있고, 뒤 두 개의 항에는 (-1)이라는 공통인수가 있어요. 각각을 따로 인수분해했더니 양쪽 모두에 (y - 1)이라는 항이 있네요. y - 1 = t로 치환해보죠.
= xt - t
= (x - 1)t
= (x - 1)(y - 1)
y - 1 = t이므로 마지막 줄에서 원래 값을 대입했더니 인수분해가 끝났어요. 계산에 익숙해지면 이 정도 식은 따로 치환하는 식을 넣지 않고도 바로 계산할 수 있을 거예요.
- 4개의 항을 2개씩 2쌍으로 짝짓기
- 각 쌍에서 공통인수를 찾아서 각각을 인수분해
- 두 쌍에서 공통인수를 찾아서 한 번 더 인수분해
3-1로 짝짓기
x2 - 6x + 9 - y2
= (x2 - 6x) + 9 - y2
= x(x - 6) + (3 + y)(3 - y)
4개의 항이 있어서 앞의 두 개, 뒤의 두 개의 항으로 묶어서 해봤는데, 인수분해가 안 돼요. 방법이 틀렸다는 얘기예요. 이때는 2개씩 짝을 짓는 것 말고 다른 방법을 써야 해요.
앞의 3개와 뒤의 1개를 따로 짝을 지어보죠.
x2 - 6x + 9 - y2
= (x2 - 6x + 9) - y2
= (x - 3)2 - y2
= (x - 3 + y)(x - 3 - y)
= (x + y - 3)(x - y - 3)
앞의 세 개와 뒤의 하나로 짝을 지었더니 인수분해가 되네요. 경우에 따라서는 앞의 한 개와 뒤의 3개를 짝 지어야 하는 경우도 있어요. 이런 경우는 대부분 한 개짜리가 제곱이고, 세 개짜리는 완전제곱식이며 이 둘은 (제곱 - 제곱)의 형태가 될 때가 많아요.
3 - 1로 할 건지, 1 - 3으로 할 건지는 일차항을 보면 쉽게 판단할 수 있어요. 예를 들어 x, y의 문자가 모두 들어있는 식에서 x의 일차항이 있으면 x2, x, 상수항의 3개를 묶고, 남은 y항을 하나로 해요.
x2 - 2x - 8 - y2 에서는 일차항이 -2x이므로 x2, -2x, -8을 묶어요.
x2 - y2 + 2y + 8에서는 일차항이 2y이므로 -y2, 2y, 8을 묶으세요.
- 3 - 1 로 짝짓기
- 3 개짜리 항을 완전제곱식으로 인수분해
- 1개짜리 항과 ②의 완전제곱식을 합차공식으로 인수분해
항이 5개 이상일 때
항이 5개 이상인 경우는 많이 나오는 경우는 아닌데, 그래도 알아 두면 좋아요. 이때는 문자의 차수가 가장 낮은 한 문자를 선택해서 그 문자에 대해 차수가 높은 순에서 낮은 순서로 항들의 위치를 바꾼 다음에 인수분해를 합니다. 차수가 높은 순에서 낮은 순으로 쓰는 걸 내림차순으로 정리한다고 표현해요.
이때, 선택한 문자가 들어있지 않은 항은 모두 상수항 취급하세요. 예를 들어 y라는 문자를 선택했다면 x2항도 상수항이에요.
x2 + xy - 5x - 2y + 6를 볼까요?
항이 5개, 문자는 x, y의 2개예요. 복잡하네요. x는 2차, y는 1차죠? 그렇다면 차수가 낮은 y를 선택하고 차수가 높은 것에서 낮은 순서대로 항의 위치를 바꿔요. 우선 y의 1차인 xy, -2y를 먼저 쓰고 나머지를 그 뒤에 쓰죠.
x2 + xy - 5x - 2y + 6
= xy - 2y + x2 - 5x + 6
순서를 바꾸고 보니까 앞의 두 항에는 y라는 공통인수가 들어있고, 뒤의 세 항은 인수분해가 되네요. 정리해보죠.
= y(x - 2) + (x - 2)(x - 3)
정리하고 보니까 (x - 2)라는 부분이 양쪽 모두에 들어있죠? x - 2 = t라고 치환하죠.
= yt + t(x - 3)
= t(y + x - 3)
= (x - 2)(y + x - 3)
한꺼번에 모아서 다시 써볼게요.
x2 + xy - 5x - 2y + 6
= xy - 2y + x2 - 5x + 6 ∵ y에 대해서 내림차순 정리
= y(x - 2) + (x - 2)(x - 3) ∵ 공통인수로 묶기, 인수분해
= yt + t(x - 3) ∵ x - 2 = t로 치환
= t(y + x - 3)
= (x - 2)(y + x - 3) ∵ t = x - 2 대입
복잡한 과정을 거쳐서 인수분해를 할 수 있었어요.
항이 5개 이상일 때: 차수가 가장 낮은 문자에 대하여 내림차순으로 정리 후 인수분해
참고로 항이 4개인데, 2 - 2, 3 - 1로 묶이지 않을 때에도 한 문자에 관하여 내림차순으로 정리해보면 묶을 수 있는 경우가 있어요. 이 점도 기억해두세요.
다음을 인수분해 하여라.
(1) 3xy - 6y2 - x + 2y
(2) 9x2 - 4y2 + 16y - 16
(3) x2 + xy - x - 2y - 2
(1)은 네 개의 항으로 되어있어요. 네 항 모두에 들어있는 공통인수가 없기때문에 앞의 두 개와 뒤의 두 개를 따로 따로 인수분해해보죠.
3xy - 6y2 - x + 2y
= 3y(x - 2y) - (x - 2y)
= (3y - 1)(x - 2y)
(2)는 앞의 두 개, 뒤의 두 개로 나누어도 공통인수가 없어요. 다른 방법을 해야한다는 뜻이에요. 3 - 1로 묶어보죠. 그런데, 뒤에 2, 3번째 항에 y라는 문자가 들어있으니까 앞의 하나와 뒤의 세 항으로 나누어 묶어보죠.
9x2 - 4y2 + 16y - 16
= (3x)2 - 4(y2 -4y + 4)
= (3x)2 -4(y - 2)2
= (3x)2 - {2(y - 2)}2
= {3x + 2(y - 2)}{3x - 2(y - 2)}
= (3x + 2y - 4)(3x - 2y + 4)
(3)번은 항이 다섯개나 있네요. 이 때는 차수가 낮은 한 문자를 선택해서 내림차순으로 정리를 해요. x는 이차, y는 일차이므로 y의 내림차순으로 정리해보죠.
x2 + xy - x - 2y - 2
= xy - 2y + x2 - x - 2
= (x - 2)y + (x - 2)(x + 1)
= (x - 2)(y + x + 1)
인수분해 공식 - 완전제곱식, 합차공식
다항식의 곱을 전개할 때는 곱셈공식을 사용하죠. 인수분해는 전개의 반대과정이라고 했어요. 따라서 인수분해를 공부하는 순서도 곱셈공식에서 공부했던 순서와 같아요.
인수분해 공식은 곱셈공식을 거꾸로 한 거니까 따로 외우지 않아도 돼요.
곱셈공식부터 정리해보죠. 총 다섯 개가 있는데, 이 글에서는 우선 완전제곱식과 합차공식의 세 가지만 볼게요.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
(a + b)(a - b) = a2 - b2
인수분해 공식이라고 부르지는 않지만 인수분해할 때 가장 먼저 해야 하는 건 공통인수로 인수분해하는 거예요. 공식을 적용하기 전에 먼저 해야 합니다.
인수분해 공식 - 완전제곱식
완전제곱식이란
완전제곱식은 어떤 다항식을 두 번 곱하는 거예요. 숫자로 치면 제곱이랑 같아요.
완전제곱식은 어떤 식이 있고 그 전체가 제곱이어야 해요. (……………)2처럼 생겼어요. 앞에 숫자가 곱해져 있는 것도 완전제곱식이에요. 예를 들어 (x + a)2도 완전제곱식이고, 2(x + a)2도 완전제곱식이에요. 단 괄호 앞에 숫자가 아니라 문자이거나 제곱이 아닌 다른 식이 있으면 완전제곱식이라고 하지 않아요. x(x + a)2이나 (x + a)(x + b)2처럼 말이죠.
완전제곱식: 같은 다항식을 두 번 곱한 식, 또는 여기에 숫자를 곱한 식
(a + b)2, k(a + b)2
어떤 식의 모양을 보고, 이게 완전제곱식의 전개식인지 아닌지를 판단하고, 완전제곱식으로 인수분해할 수 있어야 해요. 전개식을 보고 완전제곱식인지 아닌지 판단하는 방법을 알아보죠.
일단 전개식은 세 개의 항으로 되어 있어요. 두 개는 어떤 숫자나 문자의 제곱인 항인데, 이걸 A2, B2이라고 쓸 수 있겠죠? 남은 한 개의 항은 제곱이 되는 a, b를 곱하고 거기에 또 2를 곱한 항이에요.
A2 + 2 × A × B + B2
첫 번째 항은 a의 제곱, 세 번째 항은 b의 제곱, 가운데 항은 a와 b를 곱한 것의 두 배죠. 이런 모양이 바로 완전제곱식이에요. 가운데 항의 모양을 잘 기억하세요.
다음 식이 완전제곱식이 되도록 □에 알맞은 값을 구하여라.
(1) a2 + □ + 36
(2) 4a2 + 4ab + □
(1)의 모양을 조금 바꿔보죠.
a2 + □ + 36
= a2 + □ + 62
□ = 2 × a × 6 = 12a
그런데, 36 = 62 = (-6)2이기도 하죠? 따라서 주어진 식은 a2 + □ + (-6)2이라고 쓸 수도 있어요.
□ = 2 × a × (-6) = -12a
결국 □ = ±12a가 될 수 있어요. 가운데 항의 부호는 ± 가 될 수 있다는 걸 알아두세요.
(2)의 모양을 바꿔보죠.
4a2 + 4ab + □
= (2a)2 + 2 × 2a × b + □
□ = b2
여기는 제곱이니까 부호는 무조건 +에요.
완전제곱식으로 인수분해
일단 전개식이 완전제곱식이라는 걸 알았으면 완전제곱식으로 인수분해를 해야겠죠? 곱셈공식 - 완전제곱식을 거꾸로 하는 거니까 그 모양을 잘 생각해보죠.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
전개식에서 가운데 항의 부호가 완전제곱식의 가운데 항의 부호와 같다는 점만 주의하면 돼요. 전개식에서 각 항은 어떤 것의 제곱인지, 어떤 것을 곱했는지 파악하면 되겠죠?
a2 ± 2ab + b2 = (a ± b)2
다음 식을 다항식의 곱셈으로 나타내어라.
(1) a2 + 4ab + 4b2
(2) 4a2 + 12ab + 9b2
(3) 8a2 + 8ab + 2b2
식을 다항식의 곱셈으로 나타내는 게 인수분해죠?
(1) 모양을 바꿔보면
a2 + 4ab + 4b2
= a2 + 2 × a × 2b + (2b)2
= (a + 2b)2
(2) 4a2 + 12ab + 9b2
= (2a)2 + 2 × 2a × 3b + (3b)2
= (2a + 3b)2
(3)은 모든 항이 2의 배수이므로 가장 먼저 공통인수로 인수분해를 해야 해요.
8a2 + 8ab + 2b2
= 2(4a2 + 4ab + b2)
= 2{(2a)2 + 2 × 2a × b + b2}
= 2(2a + b)2
인수분해 공식 - 합차공식
곱셈공식에서 합차공식은 숫자, 문자는 같은데 가운데 부호만 다르게 해서 곱한 경우를 말하죠?
(a + b)(a - b) = a2 - b2
인수분해는 거꾸로니까 (제곱 - 제곱)의 꼴 → 합과 차로 바꾸는 거예요. 이 공식을 사용해야 하는 경우를 찾는 건 쉽죠?
a2 - b2 = (a + b)(a - b)
다음을 인수분해하여라.
(1) 4a2 - 9b2
(2) 3a2 - 27b2
(3) a2 + 4b2
제곱 - 제곱의 꼴일 때, 인수분해 공식을 적용할 수 있어요.
(1) 4a2 - 9b2
= (2a)2 - (3b)2
= (2a + 3b)(2a - 3b)
(2)는 각 항을 3으로 묶을 수 있으니까 먼저 3으로 묶은 다음에 인수분해 공식을 적용해야 해요.
3a2 - 27b2
= 3(a2 - 9b2)
= 3{a2 - (3b)2}
= 3(a + 3b)(a - 3b)
(3)번은 (제곱 + 제곱)의 꼴이에요. 인수분해 공식을 적용할 수 없는 행태에요. 이건 함정으로 낸 문제인데, 더 이상 인수분해를 할 수 없어요.
함께 보면 좋은 글
인수분해, 공통인수로 인수분해
인수분해 공식 - 완전제곱식, 합차공식
인수분해 공식 두 번째
복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
복잡한 식의 인수분해 - 항이 4개 이상일 때
[중등수학/중2 수학] - 곱셈공식 - 완전제곱식
[중등수학/중2 수학] - 곱셈공식 - 합차공식 외
분모의 유리화
제곱근의 나눗셈을 하다보면 필연적으로 나오는 게 분수에요. 분수에서 분모에 제곱근이 들어있을 때 제곱근을 처리하는 방법을 분모의 유리화라고 하고 이 글에서는 그 방법을 알아볼 거예요.
분모의 유리화는 분모에 제곱근이 하나만 있을 때와 두 개의 제곱근의 합/차로 되어 있을 때의 두 가지가 있어요. 두 가지에서 사용하는 방법을 다 알아야합니다.
분모의 유리화는 분수꼴의 제곱근 계산에서 필수 과정으로 유리수의 덧셈과 뺄셈에서 분모를 통분하고 약분하는 것처럼 아주 기본적인 과정이에요. 이걸 못하면 제곱근의 덧셈과 뺄셈은 못한다고 봐야죠. 꼭 이해하고 넘어가야 해요.
분모의 유리화
분모가 근호를 포함한 무리수일 때, 분모를 유리수로 바꾸는 걸 분모의 유리화라고 해요. 일반적인 분수를 더하거나 뺄 때 분모를 통분해서 계산하죠? 그런데 분모가 무리수라면 통분하기가 어려워요. 그래서 분모를 유리수로 바꾸고, 그 다음에 통분해서 계산을 하는 거죠.
분모에 근호를 포함한 분수는 무리수에요. 무리수인 분수에서 분모가 유리화됐다고 해서 분수가 유리수가 되는 건 아니에요. 분수는 그대로 무리수고, 분모만 유리수가 되는 거예요.
분모의 유리화에서 분자는 아무런 영향을 미치지 않아요. 분자가 유리수든 무리수든 1이든 아니든 상관없어요. 전혀 고려하지 마세요.
이라는 분수가 있다고 해보죠. 분모가 근호를 포함한 무리수에요. 제곱근을 유리수로 바꾸는 가장 쉬운 작업은 제곱하는 거예요. 이 때도 제곱을 합니다. 전체를 제곱해서
하면 안돼요.
이니까요.
분모를 제곱하는 거예요. 통분할 때, 분모에 어떤 수를 곱해주면 같은 수를 분자에도 곱해주죠? 분모는 제곱, 분모에 곱해지는 수를 분자에도 곱해주는 거예요.
분자, 분모에 분모인 를 똑같이 곱해주고 계산을 했더니 분모가 유리수 2가 되었어요. 이게 분모의 유리화에요.
을 한 번 볼까요? 분모가 제곱근이므로 분자, 분모에
을 곱해주면 되겠죠?
이게 끝이 아니에요. 제곱근의 곱셈과 나눗셈에서 근호안에 제곱인 수가 있으면 근호 앞으로 꺼내는 걸 했어요. 요. 이렇게 2를 꺼내놓으면 분모 8과 약분이 되죠? 약분까지 끝내야 계산이 끝나는 거에요.
분자의 근호 안에 제곱인 수가 있어서 꺼냈는데, 이걸 분모에 있을 때 미리 꺼내면 어떻게 되는 지 해보죠.
분모에 정수와 제곱근이 곱해져있을 때는 제곱근만 곱해주면 돼요. 정수는 이미 유리수니까 유리화할 필요가 없잖아요. 계산이 조금 더 간단해 졌죠? 순서를 잘 기억하세요.
제일 마지막 과정에서 약분을 했는데, 두 번째 줄에 보면 분자의 3과 분모의 6을 약분할 수 있어요. 약분은 계산 중에 아무데서나 해도 상관없어요.
분모의 유리화: 분모에 근호를 포함한 수가 들어있을 때, 분자, 분모에 같은 수를 곱해서 분모를 유리수로 만드는 것
분모가 제곱근: 분모와 같은 수를 분자, 분모에 곱
분모가 정수와 제곱근의 곱: 분모의 제곱근 부분을 분자, 분모에 곱
분모가 무리수의 합과 차로 되어있을 때
분모가 두 무리수의 합과 차로 되어 있을 때는 방법이 조금 달라져요.
을 해보죠. 위에서는 분모를 유리화하기 위해서 분모를 제곱한다고 했어요. 분모만 따로 떼서 제곱을 해보죠. 제곱이니까 곱셈공식 - 완전제곱식을 이용해야 해요.
분모의 유리화는 분모의 제곱근을 없애려고 하는 건데, 없어지지 않았죠? 그래서 이 때는 분모를 제곱해도 소용이 없다는 걸 알 수 있어요. 완전제곱식이 아니라 곱셈공식의 합차공식을 이용해볼까요?
합차공식을 이용했더니 분모가 유리수가 되었죠? 합차공식은 숫자는 같지만 둘 사이의 부호만 다른 걸 곱하는 공식이에요.
정리해보죠. 분모에서 제곱근은 그대로 두고, 부호만 반대인 수를 분자, 분모에 곱해요.
다음 분수의 분모를 유리화하여라.
(1)은 분모에 제곱근이 하나만 있네요. 분모와 같은 수를 분자, 분모에 곱해서 유리화를 하죠.
(2)도 분모에 제곱근 하나만 있으니 이걸 분자, 분모에 곱해주면 되겠네요.
마지막에 3이 약분이 되네요. 분수니까 약분까지 하셔야 해요.
(3) 분모의 근호 안에 제곱인 수가 들어있으니까 이걸 근호 앞으로 꺼내고, 근호 안의 숫자만 분자, 분모에 곱해줘요.
두 번째에서 세 번째로 갈 때 근호 앞의 2와 분자의 2를 약분했어요. 약분을 미리하면 계산이 편리해져요.
(4) 분모에 근호를 포함한 수가 2개 있어요. 이럴 때는 부호를 반대로 해서 분자, 분모에 곱해야 하죠.
함께 보면 좋은 글
제곱근의 성질, 제곱수의 근호풀기
제곱근의 곱셈과 나눗셈
제곱근의 덧셈과 뺄셈
[중등수학/중2 수학] - 곱셈공식 - 완전제곱식
[중등수학/중2 수학] - 곱셈공식 두 번째 - 합차공식 외
곱셈공식 두 번째 - 합차공식 외
곱셈공식 두 번째예요. 곱셈공식 - 완전제곱식에서 완전제곱식의 형태인 공식을 두 개 공부했어요.
이 글에서 공부할 곱셈공식은 조금 더 어려워요. 하지만 공식이 만들어지는 원리는 분배법칙으로 모두 같아요. 만들어지는 원리를 잘 이해하고, 그림을 통해서 한 번 더 확인해보면 공식을 외우는 데 도움이 될 거예요.
공식을 외우는 이유는 계산과정을 조금 더 쉽고 빨리하기 위해서예요. 그런데 공식을 외우라고 하면 공식은 잘 외우지만, 실제 계산에서 적용하지 못하는 학생들이 있어요. 단순히 외우지만 말고 실제 문제에서 바로바로 적용할 수 있도록 연습을 많이 하세요.
곱셈공식
곱셈공식 (3) - 합차공식
세 번째 곱셈공식은 합차공식이라는 이름으로 불러요. 왜 합차공식이냐면 두 항을 더한 것과 뺀 것을 곱하거든요.
(a + b)(a - b)는 a와 b를 한 번은 더하고, 한 번은 빼서 곱하는 거죠. 전개해서 정리해볼까요?
(a + b)(a - b)
= a(a - b) + b(a - b)
= a2 - ab + ba - b2
= a2 - b2
(a + b)(a - b) = a2 - b2
앞의 항을 제곱한 것에서 뒤의 항을 제곱한 것을 빼주는 거예요.
그림으로 확인해보죠.
한 변의 길이가 a인 정사각형에서 가로는 b만큼 늘려주고, 세로는 b만큼 줄이면 가로 길이는 (a + b), 세로 길이는 (a - b)예요. 넓이는 (a + b)(a - b)죠. 이게 가운데 그림이에요.
가운데 그림의 오른쪽에 있는 작은 사각형을 밑으로 돌리면 세 번째 그림처럼 돼요. 흰 사각형의 가로 길이는 a - (a - b) = b죠.
색칠한 부분의 넓이 = 전체 사각형의 넓이 - 흰 사각형
(a + b)(a - b) = a2 - b2
합차공식은 두 개의 항을 한 번은 더하고, 한 번은 뺀 것을 곱할 때만 씁니다. (a + b)(a - c)는 +, -가 있지만 두 번째 항이 b와 c로 달라서 합차공식을 사용해서는 안 돼요.
(a + b)(a - c) ≠ a2 - b2
(b + c)(d - c) ≠ b2 - c2
다음을 간단히 하여라.
(1) (3a + b)(3a - b)
(2) (2a + 3b)(2a - 3b)
(3) (5a - 2b)(5a + 2b)
합차공식은 앞의 항을 제곱한 것에서 뒤의 항을 제곱한 것을 빼면 돼요.
(1) (3a + b)(3a - b)
= (3a)2 - b2
= 9a2 - b2
(2) (2a + 3b)(2a - 3b)
= (2a)2 - (3b)2
= 4a2 - 9b2
(3)은 두 항의 뺄셈이 앞에 있고, 덧셈이 뒤에 있죠. 곱셈에서는 교환법칙이 성립하니까 순서는 상관없어요.
(5a - 2b)(5a + 2b)
= (5a)2 - (2b)2
= 25a2 - 4b2
곱셈공식 (4) - x의 계수가 1일 때
이번 곱셈공식은 x가 있는 일차식 두 개를 곱하는 공식이에요. 이때 두 일차식의 x의 계수가 1이에요.
(x + a)(x + b)를 전개해서 정리해보죠. 여기서 a, b는 상수항이에요.
(x + a)(x + b)
= x(x + b) + a(x + b)
= x2 + bx + ax + ab
= x2 + (a + b)x + ab
세 번째 줄의 ax와 bx가 x가 있는 동류항이라서 서로 더해줬어요.
(x + a)(x + b) = x2 + (a + b)x + ab
x는 제곱해주고, 두 상수항을 더한 것에 x붙여주고, 두 상수항을 곱한 것을 더해줘요.
역시 그림으로 확인해보죠.
가로가 (x + a)이고, 세로가 (x + b)인 사각형이에요.
전체 사각형의 넓이 = 작은 사각형 네 개의 합
(x + a)(x + b) = x2 + bx + ax + ab
= x2 + (a + b)x + ab
다음을 간단히 하여라.
(1) (x + 2)(x + 3)
(2) (x + 3)(x - 5)
(3) (x - 2)(x - 3)
계수가 1인 두 일차식의 곱은 x는 제곱, 두 상수항의 합에 x를 붙여주고, 상수항의 곱을 더해주는 거예요.
(1) (x + 2)(x + 3)
= x2 + (2 + 3)x + 2 × 3
= x2 + 5x + 6
(2) (x + 3)(x - 5)
= x2 + {3 + (- 5)}x + 3 × (-5)
= x2 - 2x - 15
(3) (x - 2)(x - 3)
= x2 + {(-2) + (-3)}x + (-2) × (-3)
= x2 - 5x + 6
곱셈공식 (5) - x의 계수가 1이 아닐 때
이번 게 제일 어려운 곱셈공식이에요. 이번에도 일차식 두 개를 곱하는데 일차항의 계수가 1이 아니에요.
(ax + b)(cx + d)에서 a, c는 일차항의 계수이고, b, d는 상수항이에요.
(ax + b)(cx + d)
= ax(cx + d) + b(cx + d)
= acx2 + adx + bcx + bd
= acx2 + (ad + bc)x + bd
(ax + b)(cx + d) = acx2 + (ad + bc)x + bd
복잡하죠? 동류항이 있어서 더해주는 과정이 있어요.
그림을 보죠.
가로가 (ax + b)이고, 세로가 (cx + d)인 사각형이에요.
전체 사각형의 넓이 = 작은 사각형 네 개의 합
(ax + b)(cx + d) = acx2 + adx + bcx + bd
= acx2 + (ad + bc)x + bd
다음을 간단히 하여라.
(1) (2x + 3)(3x + 1)
(2) (3x - 1)(2x + 1)
(3) (2x - 1)(4x + 3)
(1) (2x + 3)(3x + 1)
= 2x × 3x + (2 × 1 + 3 × 3)x + 3 × 1
= 6x2 + 11x + 3
(2) (3x - 1)(2x + 1)
= 3x × 2x + {3 × 1 + (-1) × 2}x + (-1) × 1
= 6x2 + x - 1
(3) (2x - 1)(4x + 3)
= 2x × 4x + {2 × 3 + (-1) × 4}x + (-1) × 3
= 8x2 + 2x - 3
곱셈공식 - 완전제곱식에서 2개, 이 글에서 3개 해서 총 5개의 곱셈공식을 공부했어요. 무조건 외워야 합니다.
- (a + b)2 = a2 + 2ab + b2
- (a - b)2 = a2 - 2ab + b2
- (a + b)(a - b) = a2 - b2
- (x + a)(x + b) = x2 + (a + b)x + ab
- (ax + b)(cx + d) = acx2 + (ad + bc)x + bd
함께 보면 좋은 글
곱셈공식 - 완전제곱식
단항식과 다항식의 곱셈과 나눗셈
곱셈공식의 변형