중점 연결 정리

삼각형의 중선에 이어서 삼각형의 무게중심이라는 걸 공부합니다. 삼각형의 내심, 외심과 달리 삼각형의 중선이 한 점에서 만나는 이유에 대한 내용이 빠져있어서 이 글에서 추가로 설명합니다. 삼각형의 외심, 내심은 합동인 삼각형을 이용해서 증명했는데, 삼각형의 중선이 한 점에서 만나 삼각형의 무게중심이 되는 이유는 닮음인 삼각형을 이용해서 증명합니다.

이 글에는 삼각형의 세 중선이 한 점에서 만나는 이유만 설명되어 있으므로 삼각형의 중선과 삼각형의 무게중심에 대한 더 자세한 내용은 삼각형의 무게중심과 삼각형의 중선을 참고하세요.

삼각형의 중선이 한 점에서 만나는 이유를 이해하려면 삼각형의 중점 연결 정리에 대해 알고 있어야 합니다. 삼각형의 세 중선이 한 점에서 만나는 이유를 증명하는 내용은 무게중심의 성질을 설명하는 내용과 거의 비슷하니까 잘 이해할 수 있을 거예요.

삼각형의 세 중선이 한 점에서 만나는 이유

△ABC에서 의 중점을 점 F, 의 중점을 점 E라고 해보죠. 점 B와 점 E를 연결한 와 점 C와 점 F를 연결한 가 만나는 점을 점 M이라고 하고요.

삼각형의 무게중심이 한 점에서 만나는 이유 증명 1

는 두 변의 중점을 연결한 직선이므로 삼각형의 중점 연결 정리에 따라 가 됩니다.

△MEF와 △MBC를 보세요.

∠MEF = ∠MBC (이므로 평행선에서 엇각)
∠MFE = ∠MCB (이므로 평행선에서 엇각)

∴ △MEF ∽와 △MBC (AA 닮음)

두 삼각형이 닮음이므로 각 대응변의 길이의 비가 같죠? 이 성립합니다.

여기서 우리가 필요한 부분만 가져오면 이죠. 따라서 점 M은 를 2 : 1로 나누는 점이에요. (※ 고등학교에 가면 선분의 내분점이라는 걸 공부하는데, 여기서는 그냥 선분을 나누는 점이라는 정도만 알고 있으면 됩니다.)

이번에는 △ABC에서 의 중점을 점 F, 의 중점을 점 D라고 해보죠. 점 A와 점 D를 연결한 와 점 C와 점 F를 연결한 가 만나는 점을 점 N이라고 하고요.

삼각형의 무게중심이 한 점에서 만나는 이유 증명 2

는 두 변의 중점을 연결한 직선이므로 삼각형의 중점 연결 정리에 따라 가 됩니다.

△NDF와 △NAC를 보세요.

∠NDF = ∠NAC (이므로 평행선에서 엇각)
∠NFD = ∠NCA (이므로 평행선에서 엇각)

∴ △NDF ∽와 △NAC (AA 닮음)

두 삼각형이 닮음이므로 각 대응변의 길이의 비가 같죠? 이 성립합니다.

여기서 우리가 필요한 부분만 가져오면 이죠. 따라서 점 N은 를 2 : 1로 나누는 점이에요.

를 2 : 1로 나누는 점이 점 M과 점 N 두 개가 있죠? 이 두 점 사이에는 어떤 관계가 있을까요?

중점은 선분의 두 점 사이의 거리를 절반으로 나누는 점이에요. 이때 두 점과 중점 사이의 거리의 비는 1 : 1이죠? 한 선분에서 중점은 하나밖에 없죠? 그럼 선분의 두 점 사이의 거리를 2 : 1로 나누는 점은 몇 개가 있을까요? 이것도 마찬가지로 하나밖에 없어요. 따라서 를 2 : 1로 나누는 점인 점 M과 점 N은 같은 점이죠.

가 한 점 M에서 만나고, 가 한 점 N에서 만나는 데 이 두 점 M과 N이 서로 같은 점이므로 삼각형 △ABC의 세 중선 , , 는 한 점에서 만나요.

그리고 삼각형의 세 중선이 만나는 점을 삼각형의 무게중심 G라고 하는데, 삼각형의 무게중심과 삼각형의 중선에 더 자세히 소개되어 있습니다.

삼각형의 세 중선은 한 점에서 만난다.

함께 보면 좋은 글

삼각형의 무게중심과 삼각형의 중선
삼각형의 무게 중심과 넓이, 삼각형의 중선과 넓이
닮은 도형의 넓이의 비와 부피의 비 1
닮은 도형의 부피의 비와 넓이의 비 2

정리해볼까요

삼각형의 세 중선은 한 점에서 만난다.

<<    중2 수학 목차    >>
 
그리드형

삼각형의 중점 연결 정리에 이어 사다리꼴의 중점 연결 정리입니다. 평행사변형, 정사각형, 마름모의 중점 연결 정리는 따로 하지 않으니까 중점 연결 정리는 여기가 끝이에요.

사다리꼴의 중점 연결정리는 사다리꼴에 대각선을 그어서 삼각형을 만든 다음 삼각형의 중점 연결 정리를 적용하는 거예요.

그리고 등변사다리꼴의 중점 연결 정리에는 등변사다리꼴의 정의와 등변사다리꼴의 성질에서 공부했던 내용이 나오니까 기억이 나지 않는다면 미리 읽어두세요.

사다리꼴의 중점 연결 정리

사다리꼴에서 평행하지 않은 두 변의 중점을 각각 M, N이라고 하죠. 그리고 대각선과 중점을 연결한 직선이 만나는 점을 각각 P, Q라고 하고요.

그러면 아래 그림 같은 성질이 성립합니다.

사다리꼴의 중점 연결 정리

중점을 연결한 직선

첫 번째 중점을 연결한 선이 다른 두 변과 평행한지부터 증명해보죠.

의 연장선과 의 연장선이 만나는 점을 점 E라고 해보죠.

사다리꼴의 중점 연결 정리 증명 1

△AND와 △ENC가 생기죠.

두 삼각형에서
점 N은 의 중점이므로
∠AND = ∠ENC (맞꼭지각)
이므로 ∠ADN = ∠ECN (평행선에서 엇각)

따라서 두 삼각형은 ASA 합동이에요. △AND ≡ △ENC

합동인 삼각형에서 대응변의 길이는 같으므로 이죠.

△ABE에서 , 이므로 삼각형의 중점 연결 정리 때문에 이 성립해요.

등변사다리꼴에서는 이므로 결국 이 성립합니다.

중점을 연결한 직선의 길이

이번에는 중점을 연결한 직선의 길이를 구해볼까요?

사다리꼴의 윗변의 길이를 a, 아랫변의 길이를 b라고 해보죠. 점 A에서 점 C로 대각선을 긋고, 중점을 연결한 선과 만나는 점을 Q라고 할게요.

사다리꼴의 중점 연결 정리 증명 2

이므로 둘을 구해서 더하면 되겠죠?

△ABC에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

△ACD에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

중점을 연결한 직선과 대각선의 두 교점 사이의 거리

중점을 연결한 직선과 대각선이 만나는 점을 각각 점 P, Q라고 할게요.

사다리꼴의 중점 연결 정리 증명 3

로 구할 수 있어요.

△ABC에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

△ABD에서 이므로 삼각형의 중점 연결 정리의 역에 의해 에요.

위 그림에서 = 5cm, = 2cm일 때, a, b를 구하여라.

이므로 a = 2= 10(cm)

이고, 이므로 b = 2(5 + 2) = 14(cm)

등변사다리꼴의 중점 연결 정리

사각형의 중점을 연결하여 만든 사각형에서 사다리꼴은 없었지요? 여기서 해보자고요.

등변사다리꼴에서는 두 변의 중점을 바로 연결하는 게 아니라 네 변의 중점을 모두 연결해요. 등변사다리꼴의 네 변의 중점을 각각 E, F, G, H라고 할 때 이 네 점을 연결한 □EFGH는 마름모가 됩니다.

등변사다리꼴의 중점 연결 정리

점 A와 점 C를 연결하는 대각선을 그어보죠.

등변사다리꼴의 중점 연결 정리 증명

△ABC에서 이므로 삼각형의 중점 연결 정리에 의해 에요. △ADC에서 이므로 삼각형의 중점 연결 정리에 의해 에요. 정리해보면

점 B와 점 D를 연결하는 대각선을 그어서 같은 방법을 사용하면 를 구할 수 있어요.

등변사다리꼴의 성질에 따르면 두 대각선의 길이가 같아요. 이므로 결국 가 되어 네 변의 길이가 모두 같은 마름모가 됩니다.

함께 보면 좋은 글

삼각형의 중점연결 정리, 삼각형 중점연결 정리의 역
사다리꼴의 정의와 등변사다리꼴의 성질
사각형의 중점을 연결하여 만든 사각형

정리해볼까요

사다리꼴의 중점 연결 정리

  • 평행하지 않은 두 변의 중점을 연결한 선의 길이 = ½ (윗변 + 아랫변)
  • 등변사다리꼴의 중점 연결 정리: 등변사다리꼴 네 변의 중점을 연결한 도형은 마름모
<<    중2 수학 목차    >>
 
그리드형

삼각형의 중점 연결 정리입니다.

중점이 뭔지는 알죠? 정리가 뭔지도 알고요. (수학에서의 정의, 정리, 증명)

삼각형의 중점 연결 정리는 이름 그대로 삼각형에서 각 변의 중점을 연결했더니 어떤 특징이 있는데, 그 특징을 다른 여러 곳에 쓸 수 있는 거지요.

다른 내용과 달리 두세 개의 삼각형에 선을 여러 개 그어서 문제가 좀 복잡하게 나오기 때문에 기본을 잘 알고 있어야 하는 내용입니다.

삼각형의 중점 연결 정리

삼각형의 중점 연결 정리를 말로 표현하면 삼각형의 두 변의 길이의 중점을 연결한 직선은 나머지 한 변과 평행하고, 길이는 그 절반이라는 거예요.

그림으로 표현하면 훨씬 더 이해하기 쉬울 거예요.

삼각형의 중점 연결 정리

왼쪽 그림을 보세요.

점 M은 선분 AB의 중점, 점 N은 선분 AC의 중점이에요.

△ABC와 △AMN에서 삼각형의 중점 연결 정리 증명 1의 비가 성립하고, ∠A는 공통이에요. 따라서 두 삼각형은 SAS 닮음이에요. △ABC ∽ △AMN

두 삼각형이 닮음이면 대응각의 크기가 같죠? (닮은 도형의 성질) ∠ABC = ∠AMN, ∠ACB = ∠ANM으로 동위각의 크기가 같으므로 평행선의 성질에 의해 삼각형의 중점 연결 정리 증명 2예요. 또 다른 한 대응변에서도 2 : 1의 비가 성립하죠. 삼각형의 중점 연결 정리 증명 3

다음 그림을 보고 x를 구하여라.
삼각형의 중점 연결 정리 예제

삼각형의 양쪽 변의 중점을 연결한 선분은 다른 한 변과 평행하고, 길이는 그 절반이죠. 따라는 x는 16cm입니다.

삼각형의 중점 연결 정리의 역

이번에는 위 정리의 역이에요. 명제, 명제의 가정과 결론, 명제의 역에서 역은 명제의 가정과 결론의 자리를 바꾸는 거라고 했어요.

명제: 삼각형에서 두 변의 중점을 연결한 직선은 나머지 한 변과 평행하고 길이는 그 절반이다.
역 : 삼각형에서 한 변과 평행하고 길이가 절반인 직선은 다른 두 변의 중점을 연결한 선이다

명제와 역이 위처럼 되어야 맞지요? 그런데, 이 삼각형의 중점 연결 정리의 역은 좀 달라요. 내용은 같지만 표현을 다르게 해요. 삼각형에서 한 변의 중점을 지나고 다른 한 변과 평행한 직선은 나머지 한 변의 중점을 지난다.

두 역 사이에 어떤 차이가 있나요? 한 변의 중점을 지난다는 얘기가 추가되었고, 길이가 절반이라는 내용이 빠졌어요. 잘 이해하셔야 해요.

삼각형의 중점 연결 정리의 역

왼쪽 그림을 보세요.

△ABC와 △AMN에서 삼각형의 중점 연결 정리 증명 1이므로 ∠ABC = ∠AMN, ∠ACB = ∠ANM이에요. 두 대응각의 크기가 같으니까 두 삼각형은 AA 닮음이죠. △ABC ∽ △AMN

두 삼각형이 닮음이면 대응변의 길이의 비가 같아요. 삼각형의 중점 연결 정리 증명 3이므로 삼각형의 중점 연결 정리 증명 4이죠. 따라서 삼각형의 중점 연결 정리 증명 5이 됩니다.

삼각형에서 평행선과 선분의 길이의 비 2의 내용을 이용해도 삼각형의 중점 연결 정리 증명 6이 증명되죠.

다음 그림을 보고 x, y를 구하여라.
삼각형의 중점 연결 정리의 역 예제

△ABC에서 삼각형의 중점 연결 정리 예제 풀이 1이에요. 한 변의 중점을 지나고 다른 변과 평행한 직선은 나머지 한 변의 중점을 지나므로 삼각형의 중점 연결 정리 예제 풀이 2입니다. y = 10cm네요.

∠ABC = ∠DNC = 90° → 삼각형의 중점 연결 정리 예제 풀이 3
삼각형의 중점 연결 정리 예제 풀이 4 → N이 삼각형의 중점 연결 정리 예제 풀이 5의 중점

한 변의 중점을 지나는 선이 다른 변과 평행이므로 삼각형 중점 연결정리의 역에 의해 점 D도 삼각형의 중점 연결 정리 예제 풀이 6의 중점이에요. 그런데 그림에서 삼각형의 중점 연결 정리 예제 풀이 7이죠.

따라서 중점 연결정리에 의해 삼각형의 중점 연결 정리 예제 풀이 8이죠. 따라서 x = 10cm입니다.

함께 보면 좋은 글

삼각형에서 평행선과 선분의 길이의 비 1
삼각형에서 평행선과 선분의 길이의 비 2
삼각형의 닮음 조건, 삼각형 닮음의 조건
닮은 도형의 성질

정리해볼까요

삼각형의 중점 연결 정리

  • 삼각형에서 두 변의 중점을 지나는 직선은 나머지 한 변과 평행하고, 길이는 그 절반
  • 삼각형 중점 연결 정리의 역: 삼각형에서 한 변의 중점을 지나고 다른 변과 평행한 직선인 나머지 변의 중점을 지난다.
<<    중2 수학 목차    >>
 
그리드형

+ 최근글