분류 전체보기
유클리드의 증명, 가필드의 증명 - 피타고라스의 정리 증명
피타고라스의 정리는 수많은 방법으로 증명이 이루어졌어요. 그중에서 가장 유명한 증명 방법인 유클리드의 증명과 가필드의 증명 방법에 대해서 알아보죠.
피타고라스의 정리, 피타고라스 정리의 증명에서도 피타고라스의 증명과 바스카라의 증명을 알아봤지만, 이 글에서 설명할 유클리드의 증명과 가필드의 증명도 아주 유명한 증명이라서 꼭 이해해야 해요.
피타고라스의 증명 방법은 이 외에도 엄청나게 많아요. 그걸 다 알 필요는 없지만 그래도 두 글에서 설명했던 몇 가지 정도는 알고 있어야 해요.
유클리드의 증명
유클리드의 증명은 좀 까다로운 방법을 이용해서 증명합니다.
직각삼각형 세 변의 길이를 한 변으로 하는 정사각형을 그리고 그 넓이를 비교해서 증명하는 방법이에요. 아래 그림에서 같은 색으로 표시된 곳의 넓이가 같아요.
파란색으로 표시된 사각형의 넓이는 이고, 빨간색으로 표시된 사각형의 넓이는
이예요. □ABHI의 넓이는
이고요. 넓이의 비교를 통해서
=
+
이라는 걸 알 수 있는 거죠.
그림 중에서 필요한 부분만 따로 떼서 보시죠.
첫 번째, 두 번째 그림에서 밑변의 길이가 변 BE의 길이이고, 높이는 변 BC의 길이이기 때문에 (△BCE의 넓이) = (△ABE의 넓이)가 성립해요.
세 번째, 네 번째 그림에서도 밑변의 길이(변 BH의 길이)와 높이가 같으므로 (△CBH의 넓이) = (△JBH넓이)가 성립해요
이번에는 두 번째, 세 번째 삼각형을 보죠.
□BCDE가 정사각형이기 때문에 에요. □ABHI도 정사각형이기 때문에
입니다. 두 번째 그림의 ∠EBA = 90° + ∠CBA이고, 세 번째 그림의 ∠CBH = 90° + ∠CBA로 ∠EBA = ∠CBH가 되죠. 따라서 두 번째, 세 번째 그림에서 두 삼각형은 SAS 합동이에요. 두 도형이 합동이면 넓이가 같죠?
첫 번째, 두 번째 그림에서 삼각형은 넓이가 같고(합동 아님), 두 번째, 세 번째 그림의 삼각형은 합동으로 넓이가 같고, 세 번째 네 번째 그림의 삼각형은 넓이가 같아요(합동 아님). (1) = (2) ≡ (3) = (4)
이를 통해서 첫 번째 그림의 삼각형과 네 번째 그림의 삼각형의 넓이가 같다는 걸 알 수 있어요. (△BCE의 넓이) = (△BHJ의 넓이). 삼각형의 넓이가 같으니까 그 넓이가 2배인 사각형의 넓이도 같겠죠?
(□BCDE의 넓이) = 2 (△BCE의 넓이) = 입니다.
위 과정을 반복하면 □ACFG에서 같은 결론을 얻어서 두 사각형의 넓이가 같다는 걸 알 수 있고요.
결국 (□BCDE의 넓이) + (□ACFG의 넓이) = (□ABHI의 넓이)라는 걸 알 수 있지요. 정사각형의 넓이는 변의 길이의 제곱인데, 세 정사각형의 변의 길이는 직각삼각형 △ABC의 세 변의 길이이므로 △ABC에서 피타고라스의 정리가 성립함을 증명할 수 있는 거죠.
가필드의 증명
가필드의 증명은 직각삼각형 두 개를 연결하고, 거기에 선을 그어서 사다리꼴을 만들고 그 넓이를 비교하는 거예요.
□ABDE의 넓이 = △ABC의 넓이 + △CDE의 넓이 + △ACE의 넓이에요.
△ACE의 넓이를 먼저 구해보죠. 삼각형 △ABC 내각의 크기의 합은 180°에요. 그리고 ∠BCD는 평각으로 180°고요.
삼각형 △ABC 내각의 크기의 합은 180° = ∠A + ∠B + ∠C
∠BCD는 평각 180° = ∠ACB + ∠ACE + ∠ECD
∠C = ∠ACB, ∠A = ∠ ECD이므로 ∠ACE = ∠B = 90°
따라서 △ACE의 넓이는 c2이에요.
위 식을 완성해보죠. 사다리꼴 넓이 공식 알고 있죠? × (윗변 + 아랫변) × (높이)
□ABDE의 넓이 = △ABC의 넓이 + △CDE의 넓이 + △ACE의 넓이(a + b)2 =
ab × 2 +
c2
(a + b)2 = ab × 2 + c2
a2 + 2ab + b2 = 2ab + c2
a2 + b2 = c2
△ABC에서 빗변의 길이의 제곱은 다른 두 변의 길이의 제곱의 합과 같음을 증명했어요.
함께 보면 좋은 글
피타고라스의 정리, 피타고라스의 정리 증명
유클리드의 증명, 가필드의 증명 - 피타고라스의 정리 증명
삼각형 세 변의 길이와 각의 크기
피타고라스 정리의 활용 - 사각형
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
피타고라스의 정리, 피타고라스의 정리 증명
학교를 졸업한 지 오랜 시간이 지난 분들도 1학기 때 공부했던 근의 공식과 이 글에서 공부할 피타고라스의 정리는 들으면 기억이 난다고 할 거에요.
피타고라스의 정리는 이처럼 학교를 졸업한 지 몇 년이 지나도 기억나는 대표적인 공식이죠. 왜 기억할까요? 매우 오랫동안 매우 많은 시간을 공부했으니까요. 즉, 앞으로 수학 시간에 계속해서 나오는 아주 중요한 공식이라는 얘기예요.
이 글의 내용을 주의 깊게 보시면 앞으로 수학 시간에 헤매는 일은 줄어들 겁니다.
피타고라스의 정리
직각삼각형 ABC에서 각 꼭짓점의 대변의 길이를 각각 a, b, c라고 할 때, 빗변 c의 제곱은 다른 두 변 a, b의 제곱의 합과 같다.
a2 + b2 = c2
피타고라스의 정리의 증명
피타고라스 정리를 증명하는 방법은 10가지도 넘어요. 그 방법을 다 소개할 수는 없고, 몇 가지만 하죠.
피타고라스의 정리 증명 - 피타고라스의 증명
교과서에서도 설명하는 내용이고 가장 많이 이용하는 증명방법이에요. 핵심은 빗변이 아닌 두 변의 길이의 합을 한 변의 길이로 하는 정사각형을 만드는 거에요.
ΔABC에서 변 AC와 변 BC의 연장선을 그려서 한 변의 길이가 a + b인 정사각형을 만들어요.
그리고 그림처럼 점 A, E, G, B를 잡으세요. 그러면 큰 사각형은 작은 사각형 하나와 삼각형 네 개로 이루어지죠. 넓이를 구해볼까요?
(□CDFH의 넓이) = □AEGB + 4 × (ΔABC의 넓이) 가 돼요. 이 식에 길이를 넣어보면,
(a + b)2 = c2 + 4 × ½ab
a2 + 2ab + b2 = c2 + 2ab
a2 + b2 = c2
ΔABC에서 a2 + b2 = c2가 성립함을 알 수 있어요.
피타고라스의 정리 증명 - 바스카라의 증명
이번 증명의 핵심은 빗변의 길이를 한 변의 길이로 하는 정사각형을 만드는 거에요.
ΔABC와 합동인 삼각형 네 개를 붙여서 위 그림처럼 빗변을 한 변으로 하는 정사각형을 만듭니다. 큰 사각형은 작은 사각형 한 개와 삼각형 네 개로 이루어져 있습니다.
(□ABDE의 넓이) = □CFGH + 4 × (ΔABC의 넓이)
c2 = (b - a)2 + 4 × ½ab
c2 = a2 - 2ab + b2 + 2ab
a2 + b2 = c2
ΔABC에서 a2 + b2 = c2가 성립함을 알 수 있어요.
피타고라스의 정리를 증명하는 다른 방법은 유클리드의 증명, 가필드의 증명 - 피타고라스의 정리 증명에서 확인하세요.
피타고라스 정리의 역
정리와 역이 무슨 말인지는 알고 있죠? 2학년 때 배웠던 내용인데, 수학에서 정의, 정리, 증명, 명제, 명제의 가정과 결론, 명제의 역에서 확인할 수 있어요.
역은 가정과 결론을 바꾼 걸 말해요.
피타고라스의 정리: 직각삼각형에서 빗변 길이의 제곱은 다른 두 변의 길이의 제곱의 합과 같다.
피타고라스 정리의 역: 세 변의 길이가 a, b, c인 삼각형에서 a2 + b2 = c2이면 c가 빗변인 직각삼각형이다.
피타고라스의 정리에 자주 나오는 숫자들
피타고라스의 정리를 이용하는 문제에서 한 변의 길이를 구하는 건 공식에 넣어서 구하면 돼요. 식에 제곱이 들어있기 때문에 길이가 제곱근이 되는 경우도 있어요.
그런데 매번 공식에 넣어서 구하는 것도 귀찮잖아요. 그래서 피타고라스의 정리에서 자주 나오는 길이는 외워두면 편리해요.
세 변의 순서는 가장 짧은 변: 중간: 빗변의 순서에요.
세 변의 길이의 비가 3 : 4 : 5인 삼각형은 직각삼각형이에요. 32 + 42 = 52가 되거든요. 3cm, 4cm, 5cm인 경우만 되는 것이 아니라 길이의 비가 3:4:5인 경우 모두가 직각삼각형이에요. 6cm, 8cm, 10cm인 삼각형도 9cm, 12cm, 15cm인 삼각형도 직각삼각형이라는 거지요.
세 변의 길이의 비가 5:12:13인 경우도 직각삼각형이에요.
세 변의 길이의 비가 1:1:인 경우도 직각삼각형이에요. 이 경우에는 두 변의 길이가 같으니까 직각이등변삼각형이죠.
세 변의 길이의 비가 1::2인 경우도 직각삼각형이에요. 이 삼각형은 나중에 삼각비할 때 또 나오니까 꼭 외워두세요.
세 변의 길이가 6cm, xcm, 10cm인 삼각형이 있다. 이 삼각형이 직각삼각형일 때, x값들의 합을 구하시오.
직각삼각형이니까 피타고라스의 정리에 대입해보면 x을 구할 수 있어요. 그런데 문제에서 "값들의 합"이라고 했어요. 그러니까 x가 하나가 아니라는 뜻이에요.
세 변의 길이가 6, x, 10이에요. 10이 빗변의 길이라고 하면 식은 62 + x2 = 102가 돼요.
36 + x2 = 100
x2 = 64
x = 8 (x >0)
이번에는 10이 아니라 x가 빗변을 때를 구해보죠. 62 + 102 = x2
136 = x2
x =
x = (x > 0)
직각삼각형에서 빗변의 길이가 가장 기니까 6은 빗변이 될 수 없어요. 따라서 x값들의 합은 8 + 가 되겠네요.
함께 보면 좋은 글
유클리드의 증명, 가필드의 증명 - 피타고라스의 정리 증명
피타고라스 정리의 활용 - 사각형
삼각형 세 변의 길이와 각의 크기
히포크라테스의 초승달, 직각삼각형과 피타고라스의 정리
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교
삼각형의 내심과 외심은 상당히 비슷하지만 달라요. 헷갈리는 부분이 많아서 따로따로 공부하더라도 같이 보면 도움이 될 거예요.
그래서 이 글에서 내심과 외심의 차이를 좀 더 명확하게 알 수 있게 둘을 비교해 볼까 합니다.
표만 보지 말고, 삼각형의 외심과 내심에 대하여 설명한 다음 글들까지 보고, 완벽히 정리하세요. 아랫글들을 읽지 않으면 표를 봐도 이해할 수 없어요.
삼각형의 외심, 삼각형 외심의 성질
삼각형 외심의 위치, 삼각형 외심의 활용
삼각형의 내심, 삼각형 내심의 성질
삼각형 내심의 활용
글 마지막에는 이등변삼각형과 정삼각형의 내심과 외심에 관한 내용도 있으니까 한 번 보세요.
삼각형의 외심과 내심 비교, 삼각형의 내심과 외심의 차이
| 삼각형의 외심 | 삼각형의 내심 |
|---|---|
| 세 변의 수직이등분선의 교점 | 세 각의 이등분선의 교점 |
| 외심에서 세 꼭짓점에 이르는 거리가 같다. |
내심에서 세 변에 이르는 거리가 같다. |
| 이등변 삼각형 세 개 △OAB △OBC △OCA |
없음. |
| 세 쌍의 합동인 삼각형(SAS 합동) △ODA ≡ △ODB △OEB ≡ △OEC △OFC ≡ △OFA |
세 쌍의 합동인 삼각형(RHA 합동) △IAD ≡ △IAF △IBD ≡ △IBE △ICE ≡ △ICF |
외접원: 삼각형의 세 꼭짓점을 지나는 삼각형 바깥의 원 외접원의 반지름: 외심에서 꼭짓점까지의 거리 |
내접원: 삼각형의 세 변에 접하는 삼각형 안의 원 내접원의 반지름: 내심에서 변까지의 거리 |
예각삼각형: 내부 둔각삼각형: 외부 직각삼각형: 빗변의 중점 |
삼각형의 내부 |
∠x + ∠y + ∠z = 90° |
∠x + ∠y + ∠z = 90° |
∠BOC = 2∠A |
∠BIC = 90° + ½∠A |
△ABC 넓이 = ½r(△ABC 둘레 길이) |
이등변삼각형과 정삼각형의 내심과 외심
이등변삼각형의 내심과 외심
이등변삼각형의 성질, 이등변삼각형이 되는 조건에 따르면 꼭지각의 이등분선은 밑변을 수직이등분한다고 했어요. 즉 (꼭지각의 이등분선) = (밑변의 수직이등분선)이 되는 거죠. 내심은 꼭지각의 이등분선 위에 있고, 외심은 밑변의 수직이등분선 위에 있어요. 따라서 이등변삼각형의 내심과 외심은 같은 선위에 있다는 걸 알 수 있어요.
정삼각형의 내심과 외심
정삼각형은 세 각의 크기가 모두 같고, 세 변의 길이도 같아요. 기본적으로 이등변삼각형의 성질을 가지고 있어요. 이등변삼각형에서와 마찬가지로 (꼭지각의 이등분선) = (밑변의 수직이등분선)에요. 정삼각형은 따지고 보면 세 개의 꼭지각이 있는 것과 같죠? 세 꼭지각의 이등분선의 교점은 세 밑변의 수직이등분선의 교점이므로 외심과 내심이 같아요.
함께 보면 좋은 글
삼각형의 외심, 삼각형 외심의 성질
삼각형 외심의 위치, 삼각형 외심의 활용
삼각형의 내심, 삼각형 내심의 성질
삼각형 내심의 활용
삼각형 내심의 활용
삼각형의 내심은 세 각의 이등분선의 교점이에요. 이 교점에서 세 변에 이르는 거리는 같고요. 교점에서 변에 이르는 거리를 반지름으로 하는 원은 세 변에 접하므로 내접원이라고 하죠.
삼각형의 내심을 중심으로 세 쌍의 합동인 삼각형이 생겨요.
삼각형의 내심은 삼각형의 종류와 상관없이 그 의미상 모든 삼각형의 내부에 있어요.
위 내용을 바탕으로 해서 삼각형 내심을 여러 가지로 활용하는 방법을 알아보죠.
삼각형 내심의 활용
점 I가 △ABC의 내심일 때, ∠x + ∠y + ∠z = 90°
점 I가 내심이면 ∠IAB = ∠IAC, ∠IBA = ∠IBC, ∠ICB = ∠ICA에요. 점 I는 각의 이등분선의 교점이니까요.
삼각형의 내각의 합에 따라서 2∠x + 2∠y + 2∠z = 180°이므로 ∠x + ∠y + ∠z = 90°가 됩니다.
∠BIC = 90° +
∠A
△IAB만 따로 떼서 생각해보죠. 변 IA의 연장선을 그어보세요.
삼각형 내각의 합과 외각의 크기, 외각의 합에서 한 외각의 크기는 이웃하지 않은 두 내각의 크기의 합과 같다는 걸 공부했어요.
∠BIE = ∠x + ∠y입니다.
이번에는 △IAC를 생각해보면, 같은 이유로 ∠CIE = ∠x + ∠z가 되죠.
∠BIC = ∠BIE + ∠CIE = ∠x+ ∠y + ∠x + ∠z가 성립해요.
위에서 ∠x + ∠y + ∠z = 90°라고 했잖아요. 따라서 식을 정리하면 ∠BIC = 90° + ∠x가 돼요. ∠x = ∠A니까 결국 ∠BIC = 90° +
∠A가 됩니다.
△ABC의 넓이 =
r(x + y + z)
이번에는 x, y, z가 각의 크기가 아닌 세 변의 길이를 뜻해요. 위와 혼동하지 마세요.
내접원의 반지름 r은 내심 I에서 변에 수직으로 이르는 거리, 즉 △IAB의 높이에 해당해요. 따라서 △IAB의 넓이는 × x × r이죠.
마찬가지로 △IBC의 넓이는 × y × r이고, △ICA의 넓이는
× z × r이에요.
△ABC의 넓이 = △IAB 넓이 + △IBC 넓이 + △ICA넓이
= × x × r +
× y × r +
× z × r
두 번째 줄에서 세 번째 줄로 바뀌는 이유는 3학년 때 공부할 거예요. 여기서는 그냥 '이렇게 바뀌는구나.' 하고 넘어가요.
△ABC의 내접원의 반지름이 2cm이고, △ABC의 넓이가 20cm2일 때, △ABC의 둘레의 길이를 구하여라.
내접원의 반지름과 둘레를 이용해서 삼각형의 넓이를 구하는 공식은 S = r × (삼각형 둘레의 길이)에요. 여기에 대입을 해보죠.
20 = × 2 × (둘레의 길이)
(둘레의 길이) = 20 (cm)
함께 보면 좋은 글
삼각형의 외심, 삼각형 외심의 성질
삼각형 외심의 위치, 삼각형 외심의 활용
삼각형의 내심, 삼각형 내심의 성질
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교
삼각형의 내심, 삼각형 내심의 성질
삼각형의 외심에 이어 삼각형의 내심입니다. 외심은 외접원의 중심이에요. 그럼 내심은 뭔지 추측할 수 있겠죠? 내심과 외심은 상당히 비슷해요. 그러니까 헷갈리기 쉽죠. 둘의 차이점을 잘 이해하고, 구분할 줄 알아야 해요.
삼각형의 내심에서도 작은 삼각형과 변, 각 등의 알파벳이 많이 나와요. 하나하나 짚어가면서 그림과 잘 비교해서 보세요.
그럼, 삼각형의 내심이 뭔지 어떤 특징이 있는지 알아보죠.
삼각형의 내심
삼각형 내심의 증명
삼각형의 세 변의 수직이등분선의 교점이 외심이에요. 외심에서 세 꼭짓점에 이르는 거리는 같았죠?
그럼 이번에는 세 각의 이등분선의 교점을 알아볼까요? 세 각의 이등분선이 한 점에서 만나는지부터 알아보죠.
△ABC가 있어요.
∠A의 이등분선과 ∠B의 이등분선의 교점을 점 I라고 해보죠. 그리고 점 I에서 변 AB, BC, CA에 수선의 발을 내리고 각각 D, E, F라고 해봐요.
세 각의 이등분선이 한 점에서 만나는지를 증명하려면 매우 복잡해요. 그래서 일단 두 각(∠A, ∠B)의 이등분선의 교점(I)과 다른 한 점(C)을 지나는 선()이 한 각(∠C)을 이등분하는지 확인하는 방법으로 증명할 거예요.
∠A의 이등분선과 ∠B의 이등분선의 교점을 점 I라고 하면 ∠IAD = ∠IAF, ∠IBD = ∠IBE죠. 여기에 에 의해 나눠지는 두 각 ∠ICE = ∠ICF가 성립하는지만 확인하면 삼각형 세 각의 이등분선이 한 점에서 만난다는 걸 증명할 수 있다는 얘기예요.
△IAD와 △IAF를 보세요. ∠IDA = ∠IFA = 90°이고요. 빗변는 공통이에요. ∠A를 이등분한 각이므로 ∠IAD = ∠IAF이고요. RHA 합동에 의해서 △IAD ≡ △IAF가 됩니다. 대응변인 (1)
=
가 성립하죠.
이번에는 △IBD와 △IBE를 보세요. ∠IDB = ∠IEB = 90°이고요. 빗변는 공통이에요. ∠B를 이등분한 각이므로 ∠IBD = ∠IBE에요. RHA합동에 의해서 △IBD ≡ △IBE가 됩니다. 대응변인 (2)
=
가 성립하죠.
(1), (2)에 의해서 =
=
가 됩니다.
이번에는 △ICE, △ICF를 보세요. ∠IEC = ∠IFC = 90°, 는 공통,
=
이므로 RHS 합동에 의해서 △ICE ≡ △ICF가 되죠. 따라서 대응각인 ∠ICE = ∠ICF가 성립합니다.
결국 가 ∠C의 이등분선으로 세 각의 이등분선이 점 I에서 만난다는 걸 알 수 있지요.
세 쌍의 합동인 삼각형
RHA합동에 의해서 △IAD ≡ △IAF, △IBD ≡ △IBE, △ICE ≡ △ICF 라는 합동인 삼각형이 세 쌍이 생겨요.
삼각형의 외심과 달리 이등변삼각형은 없습니다.
삼각형의 내심의 성질 - 내심에서 세 변에 이르는 거리는 같다.
세 각의 이등분선이 한 점에서 만나는지를 증명하는 과정에서 =
=
가 나와요. 즉 점 I에서 세 변에 이르는 거리가 같다는 얘기죠.
점 I를 중심으로 하고, 를 반지름으로 하는 원을 그린다고 해볼까요? 이 원은 삼각형의 세 변에 모두 접하고 삼각형의 내부에 있어요. 이처럼 삼각형의 세 변에 접하는 원을 내접원 (Inner circle)이라고 해요. 그리고 내접원의 중심을 내심이라고 하고 I로 표시해요.
삼각형 내심의 성질: 내심에서 세 변에 이르는 길이는 같다. =
=
내접원은 그 의미상 삼각형의 종류와 상관없이 삼각형의 내부에 있을 수밖에 없어요. 따라서 삼각형의 내심도 무조건 삼각형의 내부에 있어요.
삼각형 외심의 위치, 삼각형 외심의 활용
이번에는 예각삼각형, 둔각삼각형, 직각삼각형에서 외심이 어디에 있는지 알아볼 거예요. 또 삼각형의 외심을 여러 가지 활용하는 방법도 알아볼 거고요.
먼저 삼각형의 외심, 삼각형 외심의 성질을 간단히 정리해보죠.
다각형의 꼭짓점을 모두 지나는 원을 외접원이라고 하고, 외접원의 중심을 외심이라고 해요. 삼각형에서 외심은 각 변의 수직이등분선의 교점이고, 외심에서 세 꼭짓점에 이르는 거리는 같지요.
삼각형 외심의 위치
예각삼각형, 둔각삼각형, 직각삼각형에서 외심의 위치
삼각형은 세 내각이 모두 예각이면 예각삼각형, 한 각이 둔각이면 둔각삼각형, 한 각이 직각이면 직각삼각형으로 나눠요.
예각삼각형은 삼각형의 외심, 삼각형 외심의 성질에서 본 것처럼 삼각형의 외심이 삼각형의 내부에 있어요. 둔각삼각형은 삼각형의 외부에 외심이 있고요. 정확하게 말하면 둔각의 대변, 길이가 가장 긴 변의 바깥쪽에 외심이 있어요.
직각삼각형은 외심이 빗변에 있는데, 바로 빗변의 중점이 외심이 됩니다. 따라서 외접원의 반지름의 길이는 빗변 길이의 절반이죠.
△ABC가 직각삼각형이고, 일 때, ∠DBC의 크기를 구하여라.
직각삼각형에서 빗변의 중점은 삼각형의 외심이에요. 따라서 이죠. 즉 △DBC는 이등변삼각형이에요. 이등변삼각형에서 밑각의 크기는 같으니까 ∠DBC = ∠DCB = 20°네요.
삼각형 외심의 활용
점 O가 △ABC의 외심일 때, ∠x + ∠y + ∠z = 90°
점 O가 삼각형의 외심이니까 외심에서 각 꼭짓점에 이르는 거리가 같아요. =
=
니까 △OAB, △OBC, △OCA는 이등변삼각형이에요. 이등변삼각형의 성질, 이등변삼각형이 되는 조건에 따라서 ∠OAB = ∠OBA = ∠x, ∠OBC = ∠OCB = ∠y, ∠OCA = ∠OAC = ∠z가 되죠.
삼각형 내각의 합은 180°이므로 2∠x + 2∠y + 2∠z = 180°이고, ∠x + ∠y + ∠z = 90°가 됩니다.
∠BOC = 2∠A
아래 그림처럼 △OAB만 따로 떼서 생각해보죠. 선분 OA의 연장선을 그어요.
삼각형 외각의 크기, 외각의 합에 따르면 삼각형의 외각은 이웃하지 않은 두 내각의 합과 같아요. ∠BOD = ∠OAB + ∠OBA
여기서, ∠OAB = ∠OBA니까 ∠BOD는 2∠OAB에요.
마찬가지로 △OAC에서 삼각형의 외각과, ∠OCA = ∠OAC에 따라 ∠COD = 2∠OAC가 되지요.
결국, ∠BOC = ∠BOD + ∠COD = 2∠OAB + 2∠OAC = 2∠A가 됩니다.
점 O가 △ABC의 외접원의 중심일 때, ∠C의 크기를 구하여라.
점 O가 외심이므로, △OAB는 인 이등변삼각형이에요. 따라서 ∠OAB = ∠OBA = 30°입니다. ∠AOB = 180° - 60° = 120°예요.
∠AOB = 2∠C이므로 ∠C = 120 ÷ 2 = 60°네요.
함께 보면 좋은 글
삼각형의 외심, 삼각형 외심의 성질
삼각형의 내심, 삼각형 내심의 성질
삼각형 내심의 활용
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교
삼각형의 외심, 삼각형 외심의 성질
이제부터 공부할 삼각형의 외심과 내심은 매우 중요해요. 삼각형의 내심과 외심은 도형 관련 문제에서 제일 많이 나오는 것 중의 하나입니다. 내용도 어려운 편이에요.
이제까지 했던 것에 비해서 선분이나 각이 많이 나오니까 알파벳 하나하나에 집중해서 보세요. 그림이 보기 어려우면 교과서나 참고서의 그림을 함께 보세요. 색이 잘 칠해져 있어서 보기가 더 편할 수도 있어요.
삼각형 외심의 증명
삼각형에서 각 변의 수직이등분선을 그으면 한 점에서 만나요. 이 점을 외심이라고 하는데 이 점이 아주 중요해요. 먼저 세 변의 수직이등분선이 한 점에서 만나는지부터 알아보죠.
△ABC에서 ,
의 수직이등분선을 그려요. 두 수직이등분선은 평행하지 않으니까 어느 한 점에서 만날 거예요. 그 점을 점 O라고 하죠.
의 중점을 점 D,
의 중점을 점 E라고 할게요. 그리고 점 O에서
에 수선을 내리고 수선의 발을 점 F라고 하지요. 또 점 O에서 세 꼭짓점 A, B, C로 선을 긋습니다.
세 변의 수직이등분선이 한 점에서 만나는지를 확인하려면 매우 복잡하니까 잘 보세요. 일단 두 변 (,
)의 수직이등분선의 교점(O)에서 다른 한 변(
)에 수선을 내려요. 그리고 수선의 발(점 F)이 한 변 (
)의 중점인지 확인하는 방법으로 확인할 거예요.
의 수직이등분선과
의 수직이등분선의 교점을 점 O라고 하면
,
,
,
죠. 점 O에서
에 내린 수선의 발이 점 F니까
죠. 그렇다면
인지만 확인하면 세 변의 수직이등분선이 한 점에서 만난다는 걸 확인할 수 있다는 얘기예요.
△ODA와 △ODB는 (이등분), ∠ODA = ∠ODB = 90°(수직),
가 공통인 SAS합동이에요. 따라서 대응변인 (1)
=
가 돼요.
같은 방법으로 △BOC에서 (2) =
가 됩니다.
결국 (1), (2)에 의해서 =
=
가 되는 거예요.
∠OFA = ∠OFC = 90°, =
이고,
는 공통이므로 RHS 합동에 의해서 △OFA ≡ △OFC이죠. 대응변인
가 됩니다.
이고, ∠OFA = ∠OFC = 90°이므로
가
의 수직이등분선임을 알 수 있어요.
결국, 세 변의 수직이등분선은 한 점 O에서 만나게 된다는 걸 증명했어요.
세 개의 이등변삼각형과 세 쌍의 합동인 삼각형
먼저, 세 개의 이등변삼각형을 찾아보죠.
=
이니까 △OAB는 이등변삼각형이겠죠? 이등변삼각형의 성질에 의해서 밑각의 크기는 같으니까 ∠OAB = ∠OBA이고요. 마찬가지로 △OBC도 이등변삼각형이고, ∠OBC = ∠OCB입니다. △OCA도 이등변삼각형, ∠OCA = ∠OAC고요.
또, 수직이등분선을 이용해서 삼각형을 6개 만들 수 있어요. 위에서 확인했던 것처럼 SAS 합동인 삼각형이요. △ODA ≡ △ODB, △OEB ≡ △OEC, △OFC ≡ △OFA로 총 3쌍의 합동인 삼각형이 있어요.
삼각형의 외심의 성질 - 외심에서 세 꼭짓점에 이르는 거리는 같다.
위 증명 과정에서 중요한 게 하나 있어요. 점 O에서 삼각형의 세 꼭짓점 A, B, C에 이르는 거리가 같죠. =
=
점 O를 중심으로 하고 를 반지름으로 하는 원을 그리면 삼각형의 세 꼭짓점을 모두 지나는 원을 그릴 수 있죠? 이 원은 삼각형의 바깥에 있는데, 꼭짓점과 만나요. 이렇게 만나는 걸 접한다고 해요.
이렇게 다각형의 꼭짓점을 모두 지나는(접하는) 원을 외접원이라고 해요. 그리고 그 외접원의 중심을 외심이라고 하고요. 외심은 Outer center에서 첫 글자를 따서 O라고 표시합니다.
삼각형의 외심
삼각형 세 변의 수직이등분선의 교점
외심에서 세 꼭짓점에 이르는 거리는 같다. =
=
외심은 세 변의 수직이등분선의 교점인데, 세 선이 한 점에서 만나니까 두 변의 수직이등분선만 그어서도 알 수 있어요.
함께 보면 좋은 글
삼각형 외심의 위치, 삼각형 외심의 활용
삼각형의 내심, 삼각형 내심의 성질
삼각형 내심의 활용
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교
각의 이등분선의 성질 - 직각삼각형의 합동조건 이용
각의 이등분선에 대해서 알죠? 1학년 때 각의 이등분선의 작도, 직각의 삼등분선의 작도에서 봤던 기억이 날 거예요.
이제는 그리는 것을 넘어서 각의 이등분선이 어떤 특징이 있는지 알아보죠. 그리는 것보다는 이게 더 쉬울 수 있어요.
각의 이등분선의 특징을 알아보려면 직각삼각형의 합동, 직각삼각형의 합동 조건을 알아야 해요.
직각삼각형의 합동조건
- RHA 합동: 빗변(H)의 길이와 한 예각(A)의 크기가 같은 두 직각삼각형은 합동
- RHS 합동: 빗변(H)의 길이와 다른 한 변(S)의 길이가 같은 두 직각삼각형은 합동
각의 이등분선
각의 이등분선은 이름 그대로 어떤 각을 똑같은 크기로 둘로 나누는 선이에요. 이등분선 위의 한 점과 각의 두 변 사이에 어떤 특징이 있을까요?
각의 이등분선 위의 한 점에서 그 각의 두 변에 이르는 거리는 같다.
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리에서 점과 직선 사이의 거리를 구하는 방법에 대해서 배웠어요. 점과 직선 사이의 거리를 구할 때는 점에서 직선에 수선을 내려서 만나는 점, 즉 수선의 발과의 거리를 구하죠.
각의 이등분선 위의 한 점에서 각 변에 수선의 발을 내리게 되면 각의 꼭짓점과 수선의 발, 이등분선위 점으로 이루어진 삼각형을 만들 수 있어요. 그런데 이게 직각삼각형이에요.
직각삼각형이 나오면 직각삼각형의 합동 조건을 이용한다는 걸 눈치채야 해요
아래 그림을 보세요.
∠AOB가 있어요. 이 각의 이등분선을 긋고 이등분선 위의 점 P에서 각의 변 OA와 변 OB에 수선을 내렸더니, △AOP와 △BOP가 생겨요.
일단 여기까지 해놓고, 위 성질을 증명해보죠.
가정: ∠AOP = ∠BOP(각의 이등분선), ∠OAP = ∠OBP = 90°(수선)
결론:
증명: (1) ∠AOP = ∠BOP (가정)
(2) ∠OAP = ∠OBP = 90° (가정)
(3) 는 공통
두 직각삼각형이 있는데, 빗변은 공통이고 한 예각의 크기가 같아요. RHA 합동이죠? △AOP ≡ △BOP
따라서 가 됩니다. (증명 끝.)
각의 두 변에서 같은 거리에 있는 점은 각의 이등분선 위에 있다.
이 성질은 위의 성질을 거꾸로 뒤집은 거예요. 마찬가지로 점과 직선 사이의 거리를 구해야 하니 수선의 발을 내려야 해요.
가정: , ∠OAP = ∠OBP = 90°(수선)
결론: ∠AOP = ∠BOP
증명: (1) (가정)
(2) ∠OAP = ∠OBP = 90° (가정)
(3) 는 공통
(1), (2), (3)에 의해서 빗변은 공통이고, 한 변의 길이가 같은 두 직각삼각형이기 때문에 RHS 합동이에요. △AOP ≡ △BOP
따라서 대응각인 ∠AOP = ∠BOP이 되죠. (증명 끝.)
직각삼각형의 합동 조건을 이용해서 각의 이등분선의 성질을 알아봤어요.
다음 그림에서 x를 구하여라.
△ABC가 직각삼각형인데, 그 안에 △ABD와 △AED, △CDE라는 직각삼각형 세 개 가 더 있네요.
△ABD에서 한 각은 직각, 다른 각은 60°니까 남은 ∠BAD는 30°겠죠?
△ABD와 △AED는 빗변 가 공통이고 한 변의 길이가 같은 (
) 직각삼각형으로 RHS 합동이에요. 따라서 ∠BAD와 ∠EAD는 같아요. ∠BAD = ∠EAD = 30°
따라서 ∠BAE = ∠BAD + ∠EAD = 60°죠.
큰 삼각형 △ABC에서 ∠A는 60°, ∠B는 90°니까 x = 30°이 되겠네요.
함께 보면 좋은 글
직각삼각형의 합동, 직각삼각형의 합동 조건
이등변삼각형의 성질, 이등변삼각형이 되는 조건
삼각형의 외심, 삼각형 외심의 성질
삼각형의 내심, 삼각형 내심의 성질
직각삼각형의 합동, 직각삼각형의 합동 조건
이번 글에서는 직각삼각형에 대해서 공부할 거예요. 직각삼각형이란 무엇인지 두 직각삼각형이 합동이 되려면 어떤 조건이 있는지요.
먼저 삼각형의 합동 조건을 혹시 기억하고 있나요? 삼각형의 합동조건은 삼각형의 결정조건, 삼각형의 작도와 같아요.
SSS 합동: 세 변의 길이가 같은 두 삼각형은 합동이다.
SAS 합동: 두 변의 길이와 사이에 끼인각의 크기가 같은 두 삼각형은 합동이다.
ASA 합동: 한 변의 길이와 양 끝각의 크기가 같은 두 삼각형은 합동이다.
직각삼각형
직각삼각형은 삼각형의 세 내각 중에서 한 각이 직각(90°)인 삼각형을 말해요. 한 각이 직각이면 나머지 두 각은 모두 예각이 되겠죠? 삼각형 내각의 합은 180°인데, 한 각이 90도면 나머지 두 각을 더해서 90°가 되어야 하잖아요.
직각삼각형에서 직각인 각은 영어 Right Angle의 첫 글자를 따서 R이라고 씁니다. 직각이 아닌 두 예각은 그냥 Angle의 A를 따서 쓰고요. 직각의 대변인 변을 빗변이라고 하는데, 알파벳 H(Hypotenuse)로 쓰고요. 빗변이 아닌 다른 두 변은 S(Side)라고 해요.
직각삼각형의 합동조건
직각삼각형도 삼각형이기 때문에 삼각형의 합동조건을 그대로 따릅니다. 하지만 이름에서 알 수 있듯이 한 각이 직각이에요. 그래서 일반적인 삼각형의 합동 조건에 추가로 두 가지 경우가 더 있어요.
삼각형의 합동을 SSS, SAS, ASA합동이라고 불렀던 것처럼 직각삼각형에도 이런 이름으로 합동 조건을 불러요.
직각삼각형의 합동조건
- RHA 합동: 빗변(H)의 길이와 한 예각(A)의 크기가 같은 두 직각삼각형은 합동
- RHS 합동: 빗변(H)의 길이와 다른 한 변(S)의 길이가 같은 두 직각삼각형은 합동
일단 직각이 있고, 빗변의 길이는 같아요.(RH) 거기에 추가로 다른 한 변의 길이가 같은지 예각의 크기가 같은지 보는 거죠.
RHA 합동: 빗변(H)의 길이와 한 예각(A)의 크기가 같은 두 직각삼각형은 합동
가정: ∠C = ∠F = 90°, , ∠B = ∠E
결론: △ABC ≡ △DEF
증명: 삼각형 내각의 합은 180°에요. ∠A + ∠B + ∠C = ∠D + ∠E + ∠F = 180°에서 ∠C = ∠F이고 ∠B = ∠E이므로 ∠A = ∠D에요.
빗변의 길이가 같고(가정) 빗변의 양쪽 끝각의 크기가 같은 ASA 합동입니다.
따라서 △ABC ≡ △DEF (증명 끝.)
RHS 합동: 빗변(H)의 길이와 다른 한 변(S)의 길이가 같은 두 직각삼각형은 합동
가정: ∠C = ∠F = 90°, ,
결론: △ABC ≡ △DEF
증명: △DEF를 빗변이 왼쪽에 있는데, 오른쪽으로 오게 반 바퀴만 돌려보죠. 니까 두 변이 겹치게 해서 △ABC와 △DEF를 하나로 합쳐볼까요?
그러면 인 이등변삼각형이 돼요. 이등변삼각형의 성질, 이등변삼각형이 되는 조건에서 이등변삼각형은 밑각의 크기가 같다고 했잖아요. 그럼 ∠B = ∠E가 돼요.
삼각형 내각의 합은 180°에요. ∠A + ∠B + ∠C = ∠D + ∠E + ∠F = 180°에서 ∠C = ∠F이고 ∠B = ∠E이므로 (1) ∠A = ∠D에요.
빗변의 길이와 한 변의 길이가 같고(가정) 그 사이에 끼인각의 크기가 같은 SAS 합동이에요.
△ABC ≡ △DEF (증명 끝.)
다음 그림에서 ∠BAC = 90°이고, 이다. 선분 AD의 길이를 구하여라.
△ABD를 보세요. 삼각형 내각의 크기의 합은 180°인데 ∠ADB가 90°니까 다른 두 각의 합은 90°에요. ∠BAD + ∠ABD = 90°
∠DAE는 평각이라서 180°인데, ∠BAC가 90°니까 ∠BAD + ∠CAE = 90°가 되어야겠죠?
∠BAD + ∠ABD = 90°
∠BAD + ∠CAE = 90°
두 식을 빼면, ∠ABD = ∠CAE가 돼요.
, 한 각은 직각이고, 예각 중 하나가 같으니까 △ABD와 △ACE는 RHA합동이에요.
변 AE의 길이는 대응변인 변 BD의 길이와 같아요. 5cm죠? 선분 DE의 길이가 8cm이고 선분 AE의 길이가 5cm이므로 선분 AD의 길이는 3cm가 됩니다.
함께 보면 좋은 글
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
이등변삼각형의 성질, 이등변삼각형이 되는 조건
삼각형의 외심, 삼각형 외심의 성질
삼각형의 내심, 삼각형 내심의 성질
이등변삼각형의 성질, 이등변삼각형이 되는 조건
이제부터 본격적으로 도형과 도형의 성질에 대해서 알아볼 거예요.
우리가 알고 있는 도형들의 정확한 수학적 정의를 알아보고, 그 정의를 이용해서 증명도 해보죠. 증명된 명제는 정리로서 기억해야해요.
증명에 많이 사용되는 정의 중 가장 대표적인 게 삼각형의 합동조건이에요. 이 글에서도 삼각형의 합동조건을 계속 사용할 거니까 한 번 읽어보세요.
이등변삼각형의 정의, 이등변삼각형의 성질
이등변삼각형은 두 변의 길이가 같은 삼각형이에요. 이등변삼각형에서 길이가 같은 두 변으로 이루어진 각을 꼭지각이라고 해요. 그리고 꼭지각이 아닌 다른 두 각을 밑각이라고 하고, 꼭지각의 대변을 밑변이라고 해요.
이등변삼각형의 성질
- 두 밑각의 크기가 같다.
- 꼭지각의 이등분선은 밑변을 수직이등분한다.
이등변삼각형이 무엇인지, 꼭지각과 밑각, 밑변은 어떤 것인지 대한 설명은 정의에 해당해요. 그리고 이등변삼각형의 성질은 참으로 밝혀진 명제, 즉 정리에 해당하죠. 정의와 정리의 차이를 알 수 있겠죠? 수학의 정의, 정리, 증명
그럼 참으로 밝혀진 명제인 이등변삼각형의 성질을 증명해볼까요. 일단 증명할 때는 가정과 결론, 증명으로 나눠서 해요.
이등변삼각형에서 두 밑각의 크기는 같다.
이등변삼각형이니까 두 변의 길이가 같아요. 이걸 가정으로 쓰고, "두 밑각의 크기가 같다"를 결론으로 하면 되네요.
가정: △ABC에서 이다.
결론: ∠B = ∠C이다
△ABC에서 꼭지각 ∠A의 각의 이등분선을 긋고 밑변과 만나는 점을 점 D라고 해보죠. 그러면 △ABD와 △ACD로 나뉘어요.
(1) (가정)
(2) ∠BAD = ∠CAD (∠A의 이등분)
(3) 는 공통
(1), (2), (3)에서 △ABD와 △ACD는 두 변의 길이와 그 끼인각이 같은 합동인 삼각형이에요. △ABD ≡ △ACD
따라서 대응각인 ∠B와 ∠C는 크기가 같죠. (증명 끝.)
이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분한다.
이등변삼각형이니까 두 변의 길이가 같고요. 꼭지각의 이등분선이라고 했으니까 둘로 나눈 각은 크기가 같겠죠? 이걸 가정과 결론으로 써보죠.
가정: △ABC에서 , ∠BAD = ∠CAD이다.
결론: ,
이다
(1) (이등변삼각형, 가정)
(2) ∠BAD = ∠CAD (∠A의 이등분, 가정)
(3) 는 공통
(1), (2), (3)에서 △ABD와 △ACD는 두 변의 길이와 그 끼인각이 같은 합동인 삼각형이에요. (4) △ABD ≡ △ACD
대응변인 선분 BD와 선분 CD의 길이는 같죠. (5) 이다
그리고, 대응각인 ∠BDA와 ∠CDA도 같아요. ∠BDA = ∠CDA
그런데 이 크기가 같은 두 각을 더하면 평각인 ∠BDC가 돼요. ∠BDA + ∠CDA = 180° 결국 (6) ∠BDA = ∠CDA = 90°인 거죠.
(4)에 의해 가 되고, (6)에 의해서
가 됩니다. (증명 끝.)
이등변삼각형이 되는 조건
이등변삼각형이 어떤 삼각형인지 어떤 성질이 있는지 알아봤어요.
이번에는 반대로 어떤 삼각형이 있는데, 이게 이등변삼각형인지 아닌지 알아보려고 해요. 어떻게 알 수 있을까요?
이등변삼각형의 성질을 거꾸로 하면 돼요. 이등변삼각형은 두 밑각의 크기가 같다고 했어요. 이걸 거꾸로 해서 세 내각 중 두 내각의 크기가 같은 삼각형이 이등변삼각형인 거죠.
이등변삼각형이 될 조건 - 두 내각의 크기가 같은 삼각형은 이등변삼각형
이것도 가정과 결론으로 나누어 증명해보죠.
가정: △ABC에서 ∠B = ∠C
결론:
△ABC에서 ∠A의 각의 이등분선을 긋고 밑변과 만나는 점을 점 D라고 해보죠. 그러면 △ABD와 △ACD로 나뉘어요.
(1) ∠BAD = ∠CAD (∠A의 이등분)
(2) 는 공통
모든 삼각형 내각의 합은 180°에요. △ABD의 내각의 합과 △ACD의 내각의 합은 같죠.
∠BAD + ∠B + ∠ADB = ∠CAD + ∠C + ∠ADC인데, (1) ∠BAD = ∠CAD와 가정 ∠B = ∠C에 의해서 (3) ∠ADB = ∠ADC가 돼요. 결국 두 삼각형에서 세 각의 크기가 서로 같아요.
(1), (2), (3)에 의해서 △ABD와 △ACD는 한 변의 길이와 그 양끝각이 같은 합동이지요. (4) △ABD ≡ △ACD.
따라서 대응변인 선분 AB와 선분 AC의 길이가 같아요. (증명 끝.)
다음 그림에서 x를 구하여라.
그림에 보면 선분 AB와 선분 AC의 길이가 같다고 표시되어 있네요. 즉 이등변삼각형이에요. 이등변삼각형에서 밑각의 크기는 서로 같아요.
삼각형 내각의 크기의 합은 180°인데, 한 각은 110° 다른 두 같은 x로 크기가 같아요.
x + x + 110 = 180
x = 35(°)
수학의 정의, 정리, 증명
명제에 이어 정의와 증명, 정리에 관한 내용이에요.
이 단원에서는 새로운 내용을 배우기보다는 기존에 알고 있는 용어들을 이용할 거예요. 비슷한 용어들이 나오고 그 뜻의 차이가 크지 않아서 헷갈릴 수 있으니까 이 기회에 그 뜻을 정확하게 정리하세요. 특히 도형과 관련된 내용이 많이 나오니까 1학년 때 배웠던 도형 관련 내용들을 쭉 한 번 읽어보는 것도 좋아요.
정의, 정리, 증명
정의는 용어의 뜻을 명확하게 정한 것으로 용어의 뜻에 대한 약속이에요. 약속이므로 증명할 필요가 없어요. 약속은 참, 거짓의 문제가 아니니까요.
방정식이라는 용어가 있어요. 식에 미지수가 있어서 이 미지수가 특정한 값을 가질 때만 참이 되는 등식을 말하죠. 이건 그냥 그런 특징이 있는 식을 방정식이라고 부르기로 사람들끼리 약속한 거예요. 다른 이름으로 약속했다면 그렇게 부르면 되는 거예요.
증명은 실험이나 경험에 따르지 않고, 정의 또는 이미 옳다고 밝혀진 성질을 근거로 어떤 명제가 참임을 보이는 것을 말해요.
어떤 가정이 있다면 그 가정이 진짜인지 증거를 대는 거죠. 그 증거에 잘 맞으면 참이고, 증거에 맞지 않으면 거짓이 되는 거예요.
정리는 증명된 명제 중에서 기본이 되는 것으로 여러 개가 있어요. 정리는 원래는 가정이었는데, 증명을 통해서 참으로 밝혀진 걸 말해요. 이 정리를 이용해서 다른 명제의 참, 거짓을 증명하게 되는 거죠.
정의와 정리는 달라요. 정의는 그냥 약속이라서 증명을 할 필요가 없어요. 물론 증명할 수도 없지만요. 정리는 증명을 통해서 그것이 참임을 밝혀야 해요. 그래야 정리로서 가치를 인정받을 수 있죠.
도형의 정의
아래는 다각형 중에서 삼각형과 사각형의 정의를 나타낸 거예요.
삼각형: 세 개의 선분으로 둘러싸인 다각형
정삼각형: 세 변의 길이가 모두 같은 삼각형
이등변삼각형: 두 변의 길이가 같은 삼각형
직각삼각형: 한 내각의 크기가 직각인 삼각형
예각삼각형: 세 내각의 크기가 모두 예각인 삼각형
둔각삼각형: 한 내각의 크기가 둔각인 삼각형
사각형: 네 개의 선분으로 둘러싸인 다각형
직사각형: 네 각의 크기가 모두 같은 사각형
마름모: 네 변의 길이가 모두 같은 사각형
정사각형: 네 내각의 크기와 네 변의 길이가 모두 같은 사각형
평행사변형: 두 쌍의 대변이 각각 평행인 사각형
사다리꼴: 한 쌍의 대변이 평행인 사각형
등변사다리꼴: 한 밑변의 양 끝각의 크기가 같은 사다리꼴
증명에서 자주 사용되는 정리
평행한 두 직선과 한 직선이 만날 때 → 동위각, 엇각의 크기가 같다
평행선의 성질, 평행선에서 동위각과 엇각
삼각형의 합동 → 대응변의 길이와 대응각의 크기는 서로 같다
도형의 합동, 삼각형의 합동조건
두 직선 l, m이 아래 그림처럼 한 점 O에서 만난다. 일 때 다음을 증명하여라.
<
(1) ∠AOB = ∠COD
(2)
(1)에서 ∠AOC는 평각이라서 180°에요. 그리고 ∠AOC = ∠AOD + ∠COD이고요.
∠BOD도 평각이라서 180°에요. 그리고 ∠BOD = ∠AOB + ∠AOD이고요.
∠AOD + ∠COD = ∠AOB + ∠AOD = 180° 가 되는 거죠.
양변의 ∠AOD를 없애주면 ∠COD = ∠AOB가 됩니다.
사실 (1)번은 새로운 증명이 아니라 맞꼭지각, 동위각, 엇각에 나온 "두 직선이 한 점에서 만날 때 맞꼭지각의 크기는 같다."는 걸 한 번 더 증명해 본 거예요.
(2)번은 삼각형의 합동을 이용할 거예요. 점 A와 점 B에 선을 그으면 △AOB가 되고, 점 C와 점 D에 선을 그으면 △COD가 돼요. 두 삼각형에서 이고, ∠AOB = ∠COD에요. 즉 두 변의 길이와 그 사이의 끼인각의 크기가 가죠? 두 삼각형은 합동이에요. △AOB ≡ △COD
두 삼각형의 합동이니까 대응변의 길이는 같고, 대응각의 크기도 같아요.
따라서 서로 대응변인 변 AB와 변 CD의 길이는 같아요.
함께 보면 좋은 글
명제, 명제의 가정과 결론, 명제의 역
조금은 생소한 단원이에요. 명제라는 단원인데요.
복잡한 계산이 나오는 게 아니라 얼핏 보면 쉬워보일 수 있는데, 개념이 중요해서 생각을 많이 해야 하는 단원이에요.
생각할 거리가 많으니까 머리를 잘 굴려야 해요. 그냥 단순히 문장만 보고 식만 보고 해결할 수 없으니까 글자 하나하나에 주의해서 보세요.
1학년 때 배웠던 집합과 비슷한 부분이 많아요. 또 도형 단원에서 배웠던 여러 가지 용어들에 대한 뜻도 정확히 알면 문제 푸는 데 도움이 되니까 한 번쯤 정리해보세요.
명제
명제는 참, 거짓을 분명하게 판단할 수 있는 문장이나 식을 말해요. 집합에서 제일 중요한 건 집합의 조건이 아주 명확하고 객관적이어야 한다고 했어요. 명제에서도 아주 명확하고 객관적으로 참 거짓을 판단할 수 있어야 해요.
보기. "소녀시대는 예쁘다."는 문장이 있어요. 소녀시대는 예쁜가요? 대부분의 사람은 소녀시대를 예쁘다고 생각할 거예요. 그럼 참인가요? 그런데 어떤 사람들은 별로라고 생각할 수도 있잖아요. 이런 사람들은 이 문장이 거짓이라고 생각할 거예요. 그래서 이건 명제라고 할 수 없어요.
"소녀시대 멤버는 9명이다." 이 문장은요. 누가봐도 소녀시대 멤버는 9명이잖아요. 그래서 이 문장은 참이죠. 참이라고 결론 내릴 수 있으니까 이 문장은 명제라고 할 수 있어요.
"설리는 소녀시대 멤버이다." 이 문장은 어떨까요? 설리는 소녀시대의 멤버가 아니라 f(x)의 멤버잖아요. 틀린 문장이죠? 거짓이라는 얘기에요. 거짓이라고 판단할 수 있으니까 이 문장도 명제에요.
그 문장이 참인지 거짓인지는 중요하지 않아요. 참/거짓인지 판단할 수 있으면 명제에요. 많은 학생이 거짓이면 명제가 아니라고 착각하는데, 그런 실수는 하지 마세요.
명제가 항상 옳으면 참인 명제라고 해요. 만약에 명제가 항상 참이 아니고 어떤 경우에 하나라도 옳지 않으면 거짓인 명제라고 합니다.
"2의 배수는 짝수이다."라는 문장이 있어요. 이건 항상 옳죠? 그래서 참인 명제에요.
"모든 소수는 홀수이다."라는 문장이 있어요. 소수는 2, 3, 5, …등이 있는데, 2는 짝수이고 나머지는 모두 홀수에요. 모두 홀수라고 했는데, 2는 짝수잖아요. 엄청나게 많은 수의 소수가 홀수인데, 2 하나 때문에 이 문장은 옳지 않은 문장이 되어버렸어요. 따라서 거짓인 명제에요. 명제가 거짓인지 아닌지를 얘기할 때는 그걸 만족하지 않는 딱 하나만 찾으세요.
다음 문장에서 명제를 찾고, 참/거짓은 판별하시오.
(1) 6은 3의 배수이다
(2) 정사각형 네 변의 길이는 같다
(3) 두 삼각형의 넓이가 같으면 서로 합동이다.
(4) 100은 큰 수이다.
(5) x + 3 = 2이다.
(1)번 6은 3의 배수이다.
6은 3의 배수가 맞죠? 참인 명제에요.
(2)번 정사각형의 네 변의 길이는 같다.
정다각형 중에서 네 변의 길이가 모두 같고, 네 각의 크기가 모두 같은 사각형을 정사각형이라고 정의하죠? 정사각형의 정의에 따르면 네 변의 길이는 모두 같으니까 이 문장도 참인 명제네요.
(3)번 두 삼각형의 넓이가 같으면 서로 합동이다.
가로가 4cm이고 세로가 6cm인 삼각형과 가로가 3cm이고 세로가 8cm인 삼각형은 넓이가 같아요. 하지만 서로 포개지지 않으니까 합동은 아니잖아요. 따라서 이 문장은 거짓이에요. 거짓이라고 판별할 수 있으니까 명제가 맞네요. 거짓인 명제입니다.
(4)번 100은 큰 수이다.
100이라는 수는 1보다는 크지만 10,000보다는 작은 수에요. 때에 따라서 사람에 따라서 크고 작고가 달라질 수 있죠? 따라서 참/거짓을 판단할 수 없어요. 명제가 아니에요.
(5)번 x + 3 = 2이다.
일차방정식이네요. 만약에 x가 1이라면 이 문장은 거짓이 돼요. 그럼 거짓인 명제일까요? 아니에요. 방정식이나 부등식처럼 x의 값에 따라서 참/거짓이 달라지는 경우에는 명제라고 할 수 없어요.
명제의 가정과 결론
"두 삼각형의 넓이가 같으면 서로 합동이다."처럼 일반적으로 명제는 "OO이면 □□이다."라고 표현해요. 여기서 OO이면을 가정, □□이다를 결론이라고 합니다.
수학은 기호로 표시해요. 가정인 OO이면을 p, 결론 □□이다를 q라고 하는데, 이걸 기호로 p → q로 표시해요.
다음 명제에서 가정과 결론을 말하여라.
(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
(2) 정사각형의 네 변의 길이는 같다.
명제 "OO이면 □□이다"에서 OO이면이 가정, □□이다는 결론이에요.
(1)번 두 삼각형의 넓이가 같으면 서로 합동이다.
이 명제에서 "같으면"을 기준으로 두 문장으로 되어 있어요. "두 삼각형의 넓이가 같다."와 "두 삼각형은 서로 합동이다."이죠. "두 삼각형은 넓이가 같다."는 가정, "두 삼각형은 서로 합동이다."는 결론이 되겠네요.
(2) 정사각형의 네 변의 길이는 같다.
여기에는 OO이면이 없어요. 그럼 가정이 없을까요? OO이면이 없는 명제에서는 주어나 전제에 해당하는 부분이 가정이에요. 이 문장은 "어떤 사각형은 정사각형이다."와 "이 사각형은 네 변의 길이가 같다."로 나눌 수 있어요. "어떤 사각형은 정사각형이다."는 가정, "이 사각형은 네 변의 길이가 같다."는 결론에 해당해요. 이런 명제에서 가정과 결론을 찾는 건 연습이 조금 필요합니다.
명제의 역
역이라는 건 한자로 바꾸다라는 뜻이 있어요. 명제의 역은 명제를 바꾸는 데 어떻게 바꾸느냐? 명제의 가정과 결론의 위치를 바꾸는 거예요.
명제 "OO이면 □□이다"의 가정과 결론의 위치를 바꾼 "□□이면 OO이다"가 명제의 역이 되는 거예요. 명제를 "p → q"라고 쓴다고 했으니까 명제의 역은 "q → p"가 되는 거죠.
어떤 명제가 이미 있고 그 명제의 가정과 결론의 위치를 바꾼 게 그 명제의 역이 되는 거예요. 어디서 갑자기 툭 튀어나오는 게 아니에요.
명제가 참이라고 해서 명제의 역이 참이 되는 건 아니에요. 마찬가지로 명제가 거짓이라고 해서 명제의 역이 거짓이 되는 것도 아니에요. 명제와 명제의 역의 참/거짓은 서로 아무런 관계가 없어요.
다음 명제의 역을 말하시오.
(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
(2) 정사각형의 네 변의 길이는 같다.
위에서 명제의 가정과 결론을 알아봤죠? 자리만 그대로 바꾸면 돼요.
(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
"두 삼각형의 넓이가 같다." → "두 삼각형은 서로 합동이다."라는 명제였어요.
자리를 바꾸면 "두 삼각형은 서로 합동이다." → "두 삼각형의 넓이가 같다."이므로 한 문장으로 합치면 "두 삼각형이 서로 합동이면 넓이가 같다."라는 명제의 역이 만들어져요.
(2) 정사각형의 네 변의 길이는 같다.
"어떤 사각형은 정사각형이다." → "이 사각형은 네 변의 길이가 같다."
위치를 바꾸면 "이 사각형은 네 변의 길이가 같다." → "어떤 정사각형이 있다."가 되네요. 한 문장으로 합치면 "네 변의 길이가 같은 사각형은 정사각형이다"라는 명제를 만들 수 있어요.
추가로 명제와 명제의 참/거짓을 알아볼까요?
(1)에서 명제는 거짓이었어요. 명제의 역은 참이죠? 두 삼각형이 합동이면 서로 포개어지는 거고 가로, 세로의 길이가 같으니까 넓이도 같잖아요.
(2)에서 명제는 참이었어요. 명제의 역은 거짓이에요. 네 변의 길이가 같더라도 네 각의 크기가 다를 수 있잖아요. 이걸 마름모라고 해요.
명제의 참/거짓과 명제의 역의 참/거짓은 아무런 상관이 없다는 걸 알아두세요.
함께 보면 좋은 글
도수분포표에서의 분산과 표준편차
이번에는 도수분포표를 보고 분산과 표준편차를 구하는 방법이에요. 분산과 표준편차에서 얘기한 것처럼 표준편차를 구하려면, 평균 → 편차 → 분산 → 표준편차의 순서대로 구해야 해요.
그런데 도수분포표에서 평균 구하는 방법은 일반적인 평균구하는 방법과 달랐죠? 도수분포표에서의 평균 구하기에서 했던 방법으로 평균을 먼저 구해야 해요. 미리 확인하세요.
이 글에서는 1학년 때 배웠던 도수분포표 관련 내용과 앞에서 배운 산포도의 내용이 모두 총망라돼서 나와요. 산포도 구하는 방법과 공식을 꼭 기억하고 있어야 해요.
도수분포표에서 분산과 표준편차 구하기
도수분포표에서 분산과 표준편차를 구할 때 가장 중요한 것은 도수예요. 일반적인 변량들로 된 자료에서는 각각의 값들을 정확하게 알 수 있어요. 하지만 도수분포표는 정확한 값을 알 수 없기 때문에 계급값을 이용하죠. 그리고 계급값을 이용하여 얻은 값들은 도수가 포함되지 않은 값들이에요. 따라서 값에 도수를 곱해줘야 우리가 원하는 걸 얻을 수 있어요.
뭔 말인지 모르겠죠? 실제로 구해보면서 정리해보죠. 아래같은 도수분포표가 있다고 해볼까요?
| 점수(점) | 학생 수(명) |
|---|---|
| 60 이상 ~ 70 미만 | 1 |
| 70 ~ 80 | 3 |
| 80 ~ 90 | 11 |
| 90 ~ 100 | 5 |
| 합계 | 20 |
평균 → 편차 → 분산 → 표준편차를 구해야 해요.
분산과 표준편차를 구할 때는 아래처럼 표를 이용해서 구하는 게 알아보기 쉽고 편해요.
| 점수 (점) | 학생 수 (명) | 계급값 | 계급값 × 도수 | ②편차 | (편차)2 × 도수 |
|---|---|---|---|---|---|
| 60이상 ~ 70미만 | 1 | 65 | 65 × 1 = 65 | 65 - 85 = -20 | (-20)2 × 1 = 400 |
| 70 ~ 80 | 3 | 75 | 75 × 3 = 225 | 75 - 85 = -10 | (-10)2 × 3 = 300 |
| 80 ~ 90 | 11 | 85 | 85 × 11 = 935 | 85 - 85 = 0 | (0)2 × 11 = 0 |
| 90 ~ 100 | 5 | 95 | 95 × 5 = 475 | 95 - 85 = 10 | (10)2 × 5 = 500 |
| 합계 | 20 | 65 + 225 + 935 + 475 = 1700 | 400 + 300 + 0 + 500 = 1200 | ||
| 평균 | ①1700 ÷ 20 = 85 | ③1200 ÷ 20 = 60 |
- 계급값은 각 구간의 양 끝값을 더해서 2로 나눈 값이죠? 도수분포표, 변량, 계급, 계급값, 도수에서 계급값 구하는 방법도 해봤어요. 계급값을 이용해서 평균을 구했더니 85가 나왔네요.
- 평균을 구한 다음에는 편차를 구해야 해요. 편차 구하는 공식의 변량 자리에 계급값을 넣어주세요.
- 편차를 구한 다음에는 분산을 구해야 하는데요. 분산은 편차의 제곱의 평균이라고 했어요. 그런데 도수분포표에서는 편차 제곱에 도수를 구한 것들의 평균이에요. 편차의 제곱에 도수를 꼭 곱해줘야 해요.
일반적인 변량이었다면 각각 편차를 구해서 더했을 텐데, 도수분포표에서는 각각의 편차를 구할 수 없기때문에 대표인 계급값을 이용했던 거거든요. 그런데 같은 계급값을 갖는 변량이 도수의 개수만큼 있잖아요. 특정한 계급값을 대표로 갖는 도수의 개수만큼을 곱해줘야 해당 계급의 변량들의 값을 모두 더한 게 되는 거죠.
편차의 합은 0이라고 했는데, 위 도수분포표에서 편차의 합은 0이 아니에요. 대신 편차에 도수를 곱해서 더하면 0이 되는 겁니다.
각 계급의 (편차)2 × 도수를 구한 다음에 도수의 총합으로 나누면 그게 바로 분산입니다. 분산이 60이 나왔네요. - 마지막으로 표준편차는 분산에 제곱근을 씌운 거니까
가 되네요.
함께 보면 좋은 글
대푯값과 평균, 중앙값, 최빈값
산포도와 편차
분산과 표준편차
[중등수학/중1 수학] - 도수분포표, 변량, 계급, 계급값, 도수
[중등수학/중1 수학] - 도수분포표 만드는 법
[중등수학/중1 수학] - 도수분포표에서의 평균구하기
분산과 표준편차
산포도에 대해서 알아보고 있어요. 산포도에서 가장 많이 쓰이는 게 이번 글에서 다룰 분산과 표준편차에요.
한 번의 계산으로 구해지는 게 아니라 여러 단계를 거쳐서 구해야 하는 조금은 귀찮고 까다로울 수 있는 내용이에요. 반대로 단계별 순서만 기억하면 계산은 어렵지 않아서 쉽게 구할 수 있어요.
산포도와 편차에서 바로 이어지는 내용이니까 미리 읽어두세요. 분산과 표준편차의 뜻과 구하는 방법에 대해서 알아보죠.
분산
편차는 음수와 0, 양수가 섞여 있어요. 다 더하면 0이고, 평균도 0이 되지요. 따라서 편차의 평균으로는 산포도를 알 수 없어요.
새로운 뭔가가 필요해서 음수 없이 양수만 나오게 하려고 편차를 제곱하는 방법을 이용합니다. 이 편차 제곱의 평균을 이용해서 산포도를 구하게 된 거죠.
분산은 편차 제곱의 평균이에요. 제곱의 평균이니까 일단 편차를 전부 다 제곱해서 더한 다음 편차(변량)의 개수로 나누어야겠죠?
표준편차
분산을 구했더니 이게 제곱한 값들의 평균이라서 값이 너무 커질 때가 있어요. 제곱한 거니까 원래대로 돌려주려면 어떻게 해야하나요? 제곱근을 씌우면 되죠?
표준편차는 분산에 제곱근을 씌운 거예요. 제곱근을 씌웠으니까 양수인데요. 0이 될수도 있어요. 즉, 분산의 음이 아닌 제곱근을 말해요.
표준편차를 구하는 순서는 조금 복잡하네요.
표준편차 구하는 순서: 변량의 평균 → 편차 → 분산 → 표준편차
결국 표준편차를 구하려면 평균과 편차, 분산을 모두 구해야 해요.
19, 20, 21, 19, 26의 표준편차를 구하여라.
표준편차를 구하라고 했어요. 위해서 했던 것처럼 표준편차를 구하려면 평균 → 편차 → 분산 → 표준편차의 순서대로 구해야 해요. 순서대로 구해보죠. 표를 이용해서 구해볼까요?
| 합계 | 평균 | ||||||
|---|---|---|---|---|---|---|---|
| 변량 | 19 | 20 | 21 | 19 | 26 | 105 | ①21 |
| ②편차 | -2 | -1 | 0 | -2 | 5 | 0 | 0 |
| (편차)² | 4 | 1 | 0 | 4 | 25 | 34 | ③6.8 |
① 평균 = (19 + 20 + 21 + 19 + 26) ÷ 5 = 21이네요.
② (편차) = (변량) - (평균)으로 구할 수 있고요.
③ 분산은 (편차)²의 평균이니까 각각의 제곱을 구해서 더해야겠죠. 그다음 평균을 구했더니 6.8이 나왔어요.
이제 문제에서 구하려고 하는 표준편차를 구할 차례인데, 표준편차는 분산에 제곱근을 씌운 거에요. 따라서 이 되네요.
자료의 분산과 표준편차가 크면 클수록 그 자료는 평균을 중심으로 멀리 흩어져있다고 할 수 있죠. 분산과 표준편차는 산포도의 한 종류니까요. 단순히 분산과 표준편차를 구하는 것에 그치지 말고, 그 수치가 어떤 의미를 가졌는지도 알아야 해요.
함께 보면 좋은 글
대푯값과 평균, 중앙값, 최빈값
산포도와 편차
도수분포표에서의 분산과 표준편차
산포도와 편차
대푯값에 대해서 알아봤어요. 평균, 중앙값, 최빈값이 있었죠? 대푯값은 말 그대로 변량들의 특징을 대표적으로 나타낼 수 있는 값이에요.
그런데 이번에는 자료의 대표적인 특징이 아니라 자료가 어떻게 분포되어 있는지 알고 싶어요. 대푯값으로는 알 수가 없거든요.
그래서 자료의 분포를 쉽게 알아볼 수 있는 값을 구해야 하는데 그게 바로 산포도입니다.
산포도
산포도는 자료가 흩어져 있는 정도를 하나의 수로 나타낸 값이에요. 산포는 분포랑 비슷한 뜻이에요.
산포도도 대푯값처럼 딱 하나만 있는 게 아니라 여러 가지 종류가 있어요. 그중에서도 분산과 표준편차가 가장 많이 쓰이는데, 이것에 대해서는 다음 글 분산과 표준편차에서 자세히 설명할게요.
산포도는 평균에 얼마나 가까이 있느냐, 평균에서 얼마나 멀리 있느냐를 통해서 자료가 흩어진 정도를 알아보는 방법이에요. 따라서 평균을 제일 먼저 구해야 해요. 자료의 변량이 평균에 가까이 있으면 "산포도가 작다"고 하고, 평균에서 멀리 떨어져 있으면 "산포도가 크다"고 해요.
편차
산포도는 평균에서 얼마나 떨어져 있느냐가 중요하잖아요. 평균에서 얼마나 떨어져 있느냐를 값으로 나타낸 게 편차이에요. 편차는 아래 공식으로 구해요.
변량이 평균보다 크면 편차 > 0이고, 변량이 평균보다 작으면 편차 < 0이 돼요.
편차의 부호와 상관없이 편차의 절댓값이 작을수록 평균에 가까이 있고, 절댓값이 클수록 평균에서 멀리 떨어져 있는 거죠.
또 하나 기억해야 할 게 편차의 합 = 0이에요.
90, x, 85, 95, 100의 다섯 숫자의 평균이 90일 때 x와 그 편차를 구하여라.
평균 90은 다섯 수를 모두 더해서 5로 나눈 값이죠? 그 과정을 거꾸로 하면 x를 구할 수 있어요.
(90 + x + 85 + 95 + 100) ÷ 5 = 90
90 + x + 85 + 95 + 100 = 450
x = 80
x = 80이에요. 편차 = 변량 - 평균이므로 x의 편차는 80 - 90 = -10이 되네요.
함께 보면 좋은 글
대푯값과 평균, 중앙값, 최빈값
분산과 표준편차
도수분포표에서의 분산과 표준편차