함숫값

합성함수, 함성함수란

2013. 9. 21. 16:00

이제 함수에 대해서는 다 알았나요? 이제는 원래 있던 함수를 이용해서 새로운 함수를 만들 거예요. 합성함수는 이름에서 알 수 있듯이 어떤 무언가를 서로 합해서 만든 함수예요. 그러니까 두 개 이상의 함수를 합하는 거지요.

함수의 정의만 제대로 알고 있다면 합성함수에 대해서도 금방 이해할 수 있을 거예요.

합성함수는 그림으로 이해해도 좋고, 식으로 이해해도 좋아요. 별로 어렵지 않은 내용으로 순서만 잘 지키면 금방 해결할 수 있는 문제들이니까 쉽게 생각하세요.

합성함수

세 집합이 있어요.

X = {이순신, 퇴계 이황, 율곡 이이, 세종대왕, 신사임당}
Y = {100원, 1000원, 5000원, 10000원, 50000원}
Z = {동전, 지폐}

집합 X의 임의의 원소인 위인이 집합 Y의 원소인 화폐 모델인 경우를 대응시켜보면 함수예요. 이 함수를 f라고 해보죠

집합 Y의 임의의 원소인 화폐가 집합 Z의 동전인지 지폐인지에 대응하면 이것도 함수죠. 함수 g라고 할게요.

그럼 집합 X의 위인이 동전의 모델인지 지폐의 모델인지 집합 Z에 대응시킬 수 있겠죠? 이순신은 동전의 모델이고, 퇴계 이황, 율곡 이이, 세종대왕, 신사임당은 지폐의 모델이에요.

이처럼 두 개의 함수를 이용해서 새로운 하나의 함수를 얻을 수 있어요.

마치 명제의 삼단논법에서 p → q이고 q → r이면 p → r이 되는 것처럼 f: X → Y이고, g: Y → Z이면 X → Z라는 새로운 함수가 되는 거지요.

두 함수 f: X → Y, g: Y → Z가 주어졌을 때, X의 임의의 원소 x에 대하여 Z의 원소 g(f(x))를 대응시킴으로써 X를 정의역, Z를 공역으로 하는 새로운 함수를 정의할 수 있어요. 이 함수를 f와 g의 합성함수라고 하고 g ο f: X → Z로 나타냅니다.

(g ο f)(x) = g(f(x))

합성함수 간략히

f와 g를 합성한 합성함수는 f ο g가 아니라 g ο f 예요. 순서에 주의하세요.

함수 f에서 공역은 집합 Y에요. 치역은 공역의 부분집합이죠.
{함수 f의 치역} ⊂ {함수 f의 공역}

함수 g의 정의역은 집합 Y로 함수 f의 공역과 같아요.
{함수 f의 공역} = {함수 g의 정의역}

이 둘의 의해 {함수 f의 치역} ⊂ {함수 g의 정의역}이 된다는 것도 알아두세요.

다음을 보고 물음에 답하여라.
(1) (g ο f)(3)
(2) (g ο f)(2)
(3) g ο f의 정의역, 공역, 치역

합성함수 예제

(1) (g ο f)(3) = g(f(3)) = g(ㄴ) = e

(2) (g ο f)(2) = g(f(2)) = g(f) = d

(3) 합성함수에서 정의역은 처음 함수의 정의역, 공역은 두 번 ° 함수의 공역이에요. 따라서 정의역은 집합 X = {1. 2, 3, 4}이고 공역은 Z = {a, b, c, d, e}에요.

치역은 함숫값들의 집합이니까 Z와 다를 수 있어요. 이 경우에는 {b, c, d, e}가 되겠네요.

f(x) = x2 + 1, g(x) = x + 3일 때 다음을 구하여라.
(1) (g ο f)(3)
(2) (f ο g)(2)
(3) (g ο f ο g)(1)

(1) (g ο f)(3) = g(f(3)) = g(10) = 13

(2) (f ο g)(2) = f(g(2)) = f(5) = 26

(3) 번은 세 개로 되어있는데, 방법은 같아요. 뒤에서부터 하나씩 해결하면 돼요.

(g ο f ο g)(1) = g(f(g(1))) = g(f(4)) = g(17) = 20

함께 보면 좋은 글

함수, 함수의 정의, 대응
정의역, 공역, 치역, 함숫값, 서로 같은 함수
함수의 그래프
일대일대응, 일대일함수, 항등함수, 상수함수
명제의 역, 이, 대우, 삼단논법

정리해볼까요

합성함수

  • 두 함수 f: X → Y, g: Y → Z가 주어졌을 때, X의 임의의 원소 x에 대하여 Z의 원소 g(f(x))를 대응시킨 함수
  • X를 정의역, Z를 공역
  • g ο f: X → Z
  • (g ο f)(x) = g(f(x))
<<  수학 1 목차  >>
 
그리드형

함수의 정의에 이어 함수에서 사용하는 용어에 대해서 알아보죠. 정의역, 공역, 치역인데 들어본 적이 있을 거예요. 그냥 한 번 복습하는 차원에서 다뤄보죠.

용어의 정의에 대한 내용이니 외우기보다는 그 뜻을 잘 이해하는 게 중요해요. 사실 별 중요한 뜻이 있는 건 아니지만, 나중에 헷갈리기 쉽거든요.

두 함수가 서로 같은 함수인지 아닌지 알아보는 방법도 공부할 거예요. 두 함수가 서로 같은지를 확인하는 조건이 있는데, 이 조건을 잘 알아두세요.

정의역, 공역, 치역, 함숫값

함숫값

집합 X에서 집합 Y로의 함수를 f: X → Y라고 나타내죠. 이때 집합 X의 원소에 대응하는 집합 Y의 원소를 함수 f에 의한 x의 함숫값이라고 해요.

기호로는 f: x → y로 나타내기도 하고 y = f(x)로 나타내기도 해요.

X의 임의의 원소 a에 대한 함숫값은 x = a를 대입하면 됩니다. y = f(x)가 y = f(a)가 되는 거예요.

정의역, 공역, 치역

두 집합 X, Y에서 집합 X의 각 원소에 대하여 집합 Y의 원소가 하나씩만 대응할 때, 이 대응을 집합 X에서 집합 Y로의 함수라고 하며, 이것을 기호로 f: X → Y라고 나타내요.

여기서 두 집합 중 X를 함수 f의 정의역, Y를 함수 f의 공역이라고 해요. 또 함숫값 f(x)를 원소로 하는 집합을 함수 f의 치역이라고 해요. 함숫값은 집합 Y의 원소이니까 치역은 공역의 부분집합이죠.

정의역, 공역, 치역

정의역과 공역에 대해서 별다른 언급이 없다면 정의역과 공역은 실수 전체의 집합을 의미합니다.

다음 함수의 정의역, 공역, 치역을 구하여라.
(1) y = x + 1
(2) y = x2 + 1

정의역과 공역에 대한 별다른 얘기가 없으면 실수 전체의 집합으로 생각하세요.

(1) 번의 정의역과 공역은 실수 전체의 집합이에요. 치역은 함숫값들의 집합인데, 정의역이 실수 전체의 집합이니까 x + 1의 결과도 실수 전체의 집합이에요. 따라서 정의역, 공역, 치역이 모두 실수 전체의 집합입니다.

(2) 번도 정의역, 공역에 대한 얘기가 없으니 실수 전체의 집합이에요. x2 + 1에 어떤 값이 들어가더라도 1보다 커요. 따라서 함숫값은 1보다 큰 실수겠죠? 정의역과 공역은 실수 전체의 집합, 치역은{y|y ≥ 1인 실수}네요.

서로 같은 함수

정의역과 공역이 서로 같은 두 함수 f, g가 있어요. f: X → Y, g: U → V

f의 함숫값을 f(x), g의 함숫값을 g(x)라고 할 때, 정의역의 모든 원소 x에 대하여 두 함수의 함숫값이 서로 같으면 f(x) = g(x)가 되죠. 이때 두 함수를 같다고 하고 f = g라고 해요.

두 함수가 서로 같지 않으면 f ≠ g라고 표시합니다.

두 함수 f: X → Y, g: U → V가 같을 조건
정의역과 공역이 같다. X = U, Y = V
모든 원소 x에 대한 함숫값이 같다. f(x) = g(x)

X = {-1, 0, 1}, Y = {0, 1, 4}일 때, 두 함수 f(x) = (x + 1)2, g(x) = (x - 1)2가 서로 같은 함수인지 아닌지를 판별하여라.

두 함수가 같으려면 정의역과 공역이 같고, 함숫값이 같아야 해요. 일단 두 함수의 정의역과 공역이 같네요. 함숫값이 서로 같은지 보죠.

f(-1) = (-1 + 1)2 = 0
f(0) = (0 + 1)2 = 1
f(1) = (1 + 1)2 = 4

g(-1) = (-1 - 1)2 = 4
g(0) = (0 - 1)2 = 1
g(1) = (1 - 1)2 = 0

치역이 같아요. 그래서 언뜻 보면 두 함수는 같은 함수처럼 보여요. 하지만 치역이 같은 건 아무런 상관이 없어요. 함숫값이 같아야 해요. 즉 f(-1) = g(-1), f(0) = g(0), f(1) = g(1)이어야 하죠. 함숫값이 같지 않으니 두 함수 f, g는 서로 같은 함수가 아니에요. f ≠ g

함께 보면 좋은 글

함수, 함수의 정의, 대응
[중등수학/중1 수학] - 함수의 뜻과 함숫값, 함수의 정의

정리해볼까요

함수 f: X → Y

  • 함숫값: y = f(x)
  • 정의역: X
  • 공역: Y
  • 치역:

서로 같은 함수

  • 정의역과 공역이 같음
  • 모든 원소에 x에 대한 함숫값이 같음
 
그리드형

새로운 단원 함수에요. 다행스럽게도 2013년 교육과정 개편으로 함수에서 공부할 내용이 많이 줄어들었어요. 대신 함수는 1, 2, 3학년 모든 과정에서 계속해서 배우는 단원이에요. 내용이 줄었다고 해서 중요도가 줄어든 것은 아니라는 걸 명심하세요.

함수는 개념 정의가 상당히 어려운 부분이에요. 문제를 푸는 것과는 별개로 여러 번 읽어봐야 이해가 될 겁니다.

이 글에서는 함수의 정의함숫값의 뜻을 알아볼 거예요. 3년 동안 사용할 개념을 이 글에서 다루니까 제대로 잘 이해해야 합니다.

변수와 상수

"한 권에 1000원 하는 공책 x권을 샀다"고 했을 때, x는 1이 될 수도 있고, 2가 될 수도 있고 100이 될 수도 있죠. 이처럼 딱 정해진 값을 갖는 게 아니라 변하는 값을 변수라고 해요. 이런 변수들은 문자로 나타내기 때문에 변하는 값을 나타내는 문자를 변수라고 하기도 해요.

문자와 식에서 식에 문자를 사용하는 걸 공부했었죠? 거기서 사용했던 문자들이 모두 변수에요.

이와 반대로 1은 언제나 1이고 10은 언제나 10이에요. 어떤 경우라도 바뀌지 않고 그대로죠. 이처럼 변하지 않는 값을 상수라고 해요. 항, 상수항, 계수, 차수에서 상수항 들어봤죠? 숫자만 있는 항을 상수항이라고 한다고 했어요. 숫자만 있는 항은 바뀌지 않으니까 상수항인 거예요.

변수: 변하는 값
상수: 변하지 않는 값

함수의 정의

한 권에 1000원 하는 공책 x권을 샀을 때 내야 할 공책의 값을 y원이라고 한다면 y = 1000x에요.

공책 수 x (권) 1 2 3 4

내야 할 금액 y (원)

1000 2000 3000 4000

공책의 권 수 x가 정해지면 그에 따라 내야 할 금액 y도 바뀌었네요. x와 y는 정해지지 않고 바뀌는 변수지요.

두 변수 x, y에 대하여 x가 정해지면 그에 따라 y의 값이 오직 하나로 결정될 때, y를 x의 함수라고 해요. 영어로는 Function이라고 해요. 무슨 말인지 잘 모르겠죠?

간단히 말해 위 표에서 x가 하나 정해지면 그에 따라서 y도 하나 정해지는데, 이걸 함수라고 하는 거예요.

여기서 중요한 건 하나의 x에 하나의 y가 정해져야 하는 거예요. 예를 들어서 공책을 한 권 샀는데, 1,000원 일 수도 있고 2,000원 일수도 있다면 이건 함수라고 할 수 없어요. 1권이라는 x에 1,000원, 2,000원이라는 두 개의 y가 있으니까요.

x가 바뀌는 데, y는 바뀌지 않아도 상관없어요. 공책을 한 권 사도 1,000원, 2권 사도 1,000원, 3권 사도 1,000원이어도 상관없다는 거죠. x 한 개에 y 하나가 결정되었잖아요. 이때는 그냥 y가 겹치는 것이거든요.

함수의 정의 설명 1

두 개의 그림이 있는데, 왼쪽에는 하나의 x에 하나의 y가 정해져서 함수라고 할 수 있어요. 오른쪽 그림에서는 y가 겹치긴 하지만 하나의 x에 하나의 y가 정해져 있으니까 함수에요.

함수의 정의 설명 2

위 그림의 1에서는 1,000과 2,000의 두 개의 y로 화살표가 이어져 있어요. 하나의 x에 두 개의 y가 정해졌으니까 함수가 아니에요.

위에서 x와 y는 y = 1000x라는 관계식으로 나타낼 수 있어요. 이 x와 y의 관계식을 함수식이라고 부르는데, 1000x라는 식이 x로 되어 있는 식이라서 Function의 F와 x를 결합해서 f(x)라고 해요.

f(x)

따라서 함수를 식으로 표현할 때, 함수 y = 1000x 또는 f(x) = 1000x라고 하죠.

어떤 특정한 함수가 아니라 일반적인 함수를 나타낼 때는 y = f(x)라고 해요. 에프엑스라는 가수를 왜 함수그룹이라고 부르는지 알겠죠?

함수: 두 변수 x, y에 대하여 x가 정해지면 그에 따라 y의 값이 하나만 결정될 때, y를 x의 함수. y = f(x)

다음 중 함수가 아닌 것을 고르시오.
(1) x보다 큰 자연수 y
(2) 한 그릇에 5,000원 하는 자장면 x 그릇을 먹었을 때의 금액 y 원

두 변수 x, y에 대하여 x에 따라 y가 하나만 정해질 때 함수라고 한다고 했어요.

(1)번은 예를 들어 x = 2라고 하면 2보다 큰 자연수는 3, 4, 5, … 여러 개가 있죠? 하나가 아니에요. 따라서 (1)은 함수가 아니에요.

(2)번은 금액 y = 5000x의 관계가 있고, x 하나에 y가 하나만 정해지니까 함수라고 할 수 있어요.

함숫값

함수에서는 x에 따라서 y의 값이 하나만 결정된다고 했어요. x에 따라서 하나로 결정되는 그 y를 함숫값이라고 해요.

f(x) = 1000x에서
x = 1일 때, y = 1000이므로 x = 1일 때의 함숫값은 1000이죠. 이걸 식으로 쓰면 f(1) = 1000이 되죠.
x = 2일 때, y = 2000이므로 f(2) = 2000
x = 3일 때, y = 3000이므로 f(3) = 3000

쉽게 생각하세요. 우리 대입이라는 걸 공부했죠? 대신 넣는 거예요.
f(x) = 1000x에서
x = 1을 대입하면 x를 모두 1로 바꾸는 거예요. f(1) = 1000
x = 2를 대입하면 f(2) = 1000 × 2 = 2000
x = 3을 대입하면 f(3) = 1000 × 3 = 3000

여기서 1000, 2000, 3000이 x = 1, 2, 3일 때의 함숫값이에요.

함숫값: y = f(x)에서 x의 값에 따라 하나로 정해지는 y의 값
f(a): y = f(x)에서 x = a일 때의 함숫값

f(x) = ax + 4일 때, f(2) = 6이다. 다음을 구하여라.
(1) a는 얼마인가?
(2) f(4) - f(3)

(1) 에서 f(2) = 6이라는 말은 x = 2일 때, 함숫값이 6이라는 뜻이에요. 즉 f(x) = ax + 4에 x = 2를 대입하면 6이 나온다는 뜻이지요.
6 = 2 × a + 4
2 = 2a
a = 1

f(x) = x + 4 네요.

(2)번은 f(x) = x + 4이므로 x = 4, x = 3을 대입하면
f(4) - f(3) = 4 + 4 - (3 + 4) = 1

함께 보면 좋은 글

정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수 그래프, 함수의 그래프 특징 비교
함수의 활용

정리해볼까요

변수와 상수

  • 변수: 변하는 값
  • 상수: 변하지 않는 값

함수의 정의와 함숫값

  • 함수: 두 변수 x, y에 대하여 x가 정해지면 그에 따라 y의 값이 하나만 결정될 때, y를 x의 함수
  • 함숫값: y = f(x)에서 x의 값에 따라 하나로 정해지는 y의 값
 
그리드형

일차함수 뜻

2012. 6. 14. 12:30

함수는 1학년 때 기본적인 용어에 대해서 배웠는데, 기억이 나나요?

함수: 두 변수 x, y에 대하여 x의 값이 정해지면 그에 따라 y의 값이 하나만 정해질 때, y를 x의 함수라 하고, y = f(x)라고 나타냅니다. 즉, x에 y가 하나만 대응하는 걸 함수라고 하지요. x값에 따라 y가 바뀌는 거고요.

일차함수

함수 y = f(x)에서 y가 x에 대한 일차식일 때 이 함수를 일차함수라고 해요.

일차방정식을 공부했는데요. 일차방정식은 일반적으로 ax + b = 0으로 나타내지요. 여기에 우변의 0 대신에 y를 넣고 좌, 우변의 위치를 바꾸면 일차함수의 모양이 돼요

y = ax + b (a ≠ 0, a, b는 상수)

일차함수를 찾는 방법은 일차방정식을 찾는 방법을 이용해요.

다음 중 일차함수인 것을 모두 고르시오.
(1) y = 0x + 3
(2) y = 3x + 10
(3) y = (x + 1)2 - x2
(4) y = 5
(5) xy = 1
(6) y = 2x2 + x -1

y = ax + b (a ≠ 0, a, b는 상수)인 형태가 되어야 일차함수라고 할 수 있어요. 이걸 확인하려면 먼저 식을 간단히 해야 해요.

(1)번은 x의 계수가 0이어서 일차식이 아니니까 일차함수라고 할 수 없어요
(2)번은 우변이 일차식이 맞네요. (2)번은 일차함수가 맞아요.
(3) 번은 괄호를 곱셈공식을 이용해서 전개해요. (x + 1)2 - x2 = x2 + 2x + 1 - x2 = 2x + 1가 되네요. 즉, y = 2x + 1이니까 일차함수가 맞아요
(4) 번은 일차항이 없이 그냥 상수항만 있어서 일차함수가 아니고요.
(5) 번은 y =  형태가 돼요. 분수꼴이라서 일차식이라고 할 수 없어요. 일차함수가 아니에요. x앞의 계수가 분수인 건 괜찮아요. 차이를 구별하세요
(6) 번은 일차식이 아닌 이차식이에요. 따라서 일차함수라고 할 수 없어요.

위 문제에서 일차함수는 (2) y = 3x + 10과 (3) y = (x + 1)2 - x2 두 개입니다.

함숫값의 표현

함수는 보통 y = f(x)라고 표시하는데, 이때 f(x)는 x에 대한 식이에요.

x = 3일 때의 y값을 f(3)이라고 써요. x = 3을 위 식에 대입해보죠. 대입이라는 건 x자리에 3을 넣는 거잖아요. 계산을 하는 건 아니지만 x 자리에 3을 넣으면 y = f(3)이에요.

반대로 f(5)를 보고 "x에 5를 넣었을 때 y값이구나."하는 걸 읽을 수 있어야 해요.

함수 y = 5x - 1에서 다음 값을 구하여라.
(1) f(3)
(2) f(5) - f(1)

(1) f(3)은 x = 3 일 때의 y 값이니까 x = 3을 대입해요.
y = 5 × 3 - 1 = 14

(2)번 f(5) - f(1) = (5 × 5 - 1) - (5 × 1 - 1) = 24 - 4 = 20입니다.

함께 보면 좋은 글

[중등수학/중1 수학] - 함수의 뜻과 함숫값, 함수의 정의
[중등수학/중1 수학] - 정비례와 반비례 - 함수의 관계식
[중등수학/중1 수학] - 함수 그래프, 함수의 그래프 특징 비교
[중등수학/중1 수학] - 함수의 활용

정리해볼까요

일차함수

  • 함수 y = f(x)에서 y가 x에 관한 일차식일 때, 이 함수를 일차함수라고 한다.
  • y = ax + b (a ≠ 0, a, b는 상수)
 
그리드형

+ 최근글